GROUP ACTIONS ON TREES AND LENGTH FUNCTIONS

David L. Wilkens

Introduction. A group of isometries acting on a metric tree gives a length func-
tion in the sense of Lyndon [6], associated with each point of the tree. In this
paper certain properties of length functions are considered, in particular the exis-
tence of extensions, and relationships with corresponding properties of group ac-
tions are described.

The quotient of a group action on a metric space is described in Section 1.
Group actions on trees and relationships between non-Archimedean elements,
bounded actions, and fixed points are considered in Sections 2 and 3. These re-
sults are used in Section 4 to relate extensions of length functions to actions of
factor groups on quotient trees, in Theorems 4.2 and 4.3. Results on extensions
of length functions can therefore be translated to group actions on trees. An ex-
ample is given in Theorem 4.5, where the action of any hypercentral group is
described.

1. Factors of actions on metric spaces. Let a group K act as a group of isome-
tries on a metric space X, equipped with a metric d. Define a relation between the
elements of X by u ~ v if inf, o x d(u, xv) =0.

LEMMA 1.1. The relation ~ is an equivalence relation on X.

Proof. The relation is clearly reflexive, and since (for any x € K) d(u,xv) =
d(xv,u) =d(v,x "'u), it is symmetric.
For any x, y e K and u, v, w € X, by the triangle inequality

d(u,xyw) <=d(u,xv)+d(xv, xyw) =d(u,xv)+d(v, yw).
Thus, if « ~ v and v ~ w then u ~ w and the relation is transitive. O

Let X/K be the set of equivalence classes under ~, and denote the equivalence
class of u by [u].

PROPOSITION 1.2. X/K is a metric space with metric d’ defined by
d’([u], [v]) = inf d(u, xv).

xekK

Moreover, if X is complete then so is X/K.
Proof. We first show that d’ is well defined. If 4’ ~u, v’ ~ v, thenforx, y,ze K
d(yu’,xzv’')sd(yu',u)+d(u,xv)+d(xv, xzv’);
that is,
du’,y 'xzv’) =d(u, yu’)+d(u, xv)+d(v, zv’).
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Thus inf,cx d(u’, xv’) < inf,cx d(u, xv). By symmetry, inf,.x d(u’,xv’) =
inf, ¢ x d(u, xv), and d’ is well defined.

By definition, d’([u], [v]) =0 if and only if [#] = [v]; and since d is symmet-
ric, so is d’. To prove the triangle inequality let «, v, w e K. Then, for x, y e K,

d(u,xv)+d, yw) =d(u,xv)+d(xv, xyw) =d(u, xyw).
Hence, taking infima over K,
d'([ul, [v])+d’([v], Iw]) =d’([u], [w]).

It follows that d’ is a metric on X/K.

Suppose now that X is a complete metric space and let {[#,]} be a Cauchy se-
quence in X/K. Then there exist natural numbers m; < m, < m; < --- such that,
for m,n=m,,

inf d(uy, xup)=d’ ([u,], [u,]) <
xekK

2r+l'

Define a sequence {v,} in X as follows. Set v, = Um,, and since

1
inf d(uml,xumz) <353

xekK 2
there exists y € K with d(u,, , yum,) <1/2. Take v, = yu,,,. We proceed so that for
U1, U,y ..., U, We have d(v,,, Um4+1) <1/2" for 1=m<r. Then [v,]= [¢4,], and
since 1

inf d(v,, xup, ) =d"([um], (U, 1)<
xek

there exists z € K with d(v,, zu,, , ) <1/2". We take Vr4+1=2Upm, - Now, for n>m,

2r+1

d(Um, vn) = d(vm, Um+l)+d(vm+l’ vm+2)+ tec +d(vn—1’ vn)

1 1 1 1
=om T omrt vt SaDT < gt

The sequence {v,} is thus a Cauchy sequence in X, and lim v, = v therefore exists.
Hence
[v]=lim[v,]= lim[umn] =lim[u,],

showing that X/K is complete. O

We now consider the situation where K is a normal subgroup of a larger group
of isometries G, as will be the case for applications in Section 4.

PROPOSITION 1.3. Let G act as a group of isometries on a metric space X,
with K a normal subgroup of G. Then G/K acts as a group of isometries on X/K,
where for xe€ G, xK([u]) = [xu].

Proof. Let u~v in X. Then for ae K and xe G,

inf d(xu, axv) = inf d(u, x 'axv) = inf d(u, av) =0.
ae K aek aek
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Thus xu ~ xv and the action of G/K is well defined. By the definition of ~, K
acts trivially on X/K.
G/K then acts as a group of isometries on X/K, since for any u,ve X

d’'(xK([ul),xK([v])) =d’([xu], [xv]) = inf d(xu, axv)

aek
= inf d(u, x “laxv) = inf d(u, av) =d’([u],[v]). O
aekK aekK

2. Actions on trees and length functions. A (metric) free T is a complete met-
ric space which satisfies the following two axioms:

TO T has no subspace homeomorphic to a circle.
T1 For any two points u, v €T there is an isometry «: [0, r] > T with «(0)=u,
a(r)=v, where r=d(u, v).
The isometry « is unique, and the image « ([0, r]) is denoted by [u, v] and is
called a segment of T.
This definition is due to Tits [8]. Imrich and Schwarz ([4] and [5]) have shown
that a complete metric space 7 is a tree if and only if it satisfies T1 and

T2 The four-point condition: For any four points u, v, s, t € T, two of the sums
d(u,v)+d(s,t), d(u,s)+d(v,t), d(u,t)+d(v,s)
are equal, with the third no larger.

Morgan and Shalen [7] and Alperin and Bass [1] have studied A-trees, where A
is an ordered abelian group. It follows from Proposition 11.1.13 of [7] (or equally
from Proposition 2.15 of [1]) that R-trees are trees, as above. Conversely, it fol-
lows from (1.1)-(1.3) of [8] that trees are R-trees.

A rooted tree T, ug consists of a tree 7 with a distinguished point uye 7. The
following is a restatement of Theorem 3.17 of [1] in the case where A =R.

PROPOSITION 2.1. Let T be a complete metric space with ugeT. Then T, ug is
a rooted tree if and only if the following conditions hold.
T1’ For each veT there is an isometry «:[0,r] - T with «(0) =uy, a(r)=v,
where r =d(ug, v).
T2’ For any three points v,s,t €T, two of the sums
d(ug,v)+d(s,t), d(ug,s)+d(v,t), d(ug, t)+d(v,s)
are equal with the third no larger.

A length function on a group G is a function £: G — R such that, if c(x,y) =
1)+ £(y)—£(xy 1)), then the following axioms hold for all x, y, z € G:
Al ¢(1)=0;
A2 ¢(x)=0(x"");
A4 c(x,y)<c(x,z) implies c(x,y)=c(y, z).
The definition is due to Lyndon [6], and an equivalent statement of A4 is that of
the three numbers c(x, y), c(x, 2), c(¥, z2) two are equal with the third no smaller.
An element x € G is Archimedean if £(x?) > ¢(x) and is non-Archimedean oth-
erwise. The set of non-Archimedean elements of G is denoted by N, and a length
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function is said to be Archimedean if N = {1} and non-Archimedean if N=G. It
follows from Propositions 2.1 and 3.4 of [10] that N is a normal subset of G, and
x € N if and only if the set {£(x"); n an integer} is bounded.

Let a group G act as a group of isometries on a tree 7 and let e 7. Then a
length function ¢,,: G — R is defined by ¢,(x) =d(u, xu). Axioms Al’ and A2 fol-
low immediately, and A4 is an easy consequence of T2, the four-point condition.
In the other direction, Chiswell [3] and Alperin and Moss [2] have shown that
given a length function f£: G — R there exists an essentially minimal rooted tree
T, ug, such that G acts as a group of isometries on 7" with ¢, = £.

Let G act on 7 with u,veT. Then, for xe G,

6,(x")=d(v,x"v)<d(v, u)+du, x"u)+d(x"u,x"v)
=d(u,x"u)+2d(u, v)
=£0,(x")+2d(u,v).

The set {¢,(x"); ne Z} is therefore bounded if and only if {¢,(x"); ne Z} is
bounded. Thus x is non-Archimedean with respect to £, if and only if it is non-
Archimedean with respect to £,,. An element x is therefore said to be non-Archi-
medean if it is non-Archimedean with respect to £, for some (and hence all) ¥ 7.
N denotes the set of non-Archimedean elements of G.

Let T ={u eT; xu =u}, the set of points fixed by x. If 7" is nonempty it is a
subtree of 7. If 7T is empty then the tree 7 contains an axis for x, that is, an iso-
metric image of R on which x acts as a translation; see Theorem I1.2.3 of [7]. G
is said to act without fixed points if T*= ¢ for each 1 x e G.

The results in the following proposition have also been considered elsewhere;
see Lemmas 1 and 3 of [5], Theorem 3 of [3], and Proposition (6.3) and Corollary
(6.13) of [1].

PROPOSITION 2.2. If G acts on a tree T then x € N if and only if T*# ¢. If
xeN and u eT then the mid-point of [u,xu] is fixed by x.

Proof. Let ueT* s ¢; then x%u =xu=u. Hence £,(x*)=1¢,(x)=0 and x e N.
Conversely, suppose that x e N. Then for any ue7T, £,(x?) <?¢,(x). Consider
points u, xu,x 'ueT and let [u, xulN[u,x 'u]=[u,v], with

s=0,(x)=du,xu)=dw,x 'u) and ¢t=d(u,v).
Then
2s—2t=d(x_lu,xu)=d(u,x2u)=€u(x2)seu(x)=s,

and so s/2 < ¢ (see Figure 1).

Let w be the mid-point of [u,xu]; then d(u, w)=s/2 and w is also the mid-
point of [#,x ~u]. The isometry x sends [x ~'u, u] to [u, xu], and since w is the
unique point a distance s/2 from x ~'» and from u it follows that xw =w and
T # ¢. C

3. Bounded actions. Let a group K act as a group of isometries on a tree 7. K is
said to have bounded action on T if for some u € T'the set of lengths {£,,(x); x € K}
is bounded. By the triangle inequality,
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Figure 1

£,(x)=d(w,xv)=d(v,u)+d(u,xu)+d(xu,xv)
=d(u,xu)+2d(u,v)="~0,(x)+2d(u, v)

for veT. Thus K has bounded action if the set {£,(x); x € K} is bounded for each
v eT. Since the lengths with respect to a given base are bounded, K will consist
entirely of non-Archimedean elements.

LEMMA 3.1. Let Gacton a tree T withueT. If x,y,xy € N then x and y have
a common fixed point in T, namely the mid-point of [u,zu)] where z is the ele-
ment of greater length from x, y.

Proof. Write £ ={,; then, by Proposition 3.3 of [10], two of ¢(x), £(»), £(xy)
are equal with the third no larger. We first consider the case where £(x) =0(y) =
£(xy) (see Figure 2).

xlu yu

Figure 2
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Let [u,x  'ulN([u, yul=[u,v], with
s=0(x)=0(y)=d(u,x u) =d(u,yu) and t=d(u,v).
Then
2s =2t =d(x u, yu) =d(u, xyu) =0(xy) < f(x) =E(y) =s,

and so s/2 <t. Hence w, the mid-point of [u,x ~!u], is also the mid-point of
[u, yu). As was seen in the proof of Proposition 2.2, this is also the mid-point of
[u, xu]. By Proposition 2.2, w is fixed by both x and y, and hence also by xy.
The cases where £(xy) > £(x) or £(y) follow by considering either the triple
xy,y "L, x or the triple x 7!, xy, y in place of x, y, xy. O

THEOREM 3.2. Let K act as a group of isometries on a tree T. Then K has
bounded action if and only if it fixes some point of T.

Proof. If K has a fixed point u# then f,(x) =0 for each xe K, and K has
bounded action.

Conversely, suppose K has bounded action, in which case K consists entirely of
non-Archimedean elements. Let u € T, write £ =¢,, and let r =sup{f(x); xe K}.
If there exists y € K with £(y) =r then (by Lemma 3.1) w, the mid-point of [«, yu],
is a fixed point for each x € K.

If there is no y € K with £(y) = r, then for each natural number n choose x,, € K
with d(u, x,u) =0(x,) >r—1/n and £(x,,) > {(x,) for m > n. Let w, be the mid-
point of [u, x,u]. If m > n then, by Proposition 3.3 of [10], £(x,; 'x,) = £(x,,) >
£(x,). Thus

AUy Xpmtt) = 0(Xm) = L(Xp ' X,) = d (U, X ' X0 t0) = d (Xt X 12)

and so [u,x,,u]lN[u,x,u] =[u,w,] (see Figure 3). Hence, on [u, x,u],

1 1 1 1
d(Wp, w,) = E(H(Xm)_e(xn)) = E(r—(r_ ;>)= "

X, U

X U

Figure 3
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Thus {w,} is a Cauchy sequence, and since 7 is complete lim w,, =w e T exXists.
Suppose there exists x € K with xw # w. Let d(w, xw) =€ > 0, and choose x,, with
2(x,;) > £(x) and with d(w,w,) < ¢/2. By Lemma 3.1, w, is fixed by x and so

d(w,, xw)=d(xw,, xw)=d(w,, w) <e/2.

Hence, d(w,xw) <d(w,w,)+d(w,,xw) <e, giving a contradiction. It follows
that w is fixed by K. ]

An example of a bounded action is given by the action of K on any tree 7, where
K is an (¢, m, n)-group generated by elements x, y, where x'=y"=(xy)"=1.
Since x, ¥, and xy have finite order they are in N. By Lemma 3.1, x and y have a
common fixed point, which is a fixed point for XK.

Any bounded action of a group K will essentially be made up of trees and ac-
tions given by Chiswell’s construction in [3], following from non-Archimedean
length functions given by chains of subgroups of K, as described in [9].

4. Quotient trees and extensions of lengths.

LEMMA 4.1. If K acts on a tree T as a group of isometries with bounded action
then T/K is a tree.

Proof. By Proposition 1.2, 7/K is complete. By Theorem 3.2, K fixes some
point of 7', say the point ©y. To show that 7/K is a tree we prove that conditions
T1’ and T2’ of Proposition 2.1 are satisfied.

The point u« is fixed by K, so in 7/K, for any ve T and any x € K, d(ug,v) =
d(ug, xv) so that [ug] = {ue} and, writing [ug] = ugy, d’(ug, [v]) = d(ugy, xv). If
d(ug, v) =r then since T is a tree there exists an isometry «: [0, 7] —» T with «(0) =
Uy, a(ry=v. Let 8=pa:[0,r] >T/K, where p: T —T/K is the projection. Now
if wy, wy € [ug, v]1= ([0, r]) with w; =a(r)), wp = a(ry) then d(w;, wy) =|r;—r3|.
For [w,], [w2]€ B([0,]),

d'(up, [w1)=d(up, w1)=r; and d’(up, [W2]) =d(ug, wz) =rs,

and so by the triangle inequality d’([w,], [W,]) = |r; —r2|. The function g is there-
fore an isometry, and condition T1’ is satisfied by 7/K.

To establish T2’ we need to show that for v, s, f € T the four-point condition is
satisfied for uy, [v], [s], [¢] in T/K. In fact, we show that the following equiva-
lent condition is satisfied. If for some m, two of

d’(ug, [v])+d'([s],[t]), d’'(uo, [sD+d'([v], [£]), d’(uo, [1D)+d’([v], [s])

are < m, then the third must be < m.
Suppose d’(ug, [v])+d’([s], [¢]) and d’(ug, [s]1)+d’([v], [¢]) are < m. Then,
since

d’([s], [¢]) = inf d(s, x?), d’'([v], [¢]) = inf d(v, xt),
xek xekK

given e > 0 there exist y, z € K such that
d(ug, vV)+d(ys,t) <m-+e, d(ug,s)+d(zv,t)<=m+e.
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This can be written
d(ug,zv)+d(ys,t) <m+e, d(ug,ys)+d(zv, t)y<m+e.

T is a tree and therefore satisfies the four-point condition for uy, zv, ys, and ¢,
and hence

d(ug, t)+d(v,z ys)=d(ug, t)+d(zv, ys) < m+e.

Thus
d'(ug, [t]1)+d'([v], [s])=d(ug, t)+ inf d(v,xs) =m+e.
xekK
This holds for any € > 0 and so d’(ug, [¢t])+d’([v], [s]) <m, showing that T2’ is
satisfied, and completing the proof. O

If £: G—R is a length function and K is a proper normal subgroup of G,
with f: G —» H = G/K the projection homomorphism, then ¢ is an extension of
a length function ¢; on K by a length function ¢, on H if

£(x) = £1(x) if xek,
| (%) if xe¢K.

By Theorem 4.2 of [10] this occurs precisely when f£(ax) =£(x) for each ae X,

x € G\ K. The length function ¢;, which is the restriction of ¢ to K, is non-Archi-
medean.

THEOREM 4.2, Let G act as a group if isometries on a tree T, with K a proper
normal subgroup of G. If K has bounded action then G/K acts on T/K, a tree.
Moreover, if for ueT the length function {, is an extension of £, on K by ¢, on
G/K, then f2=f[u].

Proof. By Proposition 1.3, G/K acts on T/K, which is a tree by Lemma 4.1.
If ¢, is an extension of £; on K by f, on G/K, then (for each ae K, xe G\ K)
¢, (ax)=1£,(x); that is, d(u, axu) =d(u,xu). Thus
by (xK)=d'([u], xK([ul)) =d’'([ul, [xu])

= inf d(u, axu) =d(u,xu) =£,(x)=0,(xK),
ae kK

completing the proof. O

If G acts on a tree 7, then a proper subgroup K of G acts with minimal length
if, for each ueT, ae K, xe G\K,

b (a)=d(u,au)<d(u,xu)=10,(x).
THEOREM 4.3. Let G act as a group of isometries on a tree T, with K a proper

normal subgroup of G. If K acts with minimal length then G/K acts on the tree
T/K such that for each ueT, ¢, is an extension of £; on K by £, ={,; on G/K.

Proof. If K acts with minimal length then it has bounded action. For u € T the
length function ¢, is minimal on K, which by Theorem 4.2 of [10] is equivalent to
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¢, being an extension of £; on K by ¢, on G/K. The result follows by Theorem 4.2
above. O

The definition of a bounded action is extended from a group or subgroup to a
subset in the obvious way. That is, a subset S of G has bounded action on 7 if for
some (and hence each) u €T, the set {£,,(x); x € S} is bounded.

Theorem 4.2 can be applied to an action of G on 7, where N has bounded ac-
tion. By Theorem 5.3 of [10], applied for each u# €7, N is a normal subgroup of
G and ¢, is an extension of ¢; on N by an Archimedean ¢, on G/N. By Theorem
4.2, since £, =2, G/N acts on T/N without fixed points. The following is there-
fore true.

THEOREM 4.4. Let G act as a group of isometries on a tree T. If N has bound-
ed action, then it is a normal subgroup of G and G/N acts on the tree T/N with-
out fixed points. Moreover, for each ueT, {, is an extension of ¢; on N by ¢,
on G/N.

Length functions on hypercentral groups have been studied in [11]. Translating
the theorem there to actions on trees, as in Theorem 4.4, the result below follows.

THEOREM 4.5. Let a hypercentral group G act on a tree T. Then N=G, or N
is a proper subgroup of G with bounded action such that G/N, which is isomor-
Dphic to a subgroup of the additive reals, acts on the tree T/N without fixed points.
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