THE NUMERICAL RADIUS OF
A COMMUTING PRODUCT

Vladimir Miiller

The numerical radius w(7") =sup{|(Tx, x)|, xe H, |x| =1} is, apart from the
norm and the spectral radius, one of the most important constants attached to a
bounded operator T in a complex Hilbert space H. There exists an extensive the-
ory concerning the numerical radius and its relations to the norm.

In the present paper we investigate the following question:

Is it true that w(7'S) <= w(T')| S| for all commuting
operators 7°and S in a Hilbert space?

1)

This question was probably first considered by Holbrook ([5], [6]) and further
studied (usually in the more general context of operator radii wp and Cp contrac-
tions) by a number of authors (see e.g. [1], [2], [3], [8]). For more about the his-
tory and motivations of the problem see [7].

Conjecture (1) looks very reasonable as there are positive results which indi-
cate that the inequality might be true. The inequality is true if 7and S are doubly
commuting; that is, if 7S = ST and 7T'S* = S*T (Holbrook [5], Sz.-Nagy [8]).
Also, if S is an isometry then w(7'S) < w(T) (Bouldin [2]). Finally, if 7and S are
arbitrary commuting operators then w(7'S) < 1.169w(T) | S| (due to Crabb, com-
municated by Ando and Okubo [1]).

The aim of this paper, however, is to show that the conjecture is false in gen-
eral. We exhibit an example of two operators 7, S in a 12-dimensional Hilbert
space H such that 7S= ST, |S| =<1, w(T) =<1, and w(7TS) > 1. Using a result of
Holbrook [7] it is even possible to assume that S is a polynomial of 7.

The Hilbert spaces considered in this paper are complex, but the constructed
example works in real Hilbert space also.

We start with the following well-known lemma:

LEMMA. Let n be a positive integer, and let a;; (i, j =1, ..., n) be complex num-
bers such that the matrix (a;, ;)i j= is positive definite. Then there exist a Hilbert
space H (dim H = n) and linearly independent elements x, ..., x, € H such that
(x,-,xj) =4a; (I,_] = 1, seny ﬂ).

Proof. Let H be an n-dimensional linear space with a basis x, ..., x,. Define
the scalar product (-, -) on H by

n

(E o X, _El.ijj)= > aiBja;; (aq,...,au, By, ..., 8,€C).
j=

i=1 hj=1
Clearly, H will become a Hilbert space, dim H =n, and (x;,x;)=a; ; for i, j=
1, ..., n.
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We shall repeatedly use the classical characterization of positive definite ma-
trices (see e.g. [4, Chap. X, §4]). A self-adjoint matrix 4 = (a; ;)i ;= is positive
definite if and only if Dy =det(a; ;)¥;-,>0 (k=1,...,n).

THEOREM. There exist a Hilbert space H (dim H =12) and commuting oper-
ators T and S on H such that w(T) =<1, |S| =1, and w(TS) > 1.

Proof. Let H,, ..., Hg be Hilbert spaces, dim H; = dim Hg =1, dim H; =
dim Hs = 2, and dim H; = dim H, =3. Let H =®$_, H; be their orthogonal
sum, dim H =12. Take elEHl, €s, e3€H2, 94,35,36EH3, €7, ég, egeH4, €10,€en €
Hs, and 912€H6 such that

le |?=0.28,

lea|2=1.9, |e3]?=0.28, (e,,e3)=0.24,

lesl>=1, |es|>=1.9, [|ec|>=0.28, (eq,e5)=1.01,
@) (es,e6) =0.24, (e4,e¢)=0.13, ;

le;|2=0.9, |eg|?=1.5, Jeo|>=0.28, (e, e5)=0.81,

(eg,€9)=10.24, (e;,e9)=0.13,

lew|>=0.57, |ey|>=0.46, (e,e;;)=0.28,

len]>=0.29.

It is possible to choose ey, ..., e, satisfying (2) since the matrices

1 1.01 0.13
A2=((I)'g4 8'33), A;=( 1.01 1.9 0.24),
) ) 0.13 0.24 0.28
0.9 0.81 0.13)
A= 081 1.5 0.24), and A5=(8';’ 8'22)
0.13 0.24 0.28 ) )
are positive definite; it is easy to check that

1 1.01

detA2>0, det(lOI 1.9

) >0, det A3 =0.219686 > 0,

det(0'9 0'81>>0, det A,=0.167646>0,  det A5>0.

0.81 1.5

Clearly, the elements ey, ..., €;; are linearly independent. Define the linear opera-
tors T,S: H— H by

Te; =0, Te,=ey, Te; =0, Teys=e,,

Tes=ej, Teg=0, Te;=es, Teg = eg,

Tey=0, Te o =eg, Tey = ey, Tex=ey,

Se;=e;, Se,=es, Se; =eg, Sey=e,,

Ses=eg, Seqg=ey, Se;=ep, Seg=ey,

Seg = O,

Sepp=ey,

Seu = O,

Selz =0.
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It is easy to check that 7S = ST, as

TSe, =STe, =0, TSe,=STe,=e;,

TSe;=8Te; =0, TSe,=S8Te,=es,

TSes=STes=eg, TSeg=STeg=0,

TSe;=STe,;=eg, TSeg=STeg=ey,

TSeg=STeq=0, TSen=STen=ey,

TSe;=STe;; =0, TSe;;=STe;,=0.
Further, |es| =1 and (7'Sey, e4) = (es, e4) =1.01; hence w(7'S) =1.01. We prove
now |S| =1. Clearly, SH;C H;,, (i=1,...,5) and SH¢={0}. Denote by P; the

orthogonal projection onto H; (i=1,...,6).
Letze Hand z;=P;z (i=1,...,6). Because

6 6
Iz]*= 2 |zil> and [Sz|*= 2 1Sz:]?,
1= =

it is sufficient to prove |Sz;|? <|z;|? (i=1,...,6). Thisis clear for i =6 as Sz =0.
Further, S/H; and S/H, are isometries; that is, |Sz;|?=|z;|? and || Sz,]?=|z2|>
Let z3=aes+Bes+veg (a, B,y € C). Then

|z3]? = ||+ 1.9|B]>+0.28|v|*+ 1.01(aB + B&) + 0.24(BY + vB) + 0.13 (¥ + y&)
and

|Sz3)> = |es + Beg +yeo|> = 0.9 > +1.5| B|>+0.28| |2
+0.81(aB+Ba)+0.24(87+vB) +0.13 (a7 +va@).
Therefore |z3]|2—|Sz3]2=0.1|a|?+0.4|B|2+0.2(aB+ B&) =0.1|a+23|>= 0 for
every «, 3, v € C. Similarly, let z,=«ae;+Beg+veq (o, 3,y € C). Then
|z4|2—1S8z4]% = |e; + Beg +yeq |2 — | eio + Beyy |2
=0.33|a|?+1.04|8[?>+0.28|v|?
+0.53(aB+B&)+0.24(B7+vB) +0.13(a¥ +v&)
=0.13|a+B+v|?+0.11|8+ |2+ 0.2|a+28|>+0.04|y|2= 0
for every «, 3,y € C.
Finally, let z5=ae;g+Be;;, o, B8€C. Then
Iz51%2—Sz5]% = |ae+ Ben|?— |aen|? = 0.28|a[2+0.46|B|2+O.28(a3+6&)
=0.28|a+3|2+0.18|3|2=0

for every o, Be C. Thus |S|=1.

It remains to prove w(T') < 1. Let e € C, |e¢|=1. Define the operator U,: H - H
by U.z =3X¢_,€¢'P;z (z € H). Obviously, U. is a unitary operator, and U~z =
>?_1€P;z (ze H). Further, U 'TU,z=3¢_, /U 'TP;z=3¢ ;_,¢'e/P;TP;z =
X6 _,eP;_1TP;z=€eT (8-, Piz) = (eT)z (we used the inclusions TH; C H;_, (i =
2,...,6) and TH,; = {0}, which follow from the definition of 7).
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The operators 7 and €7 are unitarily equivalent and their numerical ranges co-
incide. The set W(T') = {(Tx,x), xe H, | x| =1} is circularly symmetric and the
condition w(7) <1 is equivalent to the condition Re(7x, x) < |x|? (x e H).

For xeH, let x=X2 ,a;e; (a;€C, i=1,...,12). Then

12
|x[?—Re(Zx,x)= ¥ [a;d;(e;,e;)—Re o;a;(Te;,e;)]

i Jj=1
12 = ~
_ o0t oja;
= E [aiaj(ei9ej)— ) (Teiaej) .
ij=1

The last expression is nonnegative for all ¢y, ..., aj; € C if and only if the matrix

(28 —.14 i i i h
—.14 1.9 24195 —.12 : :
24 281 —.12 —.14 | .
_______________ g g
-95 —.12 ! 1 1.01 13 | —.505 —.065 !
—12 —.14! 101 1.9 24 —95 —.12 :
L3 24 28 —12 —.14 !
| —.505 —.95 —.12, .9 .81 13 | —.405 —.065
| —.065 —.12 —.14 | .81 1.5 24 | —.75 -—.12
l l.13 24 281 —.12 -—.14
3 405 —75s a2 57 28 —.14
| | —.065 —.12 —.14 1 .28 46 —.23
! ; I —.14  -.23 2 |

is positive semidefinite (the remaining terms of the matrix are equal to 0).
It is sufficient to show that the principal minors in the upper left-hand corner
D,, ..., D, are positive. By calculation we get

D,=0.28, D,;=3.0880-10"4,
D, =0.5124, Dg=3.1358-10-°,
D;=0.1273, Dy=17.3275-10"7,

D,=6.4531-10~2, Dy =9.2473-10-8,
Ds=3.1638-10~3, Dy =5.9969-10-10,
Dg=17.7947-10~%, D, =6.2506-10"1

Therefore the matrix is positive definite and w(7°) <1 (in fact, even w(7T) <1).
[

REMARK 1. The example was obtained with the essential help of a computer.
Because it is not easy to estimate the cumulative rounding error when computing
a determinant of higher order and because the determinants above are very close
to zero, it is possible to doubt whether the determinants are actually positive.
Fortunately, it is possible (after some effort) to obtain the exact values of the de-
terminants by direct calculation and to check that they are indeed positive. For
example, the exact value of D,, is

Dy, = 6.250 617 295 5744 - 1011,
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REMARK 2. It is a natural question to ask what is the best (=the smallest) con-
stant C such that w(7'S) = Cw(T)|S| for all commuting operators 7 and S. The
present example and the result of Crabb give 1.01 < C < 1.169.

REMARK 3. As pointed out by the referee, the above example does not enable
one to see how it was obtained; we shall indicate that briefly in this remark.

We are looking for commuting operators 7 and S in a Hilbert space H and an
element x € H, |x| =1, such that |S| <1, w(T) <1, and (7'Sx, x) > 1. Clearly, we
may assume that =V~ TiS/x; that is, we must determine the scalar products
(TiS/x, TkS'x) for all i, j, k,[l. Using an “orthogonalization technique” analo-
gous to that developed by Crabb (see the above-mentioned inequality in [1]), one
can assume (7iS/x, T*S!x)=0 for i—j # k—1I. (On the other hand, we cannot
require this for i —j=k—1 as (T'Sx, x) should be nonzero.)

Now we should like to make the example as simple as possible. The assump-
tion T2x = 0 is too strong as then 72 = 0, 7*2 = 0, and Crabb’s estimates give
w(TS)=<1. If T3x =0 then Crabb’s proof gives a better estimate than the gen-
eral w(T'S) <1.169, but it does not give w(7'S)<1. So it is reasonable to put
T3x =0 (then w(T'S) will necessarily be very close to 1). Again Crabb’s proof
gives T2S52x 0 (otherwise w(7T'S) <1); therefore TiS/x =0 for 0=<i,j=<2 and
we are looking for an example of at least 9 dimensions. Actually the example was
found on the 12-dimensional Hilbert space H = V7 V}_o T'S/x (these vectors
TiS/x are denoted by ey, ..., e, in the construction). It remains to find the scalar
products (TiS/x, TkS/x), 0=<i,k<2,0=<j,1<3, i—j=k—1[so that these vectors
would form a Hilbert space (7Sx,x)>1, |S| =<1, and w(T) <1. All these condi-
tions but the last one are rather easy to check. The condition w(7T) <1 reduces to
the positivity of some determinants, which was checked using a computer.

An interesting question is to ask what is the minimal dimension of a Hilbert
space H on which a similar example can be constructed. The previous reasoning
gives no estimate from below, as the dimension might have increased in the pro-
cess of orthogonalization. The only known result in this direction is that such an
example cannot be found in a 2-dimensional Hilbert space (T. Ando, personal
communication).

In [7], the following result was proved: If T and S are commuting operators in
a finite-dimensional Hilbert space H and if € > 0, then there exist an operator 7’
in H and a polynomial p such that |[7—7"| <e and S = p(T"’). Using this result
we obtain

COROLLARY. There exist an operator A in the 12-dimensional Hilbert space H
and a polynomial p such that
w(A)=<1, |p(A)|=l, and w(Ap(A))>1.
Similarly, there exist an operator B and a polynomial q such that |B| <1,
w(q(B)) <1, and w(Bg(B)) > 1.

Proof. Let H, T, and S be as before. Put e =1—w(7T) > 0. Then the first part of
the corollary follows immediately from the above-mentioned result. The second
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part can be proved analogously by considering the operators S-w(7T") and 7/w(T')
instead of 7"and S. [
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