A Maximum Principle for
Sums of Subharmonic Functions,
and the Convexity of Level Sets

JEAN-PIERRE ROSAY & WALTER RUDIN

Introduction

We show in this paper that certain subharmonic functions satisfy a maximum
principle on certain subvarieties of their domains of definition. Its statement
(Theorem 1.4) is somewhat reminiscent of the fact that restrictions of pluri-
subharmonic functions in C” to the zero-variety Z of some holomorphic
function have no strict local maxima on Z. We discovered it in the course of
proving the following convexity property of harmonic functions.

THEOREM 1. If n=2 and

(@) W is a bounded convex open subset of R",

(b) X is a compact convex subset of W,

() @=W\K,

(@) u:Q - R is continuous, harmonicin Q, andu=0o0n K, u=1on oW,

then every level set of u in Q is a strictly convex hypersurface.

Only after proving this did we realize that we were not the first to do so. In
fact, there exist several proofs of this and of related results ([1], [2], [8], [9],
[10]). However, our proof is different from these; it is quite elementary, and
it gives some new quantitative information: Theorem 4.5 shows that all level
sets of u are “at least as convex” as are dW and dK. (Similar quantitative
information has been found quite recently by Dennis Stowe, again by en-
tirely different methods.) We also hope that our maximum principle may
have some further applications.

The term “strictly convex” refers to the Hessian of u. This is defined to
be the quadratic form

n aZu

Hp(u) £)= 2

i,j=1 ax,-axj

(p)glg_]’
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where pe and £ = (¢,,..., &,) € R". Since the gradient Vu of u never van-
ishes in Q (for completeness, we prove this very easy fact in Section 2, al-
though it is not at all new; see [5]), to say that the level set

Sy={xeQ:ux)=u(p)}

is strictly convex at p means, by definition, that H,(u, £) >0 for every §
tangent to S, at p—that is, for every ¢ which satisfies &-(Vu)(p)=0. The
dot refers here to the ordinary scalar product in R”.

As usual, A will denote the Laplace operator.

It is an easy corollary of Theorem I that Green’s functions of convex re-
gions in R" have convex level surfaces. This was first proved by Gabriel ([3],

[4], [5D.

1. A Maximum Principle

1.1. If in some open set of R" X R”, where variables are denoted by (x, y),
a function 4 is the sum of two subharmonic functions, of the form A(x, y) =
hy(x)+h,(y), and if T is a hyperplane in R?", then the restriction of 4 to =
cannot have any local strict maximum. Of course such a result is not true
for arbitrary subharmonic functions 4, nor is it true if X is replaced by a
subspace of lower dimension.

In this section we will show that there is a larger class of hypersurfaces on
which such a “maximum principle for restrictions” is valid.

1.2. DEFINITIONS. If 4 is a function defined in an open set W C R?", where
R*=R!X R}, and h is locally a sum

) h(x,y)=hy(x)+hy(y)

of two real-valued harmonic functions #;, then we say that # e JC(W).

If & has a local representation (1) in which both #; and A, are strictly sub-
harmonic (i.e., they are of class C?2 and their Laplacians satisfy Ah; > 0,
Ah, > 0), then we say that he ICH(W).

Theorem 1.4 will show that the maximum principle described in Section 1.1
holds if X is the zero-variety of any function of class JC whose gradient has
no zero on this variety. The following lemma describes a special kind of em-
bedding of an open subset of R” into X (whose dimension is 2n —1), through
any preassigned point (xg, yo) € £; this will be used in the proofs of Theo-
rems 1.4 and 4.3. For simplicity, we take (xg,yo) = (0, 0).

1.3. LEMMA. Suppose that p € 3C(W), where W is a neighborhood of (0, 0)
in R"X R" in which
p(x,y)=pi1(x)+p2(»), p1(0) = p2(0) =0.

Put a =(Vp;)(0), b =(Vp,)(0), and assume b #0; thus b=|b|&, |b|> 0, and
£ is a unit vector in R”. Then there exist
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(1) a real number c;
(ii) a linear isometry L: R" - R";
(iii) a neighborhood V of 0 in R";
(iv) a harmonic function f:V - R, f(s)=0(|s|?); and
(V) a real-analytic function o:V—R, a(s)=0(|s|?), so that the map
V:V— R"XR" defined by
0y V(s)=(s, cLs+f(s)E+a(s)f)
satisfies
) p(¥(s))=0

foreveryseV.

Proof. The Taylor expansion of p, of order 2, is

3) px,y)=a-x+b-y+Q0,(x)+Q,(¥)+---,

where Q; and Q, are quadratic forms.
Put c=|a|/|b|. If a=0, put Ls =s. If a #0, choose L so that La = —cb;
in that case

a-s=La-Ls=—cb-Ls= —b-(cLs).

Hence, in either case,

4) a-s+b-(cLs)=0
for all s e R", and (3) becomes
(5) p(s, cLs) = Qi(s) +c?Qy(Ls) + O(|s]?).

Next, define f(s) = —p(s, cLs)/|b|. Since p € 3C and L is an isometry, f is
harmonic in some neighborhood of s =0. Hence (iv) is satisfied, because of
(5). Since (4) holds, and b-f(s)¢ = —p(s, cLs), it follows from (3) and (5)
that

(6) p(s, cLs+ f(s)£) = O(|s|?).
To find «, set
@) 7(s,t) = (s, p(s, cLs+ f(s)E +1£).

Then 7 is a real-analytic diffecomorphism from a neighborhood of the ori-

gin in R"X R into R” X R; note that its Jacobian at the origin is
ar
=5 =E-(V02) () =£-b=[b]>0.

Hence there is a function «, real-analytic in some neighborhood of 0 in R”,
which satisfies

® (s, a(s))=771(s,0).
If ¥ is now defined by (1), it follows from (7) and (8) that (2) is satisfied.
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Finally, if we let M be an upper bound for |V (7 ~1)| near 0, we obtain the
estimate
la(s)|=|(s, 0)— (s, ae(s))| = M|7(s,0) — 7(5, a(5))|
=M]|p(s, cLs+f(s)&)| = O(|s]?)

by (6). This completes the proof. O

1.4. THEOREM. If p is as in the lemma, ¥ ={p =0}, and he 3C* (W), then
the restriction of h to X does not have a local maximum at (0, 0).

Proof. Choose ¥ as in Lemma 1.3. Note that ¥ depends only on p, not on
h, and that ¥ (V) is an n-dimensional submanifold of £, while the dimension
of X is 2n—1. We shall prove a somewhat more precise result than the theo-
rem asserts —namely, the restriction of h to ¥ (V') does not have a local max-
imum at (0,0) —by showing that

0y A(ho¥)(0)>0.
We have h(x, y) = hi(x)+ hy(y). Thus "

(2) (ho¥)(s)=hy(s)+B(s),

where

(3) B(s)=hy(cLs+ f(s)E+a(s)E).

The quadratic term in the Taylor expansion of 8(s)—h,(cLs) about s =0 is
harmonic, because it is f(s)((Vh;)(0)-£). Since A, is subharmonic, it fol-
lows that (AB)(0)=0.

Also, (Ah;)(0) >0, by assumption. Hence (1) follows from (2). 0

2. Starshaped Regions

2.1. DEFINITION. A set E C R"is starshaped (relative to the origin) if ixe E
forall xeE and all r€[0,1].

2.2. THEOREM. Suppose 0 KC W CR", K is compact, W is bounded and
open, and both are starshaped. Put Q= W\K.

If u: Q- R is continuous, harmonic in Q, and u=0 on 3K, u=1on W,
then the radial derivative of u is strictly positive at all points of 1. Each level
set of u is therefore the boundary of a starshaped region.

Proof. If t > 1, so close to 1that £K C W (where ¢K is the set of all vectors tx,
x e K), and if 1—e =1/¢, then the differences

D (x)=u(x)—u((1—e€)x)

are harmonic in W\ K.
If x € W, then D.(x) =1—u((1 —€)x) = 0. If x € 3(¢K), then D.(x) =
u(x)=0. Hence D.(x) = 0 for all xe W\ (K.
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Setting r = |x| it follows that

ou . D.(x)
r—(x)=Ilim
or e—0 €
is harmonic in © and is = 0. It is obviously not =0. Hence du/dr > 0 at all
points of Q. [

3. Two Notions of Convexity

3.1. The construction described in Lemma 1.3 will be used in Section 4 to
prove a version of Theorem 1 which is more precise (i.e., more quantitative)
than the statement that we gave in the Introduction. In order to do this, we
shall describe strict convexity not in terms of Hessians, as in the Introduc-
tion, but in terms of an inequality which has a more geometric flavor. The
local relation between these two notions of convexity is described by Propo-
sition 3.2.

Let V be a convex open set in R”, and suppose that #: V' — R is of class C2
and that Vu vanishes at no point of V. Consider the following two state-
ments about u:

(A) there is a constant ¢y > 0 so that

2 2
for all (x, y) e VXV for which u(x)=u(y);

(B) there is a constant ¢; > 0 so that
Hp(u, ‘E) =Cy

for all p e V and all unit vectors ¢ perpendicular to (Vu)(p).

Two comments about (A) seem called for.

(i) Even though u(x) =u(y) is assumed, it seems appropriate, in a state-
ment that describes convexity, to have their average appear in (A).

(ii) If we think of (A) locally, we can take ¥ so small that |Vu| is bounded
and bounded from 0 in V. Then (A) holds if and only if

(A u(x+y)s u(x)+u(y) —yolx =y Vu(x+y)|
2 2 2
for some vy > 0. One advantage of (A’) over (A) is that if (A’) holds for «
then it also holds for every positive multiple of u, with the same +,. The size
of v, may thus be viewed as a measure of convexity: If (A’) holds for some
other function (say, u’) with vy > 7, then the level sets of u’ in ¥ are “more
convex” or “more curved” than those of u.
We shall work with (A) rather than (A’), because (A) is easier to handle,
but it is the above-mentioned feature of (A’) which justifies calling Theo-

rem 4.5 a quantitative version of Theorem I.
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3.2. PROPOSITION. (i) If (A) holds, then (B) holds with ¢, = 8c,.
(ii) If (B) holds and 8cy < c, then (A) holds, provided that |x—y| is suf-
ficiently small.

Proof of (i). Fix peV, put 1 = (Vu)(p), let £ be a unit vector so that
£-71=0, and let
S,={xeV:u(x)=u(p)}.
Since £ is tangent to S, at p, there is a 6 >0 and a real function § of the form

B(t) =Bot2+o0(t2), so that the points x =x(¢) = p+t£+B(t)y lie in S, for
all £ e(—6,6). Since £:9=0,

2
() = u(p)+B(0) a2+ - Hy(u, £)+0(12).

Similarly, if y =x(—¢) then
12
2

u(—{;—'}i) =u(p)+ B(I)zﬁ(*” In|2+o0(22).

u(y)=u(p)+B(=t)|n|>+—H,(u, £)+o(t?)

and

These three Taylor expansions yield

u(x)+u(y) X+y t2
_u(_.z )=7Hp(u,f)+o(12).

By (A), the left side is at least cy|x —y |2 = 4cy 2, and this gives (letting  — 0)
that H,(u, £) = 8c¢,.

Proof of (ii). Set ¢;—8cy=¢€. There is a § >0 with the following prop-
erty: If peV, xeV, and |x— p| < é, then the error term in the Taylor expan-
sion of order 2, of u(x) about p, is less than ¢|x— p|2.

Suppose now that xeV, yeV, u(x) =u(y), and |[x —y|<é. Put £ =
(x—»)/|x—y|. Let pe[x,y] (p#x, p#Yy) be so chosen that the restriction
of u to the interval [x, y] has derivative 0 at p. (Note that p exists because
u(x)=u(y).) Then x=p+t£ and y = p—sé¢ for some ¢ >0 and s >0, and

2
u(x) —u(p) = Hy, )| <et?,

2
u(y)—-u(p)—%H,,(u,s) <es?,

—c)2
|u(i‘—;’—)—') —u(p)— %ﬂ—ﬂp(u, s)l <FU-s)

Hence

u(x)+u(y) _u(x-i-y)__ (t+5)2
2 2 8

H,(u, £)| <e(t+s)2.
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Since ¢ +s=|x—y|, we conclude that

u(x)+u(y) _u<x+y)2<ﬂ_ )|x—y 2=colx—y|% O

2 2 8

4. Convexity of Level Sets

Theorem 1.4 cannot be used directly to prove Theorem I because, in addi-
tion to points x and y in Q, their midpoint also plays a role. This forces us to
split the proof into two cases, depending on the parity of the dimension of
the space in which we work. The following simple fact from linear algebra
explains why we need to do this. (Recall that harmonicity is preserved by
multiples of isometries, and that the linear isometries are precisely the or-
thogonal transformations.)

4.1. LEMMA. (a) If £ and n are unit vectors in R** then there is a linear isom-
etry T of R** so that (i) Ty = & and (ii) NI + T is a multiple of an isometry of
R?*k, for every NeR.

(b) I S, T, and oS+ BT are linear isometries of R**, thena=00r =0
orT=SorT=-S.

Proof. (a) Choose an orthonormal basis {ey, ..., e,;} so that n=¢; and £ =
ae;+ fe,, and define T by

Te. = ae;+ e, if i=1,3,...,2k—1,
e —Be,-_1+oze,- if l=2,4,,2k

Then Ty = &, T is an orthogonal transformation, and if ¢2 = (« + \)2 + 82
then N/+ T = cU and U is orthogonal. This proves (a). O]

We shall not use (b), and leave its proof as an exercise.

4.2. DEFINITIONS. We assume now, and throughout this section, that the
hypotheses of Theorem I hold: W is convex, bounded, and open in R”; X is
compact and convex, KC W, Q=W\K; and u: Q— R is continuous, har-
monic in 2, 0 on 3K, and 1 on 3W.

We define I to be the set of all points (x, y) € @ x @ such that u(x) =u(y)
and (x+y)/2 € ). We define bXZ (the “boundary” of T) to be the set of those
(x,y) e X for which either x and y are in dW or (x+y)/2 e dK.

The following theorem shows that X shares some of the properties of a
Silov boundary. This is the reason for the notation bX.

4.3. THEOREM. In the above setting, let hy, ..., hy, be continuous real-
valued functions on Q which are harmonic in Q, and define F: Z — R by

M
x;y>_ um;u(y) + 2 ()= h()PP.

The maximum of F over X is then the same as its maximum over b¥.

0)) F(x,y)= u(
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Proof. Let m=max F on bX and assume, to reach a contradiction, that
F(x,y)>m at some point of X \bX. For sufficiently small ¢ > 0, the max of
F(x,y)+¢|x|? relative to £ will then be attained only at points of I \bX.
Let (x¢, ) be such a point.

We now split the proof.

(a) Assume n is even. We apply Lemma 1.3, with u(x)—u(y) in place of
p(x,y), Qin place of W, and (x, ¥¢) in place of (0, 0). Recall that Vu has
no zero, by Theorem 2.2. The construction that proved Lemma 1.3 shows,
when combined with Lemma 4.1(a), that there is a constant ¢ >0 and a lin-
ear isometry L of R” such that

0)) L(Vu)(x) =c(Vu)(¥o)

and such that 7+ cL is a multiple of an isometry.
Moreover, there is a unit vector £ [in the direction of (Vu)(y,)], a har-
monic function f of the form

(3) S(s)={u(yo+cLs)—u(xo+s)}/|(Vu)(»o)]

which satisfies f(s) = O(|s|?), and a remainder a with a(s)=0O(|s|?), so
that by setting

4) x(s)=xo+s, y(s)=yotcLs+f(s)E+a(s)é
we have
(5) (x(s),¥(s))eX
for all s in some neighborhood V of the origin of R”.
Define
6) o(s)=F(x(s), y(s)) (seV).

Since ¢(s)+¢|xo+s|? has a local maximum at s =0, its Laplacian cannot
be positive at s =0. To get our contradiction, it is therefore enough to show
that

(7) (Ap)(0)=0.

Since u(y) =u(x) on X, the definition of F shows that ¢ = ¢, — ¢, + ¢35,

where

€01(S)=U(w), pa(s) =u(xp+s),

M
03(s) = §1|h,-(x(s))—h,-(y(s>)|2.

The Taylor expansions of ¢; and of

8) ¢1(s)=u(x“;y° +%(I+cL)s)

about s =0 show, by (4), that
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©) 01©) =106 = 376) T Z522)-£+0(P).

Since f is harmonic, (A¢;)(0) = (Ay;)(0). Since I+ cL is a multiple of an
isometry, ¥, is harmonic. Consequently, (A¢;)(0)=0.

Next, ¢, is harmonic, so (Ag,)(0) =0.

We claim that (A¢3)(0) = 0. Set g(s) = h;(x(s)) — h;(¥(s)), for some i.
Note that s — h;(x(s)) is harmonic, and that

hi(¥(s)) —hi(yo+cLs) = f(s)(Vh)(yo)- £+ O(|s]3).

It follows that (Ag)(0) =0. Hence A(g2) =2|Vg|?+2gAg =0 at s =0. Thus
(A¢3)(0) = 0. This proves (7), and completes the even-dimensional case.

(b) Assume n is odd. We shall use the following fact: If

(i) L:R"*15 R"*!is a linear isometry,
(ii) g: R"— R is harmonic, and
(i) TSy s Sps Sna1) = (51, -, S,) Projects R"*1to R",
then s — g(wLs) is harmonic in R"*!, To see this, put G(sy, ..., Sy, Spi1) =
£(S15..-,S,). Then G is harmonic and g(wLs) = G(Ls).
Lemma 4.1(a) gives us now a linear isometry L of R"*! which satisfies

2 L((Vu)(xo), 0) = (c(Vt)(yo), 0)

in place of (2), so that 7+cL is a multiple of an isometry of R”*+1.
In place of (3), we define

(3" f8) = (u(yo+cmLs)—u(xg+ws)}/|(Vu) (o)|

for s in some neighborhood V of the origin of R”*!. Then f is harmonic in
V, and the proof of Lemma 1.3 shows that if we replace (4) by

4") x(s)=xo+mws,  y(s)=yo+cnls+f(s)E+a(s)é,

where a(s) = O(|s|?), then (x(s), ¥(s))e X for all seV.
Defining ¢ as in (6), but with s in R"*!, we have to prove (7). As before,
¢ =¢1— ¢+ 3. We now have

X0+
¢1(S)=u( 20

2

Using Taylor expansions, as before, together with the fact that 7+cL is a
multiple of an isometry of R”*!, we find that (A1) (0)=0.
Next, Ag, =0 because ¢, is harmonic. The proof that (Ag;)(0) =0 is as
before, using (4’) in place of (4). This completes the odd-dimensional case.
]
Having proved Theorem 4.3, let us now look at some of its consequences.
We begin with a weak form of Theorem I, which will be used in Section 4.6
to prove the theorem in its full strength.

1 1 1
+51r(I+CL)S+ Ef(s)f'*‘ EQ(S)E) .

4.4. THEOREM. If the hypotheses of Theorem I hold, then every level set
of u in Q is a convex hypersurface.
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Proof. The inequality
)

(x+y> u(x)+u(y)
u <
2 2
is completely trivial for (x, y)e€ bX, simply because u =0 on K, u=1 on
dW, and therefore 0 <u <1in Q. Theorem 4.3 shows therefore that (1) holds
also for all (x,y)eX.

In other words, if 0<?<1, u(x)=u(y)=t, and u is extended to all of
W by setting u =0 on K, then %(x + y) lies in the set where u <¢. This set is
therefore convex. O

4.5. THEOREM. Assume that the hypotheses of Theorem I hold, that Cisa
positive constant, and that

u(x+y) ) +u(y)

m 5 )= > Clx—y|?

for all (x,y)ebX. Then (1) holds also for all (x,y)eX.
Proof. Take h;(x) = CV2x; in Theorem 4.3, fori=1,..., n. O

4.6. PROOF OF THEOREM I. We must now strengthen the conclusion of
Theorem 4.4 from “convex” to “strictly convex” without using the extra as-
sumption made in Theorem 4.5.

If we replace Q by the set in which e < # <1—¢, for arbitrarily small ¢ >0,
we may (and shall) assume without loss of generality that dW and dK are
real-analytic hypersurfaces — which are convex by Theorem 4.4 —and that u
is harmonic in some open set containing £.

There is an open ball ¥V C R", centered at some point of dW, such that
H,(u,£)>0if peV and &-(Vu)(p)=0. (This is so, simply because every
compact hypersurface of class C2is strictly convex at every point whose dis-
tance from the origin is maximal, and hence is strictly convex in some open
set.) Moreover, we take ¥ so small that Proposition 3.2(ii) can be applied,
and weset Vo=V NoW. Now fixt,0<¢<1,and put S(¢) ={x e Q: u(x)=1t}.
We shall prove that this level set is strictly convex.

There is a compact set E C V,, and there are functions 4;: @ — [0, «) (1 <
i < M) which are harmonic in Q, smooth on @ (Lipschitz is all we really
need), 0 on 3K, and 0 on AW \ E, so that the set {4, ..., 4} separates points
on S(¢) in the strong sense that

M
(1) b=y 3 (00 =02

for all xe S(¢) and y € S(¢). (See the postscript.)
We claim: There is a cy> 0 such that
M u(x)+u x+
® o 3 ()~ s “ETED ()
1=

Jor all (x,y)ebX.
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Once we have this, Theorem 4.3 shows that (2) holds for all (x,y)eX,
and (1) then implies that :

©) cdx—yPsfgﬁiﬁgz—u<fi1)

2 2

for all (x,y) e S(¢) X S(t), and hence also (with ¢, /2 in place of ¢j) in some
neighborhood of this set. Proposition 3.2(i) shows then that H,(u, £) > 0 if
peS(t) and £-(Vu)(p) =0, which is precisely what had to be proved.

We turn to the proof of (2). The definition of bX shows that several cases
must be considered.

(i) The harmonic functions # and A; are positive in 2, 0 on dK, and their
gradients are bounded and # 0 on dK. Hence there is a 8 < oo such that 0 <
h;<Buin Qforl<i=<M. Set ¢c;=1/32M.

If 3(x +y) € 0K and u(x) = u(y) = r for some r € (0,1), it follows that
|hi(x)—h;(¥)| < Br and hence

M
4) € .El (hi(x)—hi(¥))2=c|B2Mr2<r.
i=
Note that r is here equal to the right-hand side of (2).
(ii) If both x and y are in dW \ E, then h;(x) =h;(¥) =0, so (2) holds no
matter what ¢ is.
(iii) Proposition 3.2(ii), together with our choice of ¥, shows that for
some ¢, >0 we have

(5) Crlx—y[2 = u(x)+u(y) _u(x+y)

2 2

for all (x,y)eVyXxV,. Since each A; satisfies a Lipschitz condition, we see
that (2) holds (with some ¢3 > 0 in place of c¢) for all (x, y) e VyxV,.

(iv) There is a 6> 0 such that |[x—y|=4 if xe E and y € 3W \ V. Since
dW is a compact level surface of the real-analytic function , it contains no
straight line interval. The convexity of W implies therefore that 1(x+y) is
not in dW. It follows that there is a oy > 0 such that

©) o 52)s1-

whenever x € E and y e dW\ V.
Under these conditions, the right side of (2) is thus < —y <0, and the
boundedness of the sum in (2) shows that (2) holds with some ¢4 > 0 in place

of Co.
If we now take ¢y =min(cy, c3, ¢4), we obtain (2) for all (x,y) e bX and
the proof is complete. (]

5. Two Counterexamples

5.1. One may attempt to find generalizations of Theorem I in which the
Laplacian is replaced by the Laplace-Beltrami operator associated to some
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Riemannian metric that is different from the Euclidean one. Of course, the
notion of convexity must then be adapted to the operator (i.e., to the metric).

In the Euclidean case, strict convexity of a hypersurface S in R” is a local
property which can be defined in terms of

(a) the Hessian of a defining function of S (as we did in the
present paper),

(b) intersections with straight lines, or

(c) the intrinsic Gaussian curvature of S (when n=3).

Of course, (b) and (c¢) make sense relative to any Riemannian metric, if
straight lines are replaced by geodesics in (b). The following examples show
merely that neither of these possible definitions of convexity leads to a gen-
eralization of Theorem I. Of course, other generalizations may well exist.

We shall give two examples, one in R3 and one in R?, of Riemannian met-
rics dr on annular regions £, and of functions f that are harmonic with re-
spect to their associated Laplace-Beltrami operators A ,, with the following
properties:

(i) dr differs from the Euclidean metric only on some compact subset
of Q;
(ii) f is constant on each component of 9{;

(iii) in the R3 example, some level surface S of f has negative Gaussian
curvature at some point, relative to the metric induced on S by dr; in
the R? example, some level curve I' of f is nonconvex (in the usual
sense) and dr coincides with the Euclidean metric in a neighborhood
of I

This shows that Theorem I does not extend to these settings.
We recall that to each Riemannian metric

n
1)) dr?= Y g;dx;dx;
i,j=1
(in some coordinate system {x,,...,X,}) corresponds its so-called Laplace-
Beltrami operator

1 n
2 A = \g
( ) T V8 j=1 axj<z§—:1g )

where (g/) is the inverse of the matrix (g;;) and g =det(g;;); see [7, p. 245]. In
the special case where (g;;) is diagonal and f depends only on x;, (2) becomes

f
3 1
3 N ( VE axl)
We shall use the fact that if
4) dr2=a(dxt+ - +dx}?),

where « is a smooth positive function (i.e., if d7 is “conformal’), then an
easy calculation leads from (2) to
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A -2
©) A=l 42

where A is the ordinary Laplacian. The dimension 2 thus plays a special role
here: Af=0 implies A, f =0 if (4) holds and n=2.

(Va)- (VSf),

5.2. AN EXAMPLE IN R3. Pick a,b, 0<a<1l<b <o, let
1) Q={xeR3:a<|x|<b}],

and denote the unit sphere {x:|x|=1} by S.
We shall construct a Riemannian metric d7 on @ so that

(i) dr coincides with the standard Euclidean metric outside a small
neighborhood of (0, 0,1) (the north pole of S) whose closure does
not intersect 9{2;
(ii) the function f(x)=1/|x| satisfies A, f=0 on Q; but
(iii) the restriction of dr to S (a level surface of f) imposes negative
curvature on S in a neighborhood of (0,0, 1).

In fact, this restriction of dr will be the Poincaré metric, transplanted from
the unit disc in C.
Recall that

(2) X1 =rcos @ sin ¢, X, =rsinfsin ¢, X3 =71 COS ¢,

where (r, 0, ¢) are the usual spherical coordinates, 0 < <27,and 0 < ¢ <.
In these coordinates, the Euclidean metric ds? = dx?+ dx3+ dx? becomes

(3) ds?=dr2+r2(sin ¢d02+dyp?).
Consider the stereographic projection
() a, 8, qo)—+z=(tan ;)er‘ﬁ

of S\{(0,0, —1)} onto C. This allows us to write the restriction of ds to
S\{(0,0, —1)} in the form

, 4|dz|?

5 ds?=sin2 pdf?2+dp?= ————,
(5) @ "= EY

which is the usual “spherical metric” on C.
The Poincaré metric in the unit disc (whose curvature is negative) is

2|dz|  14|z|?
6 do = = ds.
© " Tl T TP
Since |z|=tan ¢/2, we see that the pull-back of do to the upper half of S
(we denote it again by do) is given by

ds

@) do= .
Cos ¢

The o-curvature of the upper half of S is thus negative.
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Now pick a cut-off function x € C*(R3) with compact support in
QN{x; >0}, 0<x =<1, x=1Iin a neighborhood of (0, 0, 1); set

® h=1—x+(cos p)~2x
and define the desired metric dr by
)] dr? = h2dr?+ hr2(sin? ¢d02+dp?).

Then dr =ds wherever x =0, but the restriction of dr to S coincides with
the Poincaré metric in a neighborhood of (0,0, 1).

To finish we apply formula 5.1(1), with (r, 8, ¢) in place of (x;, x5, X3), to
the metric (9) and the function f'=1/r. We see that (g;;) is diagonal, that

so that gllyg(af/adr) =sin ¢ and therefore
1 0
an A f 2 (=sing)=0.

=Tg6r

5.3. AN EXAMPLE IN R2, We identify R2 with C, put Q= {3 <|z| <2}, de-
fine G on 2 by G(z) =log|z|, and let ¥ be a C *-diffeomorphism of 2 onto Q
so that (see the Postscript):

(a) ¥(z)=z in a neighborhood of 9Q;

(b) ¥ is holomorphic in a neighborhood of the unit circle 7"; and

(c) ¥(T) is a nonconvex curve I,

Define ® = ¥ —1 and let do be the pull-back of the Euclidean metric ds by
®. (Thus ® is an isometry: The s-length of a curve ®(L) equals the o-length
of L.) Set f=Go°®. Then A f=0 in the neighborhood W=¥(V) of T', be-
cause ® is holomorphic in W and AG =0.

Now pick x e C®(C), 0=<x <1, with support in W, so that x =1 in some
open set Wy DI'; define our metric dr by

6)) dr?=xds?+(1—x)do?2.
In W, do?=|®’|?ds?; hence
() dr?=[x+(1-x)|®’'|*1ds?

so that d7 is conformal. Thus (see 5.1(5)) A, f=Af=0in W.
In Q\ W, (1) shows that dr =do and thus

3) A f=A,(GoP)=(AG)P =0,

because Laplace-Beltrami operators commute with isometries.

Finally, d7 coincides with the Euclidean metric ds near the boundary of Q
as well as in the neighborhood of the nonconvex curve I'. The level curves
{lz]=1) and {|z| =2} of f are thus 7-convex, but I ={ f = 0} is not.

5.4. Michael Papadimitrakis has shown quite recently that the analogue
of Theorem I does hold relative to the Poincaré metric in the unit disc.
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POSTSCRIPT. The referee suggested that two statements made in our paper
should be explained in some detail.

(I). In Section 4.6 we claim that there are smooth nonnegative functions
hy, ..., hy,on @, harmonic in @ and 0 on (dQ) \ E (where E = BN 39 for some
ball B with center in d92), so that

M
@ Ix—y[*= _§1 (hi(x)—hi(»))?

for all x and y in S(¢). We prove this with an arbitrary compact K CQin
place of S(¢).

For w e E, let P,, be the Poisson kernel for Q with pole at w. Thus P,, is a
positive harmonic function in Q which vanishes on Q2 \ {w}. Each P, andits
derivatives can be uniformly approximated on X by functions 4; (as above)
and their derivatives. Hence it is enough to prove (1) with positive multiples
of P, in place of h;, where w; € E. That this can be done is a consequence of
the following two facts, combined with the compactness of K:

(a) the set {P,: we E} separates points in Q;
(b) if xeQ and u is a unit vector, then (9,P,)(x)#0 for some we E.

Here 9, denotes the directional derivative in the direction u. Note that (b)
implies positive local lower bounds for |P,,(x)— P, (»)|/|x—»|.

Recall that P,,(x)=(9,G,)(w), where G, is Green’s functions of  with
pole at x and d, denotes the normal derivative evaluated at w € Q2. We shall
use the following well-known uniqueness theorem.

(*) If He C(QUE), H is harmonic in Q, and H(w)=(3,H)(w) =0 for

allweE, then H=0 in Q.

To prove (a), suppose P, (x) =P, (y) for all we E. Put H=G,—G,. Then
(%), with @\ {x, y} in place of Q, shows that G, = G,,, which of course forces
xX=y.

To prove (b), fix x and « and set H =3,G,. If wy=x—eu and e > 0 is suf-
ficiently small, then (9,G,)(wy) #0. Thus H#0 in @\ {x}. Since H(w)=0
for all we dQ, () implies that (3, H)(w) # 0 for some w e E, and therefore

8, Py, (x)=0,0,Gx(w)=0,3,G,(w) #0.

For the sake of completeness, here is a proof of (*): Extend H to QUB
so as to be 0 in B\ . Let ¢ be a test function with support in B. By Green’s
theorem and the fact that He C1(QUB),

Vo p HAV={ (HAY—yAH)=| (HO,¥—¥3,H)=0

because the last integrand is 0 on 9. Thus H is harmonic in QU B. Since
H =0 in the nonempty open set B\ and since Q is connected, we conclude
that H=0in (.

(1I). In Section 5.3 we consider the annulus @ = {1 <|z| <2} and assert
that there is a C®-diffeomorphism ¥ of { onto Q such that:
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(a) ¥(z)=2z near 99Q;
(b) ¥ is holomorphic in an annulus 4 D T, where T is the unit circle; and
(c) ¥(T) is a nonconvex curve I'.

Here is a sketch of how ¥ can be obtained.
Start with a real-analytic diffeomorphism

pe®)=R(0)e? (R>0)

of T onto a nonconvex curve I which is close to T, in the sense that ' CQ
and I' has no tangent that passes through the origin. Being real-analytic,
¢ extends to a conformal map

p(rei?) =|p(re®) eior:0

of an annulus A, onto a neighborhood V of I'; we take A, so narrow that
vV CQ, that d|¢|/dn>0in Ay, and |a(r,0)—0|<=x/2.

In A, are three disjoint annuli, A, A+, A—, such that TC 4 and A+, A~ lie
(respectively) along the outer and inner boundary of A4,. Let ¢: Ay — [0, 1]
be a C* cut-off function, depending only on r, so that y =10on A*UA~ and
Yy =0 on A. Use ¢ to define a C®-diffeomorphism 7 from A4, onto A,:

7(re®) =rexp{i[y(r)a(r,0)+(1—y(r))01}.

Then g = po7~1is a C*-diffeomorphism of A, on V, g is conformal in A4 be-
cause g =¢ on A4, and g has the form

g(re®®)=R(r,0)e?® on ATUA~

for some positive C *-function R, with dR/dr > 0.

To obtain ¥ from g we extend R to a C*-function R: Q — Q (across the
gaps between A+ and {|z| =2}, and between {|z| =1} and A~) in such a way
that R(r,0) =r near r =2 and near r = 3, and that dR/dr >0. We define

ooy _ [ e in A,
("e®)=1 Rer,0)e® in 0\A,.

The construction of R involves, for each 6, a smooth extension across an in-
terval on the real axis, done in such a way that the extensions depend smooth-
ly on the parameter 6.
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