STRONG LAWS OF LARGE NUMBERS FOR
WEAKLY CORRELATED RANDOM VARIABLES

Russell Lyons

Let {X,}7= be a sequence of complex-valued random variables on a probabil-
ity space (2, P) such that

1) |X, 2= E[| X,[2] = SQ X, ()2 dP(w) <1.

We are interested primarily in second-order conditions assuring the strong law of
large numbers

. 1
(SLNN) lim — Y X,=0 a.s.
N- o n<N

The simplest case concerns uniformly bounded random variables.

THEOREM 1. Let | X,|<1 a.s. and suppose that

1] 1
2 —l= 3 x,
) > N,EN

2
< 00,
Nle

Then the SLLN holds.

This theorem is essentially known, various special cases having been used in
[2], [1], 110, p. 311, [9, §§1I1.4, 1V.4]. While [8] presents almost as general a theo-
rem, apparently Theorem 1 has not appeared explicitly in print. The proof of this
and our other theorems consists in showing that the SLLN holds along some sub-
sequence {N,} and then applying a suitable maximal inequality to interpolate be-
tween the N,. When the random variables are uniformly bounded, the maximal
inequality is trivial. The heart of Theorem 1, then, is the following refinement of
the principle of Cauchy condensation.

LEMMA 2 [2]. Let {a,} ;= be real numbers such that
(3) a,=0, 2 — <.

Then there exists an increasing sequence of integers {n;} such that Xy > a,, <
and ny ., /n; — 1.

We shall constantly use the following easy and well-known lemma.

LEMMA 3. If Y, are random variables such that X, |Y,|* <, then Y, —0
a.s.
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Proof. Because | % |Y,|?dP =X |Y,|*<x, it follows that ¥ |Y,|?<c a.s.,
whence Y, — 0 a.s. ]

Proof of Theorem 1. By Lemma 2, there exists a sequence {/N,} such that

1 2 N1
Y= XY X,| <« and - 1.
k=1 Nk n=n, k
By Lemma 3, (1/Ng) X, <n, X, — 0 a.s. On the other hand,
Ny +s N, —N,
max L Y X, <L K 5.
1=5=Npy —Ne|l Nk N +1 Ny
and this too tends to 0 as kK — o. Since for Ny < N<N;,,,
Nk+s
— 3 X, == XY X,|+ max > X,
N <N k n=N, 1=s<Npy =Nl Nk N 31
the SLLN follows. [l

COROLLARY 4. Let | X,| <1 a.s. and suppose that

4) vn,m, Re E[ X, X,,]1<®,(|n—m|),
where &, satisfies
®,(n)
(%) $, =0, )) <
n=1 n

Then the SLLN holds.
This corollary will in fact be extended below (Corollary 11).

Proof. We have
2

1 . 1 _
— X, — Y E[X,X,]=— ReE[X,X,.]
’|N1<§<N N nmsN e N2 n,mEsN e
1 2
=— Y ¥(n-mh== ¥ &),
N nm<N ll | NOsr<N !
whence ) .
<2 —— D, (r)
N>1N||Nn<N Nzlj\/2 0<§:<N :
(r)
=2 E ®,(r) 2
r=0 N>r r=1
Thus (5) = (2) and the conclusion follows. O

Another simple maximal inequality will suffice for our next theorem, which ex-
tends [8]. The lemma we use for selecting a subsequence is an extension of Lem-
ma 2.

LEMMA 5. If {a,} satisfies (3), 1< p=<oo, and 1/p+1/p’=1, then there exists
an increasing sequence {n;} such that {a, )€ 17" and {ny . /n;—1} € 12, where |2 =
1P if p<oo and I° = cy.
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Proof. The case p = o0 is Lemma 2, so suppose that p <. We define {n;} in-
ductively as follows. Set n; =1 and, if n, has been defined, let n;_; be the small-
est n=n; such that

p—1
(6) n l.(i _1>
noon\ g

We have 1
p—
=Y > L(—IL—I)

an
Rp=n<ngq n k mp=n<ng Mg \ g

=3 > 1 1 (”“‘ —1>p_l

1
(nk+nk+l)/25n<nk+1 nk 2p nk

- Mg —Mm—1 1 1 (”k+1 _1>p~]
k

2 Ny 2p-1 ny
-1
_ 5 R =M 11 (nk+1 _l)p
= -
kimg=m+2 4 ng 2P i

_ 1 » (nk+1 _1>p
2p+1 k:nk+12nk+2 nk

That is, {ng41/ng—1}k:n, , =n,+2 € /7. On the other hand,

ny king, =ng+1 R king =ngp+1

since p > 1. Therefore {n;,/n,—1}; €l”.
In particular, {n,,/n;} is bounded. Now, if we raise both sides of (6) to the
power p’, we obtain af < (fg41/ne)? (nyci1/n—1)P. Therefore {a, Je . O

THEOREM 6. Assume (1) and

Q)

Then the SLLN holds.

Proof. By Lemma 5, there exists a subsequence {N,} such that

2 wlw
N=1 N |N n=N

N, 2
h > X, <oo and 2( k“—l) < oo
k=1 Nk n<N; N
Hence (1/N;) 2, <n, X, — 0 a.s. In addition,
1 Nk'l"S 1 Nk+S 1 Nkl
max <{max — > |[X,|{|=
1<5 <Ny 1—Ng N Ny +1 N N+1 N N+1
N,
1 k+1 Niyy
Y Xl = —1,
k Nk+1 k
whence
Nk+S 2
D max Y, X,|| <
k=1ll1=s<Np, —N, Ne Nt
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and
Nk +s
max >y X,
lSS(Nk_l_l—Nk k Nk+l
The conclusion follows as before. O

The following theorem is proved in exactly the same way. It includes both The-
orems 1 and 6.

THEOREM 7. Let 1< p<o and 0<r<gq < oo, with

liran
P q
Suppose that {X,} are random variables such that
| Xulp<1 and 3 — > X, <oo.
n=1 N N n=N q

Then the SLLN holds.

Proof. By decreasing q if necessary, we may assume that 1/p+r/q =1, whence
g < . By Lemma 5, there exists {N;} such that {]J(1/N;) M X, |0} e 19" and
{Ni+1/Ny—1}e€l4. The SLLN along {N,} follows from the first of these, while
the second combines with the maximal inequality

' Nk+S N
max Y x|l ==Xt
1<S<Nk+1_Nk Nk Nk+1 P k
to yield the rest of the SLLN. L]

Our final theorem depends on the following subsequence principle.

LEMMA 8. If {a,} satisfies (3) and also a,, < C(a,_p+a,. ) for some constant
Candall 0= p<n/3, then ;- ay <.

Proof. Slightly rearranging the order of summation, we obtain

1 azk_p a2k+p>

©>3 %223 (
as1 B 2 k50 0=p<2kpz\2k—p  2%4p

2}_ E azk_.p+afk+p - 1 azk:l .2_’{
2 j200=peaks  2K(143) 2C (2o 2K(3) 3

=L 2 asrk. 4

To prove our theorem, we could now follow the lines of [3] and [5], which de-
pend implicitly on a weak-type maximal inequality. Instead, we prefer to use the
following strong-type inequality.

LEMMA 9. Suppose that for all M and N,

2

® <®,(N).

1 M+N
7. 2.

Nn M+]
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Then for all M and n, we have

1 ME-I-S 2 1 i 3 p-1
® max |— Xl == (—) $,(27-P),
1=s<an| 2" gk pa1 ¢ 2 ,o1\4 2
Proof. Let B,(M) be the random variable
1 M+s
B,(M)= max A % Xk
1=s<2n| 2" ar31
with By(M)=0. We are interested in A, =sup,|B,(M)|?. For n=1 we have
M+s M+s M+2n—1
max | Y Xj Smax{ max | Y Xil,| X Xk
l<s<2?|M+1 Iss<2r-1|M+1 M+1
M+2n—l4s
+ max > X z,
lss<2n—1|M42n—141
whence
X 1 , [1] 1 M2t 1 NG
B, (M) smax{an_l(M) ,[5 i Mz‘“ Xe|+ 5By (M+27- )] }
1 1] 1 M2t 2
SZB,,_](M)Z‘FE Sn=1 M§1 Xk +EB,1_1(M+2”_1)2.

Taking expectations and then the supremum over M yields
A, <iA,_+318,2" Y+14, =1e,02n-1)+34,_,.

This establishes (9) for n =1 and all M, and also provides an inductive argument
giving (9) for all n. ]

We can now establish the following theorem, which improves [7], [4], [5], and
[6, p. 307] in not requiring ®,!0.

THEOREM 10. Assume (8) and that Xy~ P,(N)/N <oco. Then {X,} satisfies
the SLLN.

Proof. We may assume that

1 M+N 2
@z(N) =Ssup ]—v" E Xk
) M M+1
Taking expectations of
M+2N |2 M+N-P |2 M+2N 2
Y Xy =2 Y Xy +2 Y X,
) M+1 M+1 M+N—-P+1
yields
1 ME;ZN 2 1 M+21;V—P 2 1 M+2N 2
— Xl = 2" e Xy +2' > X
“ 2N a1+ N—=P 13 N+P prifitpir ¢

for 0= P <N, whence $,(2N) <2[P,(N—P)+ P,(N+P)]. Lemma 8 therefore
applies and gives >, -1 ®,(2”) <o, whence (1/27) ¥ <on» Xx— 0 a.s. Further-
more, Lemma 9 implies that
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1 A4 s 2 n 3 p—1
E max —i— E Xk S E 2 (Z) <I>2(2"_1’) =2 E @2(2’-) < 00,
n=1lllss<2n k=2"+1 n=1 p=1 r=0
Hence the SLLN holds. O

The same argument that led to Corollary 4 now gives the following.
COROLLARY 11. If (1), (4) and (5) hold, then so does the SLLN.

In this corollary, if ®,;10 and (5) fails, then there are counterexamples to the
SLLN. Likewise, in Theorem 10, if $,{0, N®,(N) is increasing and

P,(N)
NEzl N

then there are counterexamples to the SLLN. See [6, p. 307] for a proof.

We are indebted to Stanislaw Szarek for the following construction, which
shows that Theorem 7 is also best possible when given a uniform bound on the
norm of X,,.

PROPOSITION 12. Let 1< p<o,0<r=<qg<oo, 1/p+r/q=1, and ¥(t) beany
nonnegative function on R* such that ¥(t)=o0(t") as t > 0%t. Then there exist
random variables { X, } such that

)<
q

yet the SLLN fails.

Proof. Our probability space will be Lebesgue measure on R/Z. If ¥'(1) =
sups <; ¥(s), then also ¥’'(¢) = o(¢"). Thus, there exist e; €10, 2~1/@="[ such that
Sk=1(et)I=oc0 and Y;- ()9 "V (er) <oo. Let ¢, =¢; /4 and choose N, =2 so
that e ~"N, =2 and Ny 1 —Mj 41 +1> N + M, where M, is the smallest integer
> k(k+1)"'ef~"Ny. Denote By =[Ny —M;+1, Np + M, ]. If n¢ Uy By, then set
X, =0. Otherwise, if ne By, set

_ E;’cl_q].]k if n=N,,
| =791y, if n> N,

n

where I =[Zj<r e/, i<k €f]. We have | X, [, =1if ne U, By, while | X,},=0

otherwise. In addition,
ae(lh £])3. 3, 5w(04 35
N N N /21 g k Nes, N N , q
2M

E
k Ne—M;+1 Ny =M +1 n, g 41
E e " ¥'(4¢;) < 0.

A

],

Thus, the conditions on {X,} are satisfied, yet
N 1 N

Y X,=1 and lim — } X,=0

1 N 7

everywhere. ]
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