STRONG LAWS OF LARGE NUMBERS FOR WEAKLY CORRELATED RANDOM VARIABLES

Russell Lyons

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of complex-valued random variables on a probability space (Ω, P) such that

(1)
$$||X_n||^2 = E[|X_n|^2] = \int_{\Omega} |X_n(\omega)|^2 dP(\omega) \le 1.$$

We are interested primarily in second-order conditions assuring the strong law of large numbers

(SLNN)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n \le N} X_n = 0 \text{ a.s.}$$

The simplest case concerns uniformly bounded random variables.

THEOREM 1. Let $|X_n| \le 1$ a.s. and suppose that

(2)
$$\sum_{N\geq 1} \frac{1}{N} \left\| \frac{1}{N} \sum_{n\leq N} X_n \right\|^2 < \infty.$$

Then the SLLN holds.

This theorem is essentially known, various special cases having been used in [2], [1], [10, p. 31], [9, §§III.4, IV.4]. While [8] presents almost as general a theorem, apparently Theorem 1 has not appeared explicitly in print. The proof of this and our other theorems consists in showing that the SLLN holds along some subsequence $\{N_k\}$ and then applying a suitable maximal inequality to interpolate between the N_k . When the random variables are uniformly bounded, the maximal inequality is trivial. The heart of Theorem 1, then, is the following refinement of the principle of Cauchy condensation.

LEMMA 2 [2]. Let $\{a_n\}_{n=1}^{\infty}$ be real numbers such that

(3)
$$a_n \ge 0, \qquad \sum_{n \ge 1} \frac{a_n}{n} < \infty.$$

Then there exists an increasing sequence of integers $\{n_k\}$ such that $\sum_{k\geq 1} a_{n_k} < \infty$ and $n_{k+1}/n_k \to 1$.

We shall constantly use the following easy and well-known lemma.

LEMMA 3. If Y_n are random variables such that $\sum_{n\geq 1} ||Y_n||^2 < \infty$, then $Y_n \to 0$ a.s.

Received June 30, 1987. Revision received February 8, 1988.

The author was partially supported by an AMS Research Fellowship.

Michigan Math. J. 35 (1988).

Proof. Because $\int \sum |Y_n|^2 dP = \sum ||Y_n||^2 < \infty$, it follows that $\sum |Y_n|^2 < \infty$ a.s., whence $Y_n \to 0$ a.s.

Proof of Theorem 1. By Lemma 2, there exists a sequence $\{N_k\}$ such that

$$\sum_{k\geq 1} \left\| \frac{1}{N_k} \sum_{n\leq N_k} X_n \right\|^2 < \infty \quad \text{and} \quad \frac{N_{k+1}}{N_k} \to 1.$$

By Lemma 3, $(1/N_k) \sum_{n \le N_k} X_n \to 0$ a.s. On the other hand,

$$\max_{1 \le s \le N_{k+1} - N_k} \left| \frac{1}{N_k} \sum_{N_k + 1}^{N_k + s} X_n \right| \le \frac{N_{k+1} - N_k}{N_k} \text{ a.s.}$$

and this too tends to 0 as $k \to \infty$. Since for $N_k \le N < N_{k+1}$,

$$\left| \frac{1}{N} \sum_{n \le N} X_n \right| \le \left| \frac{1}{N_k} \sum_{n \le N_k} X_n \right| + \max_{1 \le s < N_{k+1} - N_k} \left| \frac{1}{N_k} \sum_{N_k + 1}^{N_k + s} X_n \right|,$$

the SLLN follows.

COROLLARY 4. Let $|X_n| \le 1$ a.s. and suppose that

(4)
$$\forall n, m, \operatorname{Re} E[X_n \bar{X}_m] \leq \Phi_1(|n-m|),$$

where Φ_1 satisfies

$$\Phi_1 \ge 0, \qquad \sum_{n \ge 1} \frac{\Phi_1(n)}{n} < \infty.$$

Then the SLLN holds.

This corollary will in fact be extended below (Corollary 11).

Proof. We have

$$\left\| \frac{1}{N} \sum_{1 \le n \le N} X_n \right\|^2 = \frac{1}{N^2} \sum_{n, m \le N} E[X_n \bar{X}_m] = \frac{1}{N^2} \sum_{n, m \le N} \operatorname{Re} E[X_n \bar{X}_m]$$

$$\leq \frac{1}{N^2} \sum_{n, m \le N} \Phi_1(|n-m|) \leq \frac{2}{N} \sum_{0 \le r \le N} \Phi_1(r),$$

whence

$$\sum_{N\geq 1} \frac{1}{N} \left\| \frac{1}{N} \sum_{n\leq N} X_n \right\|^2 \leq 2 \sum_{N\geq 1} \frac{1}{N^2} \sum_{0\leq r< N} \Phi_1(r)$$

$$= 2 \sum_{r\geq 0} \Phi_1(r) \sum_{N>r} \frac{1}{N^2} \leq 4\Phi_1(0) + 2 \sum_{r\geq 1} \frac{\Phi_1(r)}{r}.$$

Thus $(5) \Rightarrow (2)$ and the conclusion follows.

Another simple maximal inequality will suffice for our next theorem, which extends [8]. The lemma we use for selecting a subsequence is an extension of Lemma 2.

LEMMA 5. If $\{a_n\}$ satisfies (3), 1 , and <math>1/p + 1/p' = 1, then there exists an increasing sequence $\{n_k\}$ such that $\{a_{n_k}\} \in l^{p'}$ and $\{n_{k+1}/n_k - 1\} \in l_*^p$, where $l_*^p = l^p$ if $p < \infty$ and $l_*^\infty = c_0$.

Proof. The case $p = \infty$ is Lemma 2, so suppose that $p < \infty$. We define $\{n_k\}$ inductively as follows. Set $n_1 = 1$ and, if n_k has been defined, let n_{k+1} be the smallest $n \ge n_k$ such that

$$\frac{a_n}{n} < \frac{1}{n_k} \left(\frac{n}{n_k} - 1\right)^{p-1}$$

We have

$$\infty > \sum_{k} \sum_{n_{k} \le n < n_{k+1}} \frac{a_{n}}{n} \ge \sum_{k} \sum_{n_{k} \le n < n_{k+1}} \frac{1}{n_{k}} \left(\frac{n}{n_{k}} - 1\right)^{p-1}$$

$$\ge \sum_{k} \sum_{(n_{k} + n_{k+1})/2 \le n < n_{k+1}} \frac{1}{n_{k}} \frac{1}{2^{p-1}} \left(\frac{n_{k+1}}{n_{k}} - 1\right)^{p-1}$$

$$\ge \sum_{k} \frac{n_{k+1} - n_{k} - 1}{2} \frac{1}{n_{k}} \frac{1}{2^{p-1}} \left(\frac{n_{k+1}}{n_{k}} - 1\right)^{p-1}$$

$$\ge \sum_{k: n_{k+1} \ge n_{k} + 2} \frac{n_{k+1} - n_{k}}{4} \frac{1}{n_{k}} \frac{1}{2^{p-1}} \left(\frac{n_{k+1}}{n_{k}} - 1\right)^{p-1}$$

$$= \frac{1}{2^{p+1}} \sum_{k: n_{k+1} \ge n_{k} + 2} \left(\frac{n_{k+1}}{n_{k}} - 1\right)^{p}.$$

That is, $\{n_{k+1}/n_k-1\}_{k: n_{k+1} \ge n_k+2} \in l^p$. On the other hand,

$$\left\{\frac{n_{k+1}}{n_k} - 1\right\}_{k: n_{k+1} = n_k + 1} = \left\{\frac{1}{n_k}\right\}_{k: n_{k+1} = n_k + 1} \in l^p$$

since p > 1. Therefore $\{n_{k+1}/n_k - 1\}_k \in l^p$.

In particular, $\{n_{k+1}/n_k\}$ is bounded. Now, if we raise both sides of (6) to the power p', we obtain $a_{n_{k+1}}^{p'} < (n_{k+1}/n_k)^{p'} (n_{k+1}/n_k-1)^p$. Therefore $\{a_{n_k}\} \in l^{p'}$.

THEOREM 6. Assume (1) and

(7)
$$\sum_{N>1} \frac{1}{N} \left\| \frac{1}{N} \sum_{n \leq N} X_n \right\| < \infty.$$

Then the SLLN holds.

Proof. By Lemma 5, there exists a subsequence $\{N_k\}$ such that

$$\sum_{k\geq 1} \left\| \frac{1}{N_k} \sum_{n\leq N_k} X_n \right\|^2 < \infty \quad \text{and} \quad \sum \left(\frac{N_{k+1}}{N_k} - 1 \right)^2 < \infty.$$

Hence $(1/N_k) \sum_{n \le N_k} X_n \to 0$ a.s. In addition,

$$\left\| \max_{1 \le s < N_{k+1} - N_k} \left| \frac{1}{N_k} \sum_{N_k + 1}^{N_k + s} X_n \right| \right\| \le \left\| \max \frac{1}{N_k} \sum_{N_k + 1}^{N_k + s} |X_n| \right\| \le \left\| \frac{1}{N_k} \sum_{N_k + 1}^{N_{k+1}} |X_n| \right\|$$

$$\le \frac{1}{N_k} \sum_{N_k + 1}^{N_{k+1}} \|X_n\| \le \frac{N_{k+1}}{N_k} - 1,$$

whence

$$\sum_{k \ge 1} \left\| \max_{1 \le s < N_{k+1} - N_k} \left| \frac{1}{N_k} \sum_{N_k + 1}^{N_k + s} X_n \right| \right\|^2 < \infty$$

and

$$\max_{1 \le s < N_{k+1} - N_k} \left| \frac{1}{N_k} \sum_{N_k + 1}^{N_k + s} X_n \right| \to 0 \text{ a.s.}$$

The conclusion follows as before.

The following theorem is proved in exactly the same way. It includes both Theorems 1 and 6.

THEOREM 7. Let $1 and <math>0 < r \le q \le \infty$, with

$$\frac{1}{p} + \frac{r}{q} \le 1.$$

Suppose that $\{X_n\}$ are random variables such that

$$||X_n||_p \le 1$$
 and $\sum_{n\ge 1} \frac{1}{N} \left\| \frac{1}{N} \sum_{n\le N} X_n \right\|_q^r < \infty$.

Then the SLLN holds.

Proof. By decreasing q if necessary, we may assume that 1/p + r/q = 1, whence $q < \infty$. By Lemma 5, there exists $\{N_k\}$ such that $\{\|(1/N_k)\sum_{1}^{N_k}X_n\|_q^r\} \in l^{q/r}$ and $\{N_{k+1}/N_k-1\} \in l_*^p$. The SLLN along $\{N_k\}$ follows from the first of these, while the second combines with the maximal inequality

$$\left\| \max_{1 \le s < N_{k+1} - N_k} \left| \frac{1}{N_k} \sum_{N_{k+1}}^{N_k + s} X_n \right| \right\|_p \le \frac{N_{k+1}}{N_k} - 1$$

to yield the rest of the SLLN.

Our final theorem depends on the following subsequence principle.

LEMMA 8. If $\{a_n\}$ satisfies (3) and also $a_{2n} \le C(a_{n-p} + a_{n+p})$ for some constant C and all $0 \le p < n/3$, then $\sum_{k>1} a_{2^k} < \infty$.

Proof. Slightly rearranging the order of summation, we obtain

$$\infty > \sum_{n \ge 1} \frac{a_n}{n} \ge \frac{1}{2} \sum_{k \ge 0} \sum_{0 \le p < 2^{k/3}} \left(\frac{a_{2^k - p}}{2^k - p} + \frac{a_{2^k + p}}{2^k + p} \right)$$

$$\ge \frac{1}{2} \sum_{k \ge 0} \sum_{0 \le p < 2^{k/3}} \frac{a_{2^k - p} + a_{2^k + p}}{2^k (1 + \frac{1}{3})} \ge \frac{1}{2C} \sum_{k \ge 0} \frac{a_{2^{k+1}}}{2^k (\frac{4}{3})} \cdot \frac{2^k}{3}$$

$$= \frac{1}{8C} \sum_{k \ge 1} a_{2^k}.$$

To prove our theorem, we could now follow the lines of [3] and [5], which depend implicitly on a weak-type maximal inequality. Instead, we prefer to use the following strong-type inequality.

LEMMA 9. Suppose that for all M and N,

(8)
$$\left\| \frac{1}{N} \sum_{n=M+1}^{M+N} X_n \right\|^2 \le \Phi_2(N).$$

Then for all M and n, we have

(9)
$$\left\| \max_{1 \le s < 2^n} \left| \frac{1}{2^n} \sum_{k=M+1}^{M+s} X_k \right| \right\|^2 \le \frac{1}{2} \sum_{p=1}^n \left(\frac{3}{4} \right)^{p-1} \Phi_2(2^{n-p}).$$

Proof. Let $B_n(M)$ be the random variable

$$B_n(M) = \max_{1 \le s < 2^n} \left| \frac{1}{2^n} \sum_{M+1}^{M+s} X_k \right|$$

with $B_0(M) \equiv 0$. We are interested in $A_n = \sup_M \|B_n(M)\|^2$. For $n \ge 1$ we have

$$\max_{1 \le s < 2^{n}} \left| \sum_{M=1}^{M+s} X_{k} \right| \le \max \left\{ \max_{1 \le s < 2^{n-1}} \left| \sum_{M=1}^{M+s} X_{k} \right|, \left| \sum_{M=1}^{M+2^{n-1}} X_{k} \right| + \max_{1 \le s < 2^{n-1}} \left| \sum_{M=2^{n-1}+1}^{M+2^{n-1}+s} X_{k} \right| \right\},$$

whence

$$B_{n}(M)^{2} \leq \max \left\{ \frac{1}{4} B_{n-1}(M)^{2}, \left[\frac{1}{2} \left| \frac{1}{2^{n-1}} \sum_{M+1}^{M+2^{n-1}} X_{k} \right| + \frac{1}{2} B_{n-1}(M+2^{n-1}) \right]^{2} \right\}$$

$$\leq \frac{1}{4} B_{n-1}(M)^{2} + \frac{1}{2} \left| \frac{1}{2^{n-1}} \sum_{M+1}^{M+2^{n-1}} X_{k} \right|^{2} + \frac{1}{2} B_{n-1}(M+2^{n-1})^{2}.$$

Taking expectations and then the supremum over M yields

$$A_n \le \frac{1}{4}A_{n-1} + \frac{1}{2}\Phi_2(2^{n-1}) + \frac{1}{2}A_{n-1} = \frac{1}{2}\Phi_2(2^{n-1}) + \frac{3}{4}A_{n-1}.$$

This establishes (9) for n = 1 and all M, and also provides an inductive argument giving (9) for all n.

We can now establish the following theorem, which improves [7], [4], [5], and [6, p. 307] in not requiring $\Phi_2 \downarrow 0$.

THEOREM 10. Assume (8) and that $\sum_{N\geq 1} \Phi_2(N)/N < \infty$. Then $\{X_n\}$ satisfies the SLLN.

Proof. We may assume that

$$\Phi_2(N) = \sup_{M} \left\| \frac{1}{N} \sum_{M+1}^{M+N} X_k \right\|^2.$$

Taking expectations of

$$\left| \sum_{M+1}^{M+2N} X_k \right|^2 \le 2 \left| \sum_{M+1}^{M+N-P} X_k \right|^2 + 2 \left| \sum_{M+N-P+1}^{M+2N} X_k \right|^2$$

yields

$$\left\|\frac{1}{2N}\sum_{M+1}^{M+2N}X_k\right\|^2 \leq 2\left\|\frac{1}{N-P}\sum_{M+1}^{M+N-P}X_k\right\|^2 + 2\left\|\frac{1}{N+P}\sum_{M+N-P+1}^{M+2N}X_k\right\|^2$$

for $0 \le P < N$, whence $\Phi_2(2N) \le 2[\Phi_2(N-P) + \Phi_2(N+P)]$. Lemma 8 therefore applies and gives $\sum_{n \ge 1} \Phi_2(2^n) < \infty$, whence $(1/2^n) \sum_{k \le 2^n} X_k \to 0$ a.s. Furthermore, Lemma 9 implies that

$$\sum_{n\geq 1} \left\| \max_{1\leq s<2^n} \left| \frac{1}{2^n} \sum_{k=2^n+1}^{2^n+s} X_k \right| \right\|^2 \leq \frac{1}{2} \sum_{n\geq 1} \sum_{p=1}^n \left(\frac{3}{4} \right)^{p-1} \Phi_2(2^{n-p}) = 2 \sum_{r\geq 0} \Phi_2(2^r) < \infty.$$
Hence the SLLN holds.

The same argument that led to Corollary 4 now gives the following.

COROLLARY 11. If (1), (4) and (5) hold, then so does the SLLN.

In this corollary, if $\Phi_1 \downarrow 0$ and (5) fails, then there are counterexamples to the SLLN. Likewise, in Theorem 10, if $\Phi_2 \downarrow 0$, $N\Phi_2(N)$ is increasing and

$$\sum_{N>1} \frac{\Phi_2(N)}{N} = \infty,$$

then there are counterexamples to the SLLN. See [6, p. 307] for a proof.

We are indebted to Stanislaw Szarek for the following construction, which shows that Theorem 7 is also best possible when given a uniform bound on the norm of X_n .

PROPOSITION 12. Let $1 , <math>0 < r \le q < \infty$, 1/p + r/q = 1, and $\Psi(t)$ be any nonnegative function on \mathbb{R}^+ such that $\Psi(t) = o(t^r)$ as $t \to 0^+$. Then there exist random variables $\{X_n\}$ such that

$$||X_n||_p \le 1$$
 and $\sum_{n\ge 1} \frac{1}{N} \Psi\left(\left\|\frac{1}{N} \sum_{n\le N} X_n\right\|_q\right) < \infty$,

yet the SLLN fails.

Proof. Our probability space will be Lebesgue measure on \mathbb{R}/\mathbb{Z} . If $\Psi'(t) = \sup_{s \le t} \Psi(s)$, then also $\Psi'(t) = o(t^r)$. Thus, there exist $\epsilon_k' \in]0, 2^{-1/(q-r)}[$ such that $\sum_{k \ge 1} (\epsilon_k')^q = \infty$ and $\sum_{k \ge 1} (\epsilon_k')^{q-r} \Psi'(\epsilon_k') < \infty$. Let $\epsilon_k = \epsilon_k'/4$ and choose $N_k \ge 2$ so that $\epsilon_k^{q-r}N_k \ge 2$ and $N_{k+1}-M_{k+1}+1>N_k+M_k$, where M_k is the smallest integer $\ge k(k+1)^{-1}\epsilon_k^{q-r}N_k$. Denote $B_k = [N_k-M_k+1, N_k+M_k]$. If $n \notin \bigcup_k B_k$, then set $X_n = 0$. Otherwise, if $n \in B_k$, set

$$X_n = \begin{cases} \epsilon_k^{r-q} \mathbf{1}_{I_k} & \text{if } n \leq N_k, \\ -\epsilon_k^{r-q} \mathbf{1}_{I_k} & \text{if } n > N_k, \end{cases}$$

where $I_k = [\sum_{j < k} \epsilon_k^q, \sum_{j \le k} \epsilon_k^q]$. We have $||X_n||_p = 1$ if $n \in \bigcup_k B_k$, while $||X_n||_p = 0$ otherwise. In addition,

$$\sum_{N} \frac{1}{N} \Psi \left(\left\| \frac{1}{N} \sum_{n=1}^{N} X_{n} \right\|_{q} \right) = \sum_{k} \sum_{N \in B_{k}} \frac{1}{N} \Psi \left(\left\| \frac{1}{N} \sum_{n=1}^{N} X_{n} \right\|_{q} \right)$$

$$\leq \sum_{k} \frac{2M_{k}}{N_{k} - M_{k} + 1} \Psi' \left(\left\| \frac{1}{N_{k} - M_{k} + 1} \sum_{N_{k} - M_{k} + 1}^{N_{k}} X_{n} \right\|_{q} \right)$$

$$\leq \sum_{k} 8\epsilon_{k}^{q-r} \Psi'(4\epsilon_{k}) < \infty.$$

Thus, the conditions on $\{X_n\}$ are satisfied, yet

$$\overline{\lim} \frac{1}{N} \sum_{1}^{N} X_n = 1$$
 and $\underline{\lim} \frac{1}{N} \sum_{1}^{N} X_n = 0$

everywhere.

ACKNOWLEDGMENT. I am grateful to the Université de Paris-Sud (Orsay) for their hospitality while I performed this research.

REFERENCES

- 1. H. Davenport, P. Erdös, and W. J. Leveque, On Weyl's criterion for uniform distribution, Michigan Math. J. 10 (1963), 311-314.
- 2. A. Dvoretzky, On the strong stability of a sequence of events, Ann. Math. Statistics 20 (1949), 296–299.
- 3. P. Erdös, On the strong law of large numbers, Trans. Amer. Math. Soc. 67 (1949), 51-56
- 4. I. Gal and J. Koksma, *Sur l'ordre de grandeur des fonctions sommables*, Proc. Kon. Ned. Akad. v. Wet. 53 (1950), 638-653.
- 5. V. F. Gaposhkin, On the strong law of large numbers for second order stationary processes and sequences, Theory Probab. Appl. 18 (1973), 372–375 (English translation).
- 6. ——, Criteria for the strong law of large numbers for some classes of second-order stationary processes and homogeneous random fields, Theory Probab. Appl. 22 (1977), 286–310 (English translation).
- 7. J. F. Koksma and R. Salem, *Uniform distribution and Lebesgue integration*, Acta Sci. Math. (Szeged) 12 (1950), 87–96.
- 8. M. Loève, Probability theory, v. II, 4th ed., pp. 153-154, Springer, New York, 1978.
- 9. R. Lyons, A characterization of measures whose Fourier-Stieltjes transforms vanish at infinity. Thesis, University of Michigan, 1983.
- 10. M. Mendès France, *Nombres normaux*. Applications aux fonctions pseudo-aléatoires, J. Analyse Math. 20 (1967), 1-56.

Department of Mathematics Stanford University Stanford, CA 94305