INVARIANTS OF COMPLEX FOLIATIONS
- AND THE MONGE-AMPERE EQUATION

T. Duchamp and Morris Kalka

0. Introduction. In this paper we study the local and global geometric invari-
ants associated to a foliation of a complex manifold by complex submanifolds.
We call such foliations complex foliations and do not require them to be trans-
versely holomorphic (i.e., the leaves of the foliation might not fit together in a
holomorphic way) —indeed, one of the objects of the present paper is to deter-
mine global conditions which force complex foliations to be transversely holo-
morphic.

Our primary motivation for undertaking such a study comes from the complex
Monge-Ampere equation. In [2] it is observed that a smooth, real-valued function
u on a complex n-dimensional manifold M, satisfying the equations (33u)”*'=0
and (ddu)? # 0, gives rise to a foliation of M by complex submanifolds of com-
plex codimension p, a Monge-Ampere foliation, in the following way. The closed
(1, 1)-form 30u defines a distribution L = {X € TM | i(X)3du = 0}, which is easily
shown to be integrable.

The technique of exploiting the geometry of Monge-Ampére foliations to study
the Monge-Ampeére equation has been used a great deal in recent years ([1], [5],
[10], [11], and [13]). We call particular attention to the paper of Lempert, where
the Kobayashi metric is used to associate a canonical complex foliation, singular
at one point, to a smooth, strongly convex domain in C”. The results of [3] show
that the geometry of the entire domain can be recovered from the foliation germ
at the singularity together with metric data on the leaves.

In most of the above work the solution of the Monge-Ampére equation is used
heavily in the analysis of the associated foliation, but there are interesting exam-
ples of foliations which are not Monge-Ampére (e.g., those arising in twistor the-
ory [6]), and even when a foliation does arise from a solution of the Monge-Am-
pere equation, the solution may not be known but the geometry of the foliation
itself may be of interest. For example, it would be interesting to have a character-
ization of which germs of singular foliations can arise from the Lempert foliation
of a convex domain. A systematic study of complex foliations is therefore of in-
terest, and this paper initiates such a study.

The outline of the paper is as follows. Our notational conventions, as well as
some basic definitions and useful local formulas, are presented in Section 1.

In Section 2 the relative de Rham complex (Q’é, ds) of a complex foliation is
presented. Here n’; denotes the sheaf of sections of the bundle A*L*, where L
is the tangent bundle of F and the operator dgs is exterior differentiation in the
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directions tangent to the leaves of . This complex is a resolution of the sheaf C¥
of germs of functions which are locally constant along the leaves of &, and it
is possible to define relative Chern classes of the foliation, denoted by cx(F) e
H?*(M, Cg), which contain information about its nonholomorphic nature.

The complex Bott partial connection is introduced in Section 3. (A partial con-
nection is a covariant derivative which is defined only in directions tangent to the
leaves of &.) The torsion tensor of the complex Bott connection is shown to van-
ish precisely when the foliation is transversely holomorphic (this tensor first ap-
pears in the work of Bedford-Burns [1] under the name antiholomorphic twist).
We compute the Cartan structure equations for the complex Bott connection and
use them to produce explicit representatives Cy(F) eI (M, l’l?;") for the relative
Chern classes of &F.

In Section 4 we consider the problem of determining when a foliation is Monge-
Ampere. Suppose that the foliation F is Monge-Ampére; then the covariant de-
rivative of the nonnegative, real (1,1)-form o =iddu vanishes in the directions
tangent to &. More generally, a tangentially Monge-Ampeére foliation is a com-
plex foliation together with a real, dg-closed, (1,1)-form, say o, satisfying the
condition

L={XeTM|i(X)o=0].

It is shown, in the special case where the foliation is tangentially Monge-Ampere
and the complex Bott connection agrees with the unique Hermitian connection
on Q defined by the Hermitian inner product associated to the (1, 1)-form yield-
ing a generalization of the result of [1], that the Ricci form of a Monge-Ampere
foliation vanishes if and only if the foliation is transversely holomorphic.

The main result of this section is a determination of a set of necessary and suffi-
cient conditions for a complex foliation to be tangentially Monge-Ampe¢re. These
conditions are a finite set of linear algebraic conditions on the antiholomorphic
twist tensor, first appearing in [1] as necessary conditions for & to be Monge-
Ampére. We conclude the section with some comments on the more difficult
problem of determining necessary and sufficient conditions for & to be Monge-
Ampére.

Section 5 is concerned with an analysis of the first Chern class of Q. Thereis a

natural map
GH'(M,C)—H (M, Cy),

where C7 is the sheaf of germs of C™ complex valued functions which are locally
constant along the leaves of &, and the relative Chern classes of O can then be
defined as the images under j* of the Chern classes of Q. Under certain condi-
tions the vanishing of the first relative Chern class implies that the foliation & is
transversely holomorphic. (It is easy to show that all relative Chern classes of a
transversely holomorphic foliation vanish.) Several corollaries follow, of which
the following example is typical.

THEOREM. Let § be a tangentially Monge-Ampére foliation of a compact
complex manifold M by complex curves. Then § is holomorphic if and only if
the relative Chern class c,(F) e H*(M, C3) vanishes.
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We show in Section 6 that when the leaves of & are complex curves they inherit
a metric which in certain cases (i.e., when the codimension of & is 1 or when the
codimension of & is 2 and the torsion tensor has a certain antisymmetry property)
has constant Gaussian curvature. To illustrate we present an example of Calabi
[6] of a fibration of complex projective 3-space over quaternionic projective 1-
space whose fibers are projective lines. In this example the torsion tensor is anti-
symmetric and the intrinsic metric on the fibers has constant curvature K =+2.

ACKNOWLEDGMENTS. We wish to thank John Bland, Jim King, and Al Vit-
ter for several helpful suggestions made during the preparation of this paper.

1. Complex foliations. Throughout the paper M denotes a complex n-dimen-
sional manifold and & a C*-foliation of M by complex submanifolds of dimen-
sion p and complex codimension g =n— p. Such a foliation is called complex to
indicate the holomorphic nature of its leaves. (All objects in the paper are as-
sumed to be of class C®.)

Our notational conventions are as follows. If E is a real vector bundle its com-
plexification will be denoted by the symbol E T, and the sheaf of smooth sections
of E will be denoted by the boldface letter E. Greek letters range between 1 and ¢
and Roman letters between 1 and p and, except where explicitly stated, the Ein-
stein summation conventions will be in force. Matrices will generally be denoted
by boldface letters, superscripts denote column numbers and subscripts row num-
bers. Finally, holomorphic coordinates on C€C"=C? x C? will be written in the
form (w,z)= (Wl w? ..., wP,z1,z% ...,z9) and will be chosen so that the leaves
of & near the origin are transverse to the fibers of the projection map (w, z) - w.

1.1. RELATIVE AND NORMAL FORMS. Denoting the tangent and normal bun-
dles of & by L and Q, respectively, there is a short exact sequence of complex (but
not necessarily holomorphic) vector bundles

(1.2) 0—L->TM5 Q—0.

Note that the decomposition TM € = TM|; ¢y@ TM o, ;) induces decompositions
LC=L3,00®Lo,1y and Q€= Q(1,0)® Q(0,1) and there are similar decompositions
of the dual bundles,

Homg (LS, €)=L®P@®L®Y and Home(Q%, C)=Q0 Y@ QY.

Obvious isomorphisms of complex vector bundles will be used without comment
(e.g2., 0=0Qq,0), Q9 =000 D etc.). We will employ the following terminology.

1.3. DEFINITION. A tangential vector field is a section of L and a normal vector
Jield a section of Q. A normal 1-form is a section of Q* and a relative 1-formis a
section of L*. When necessary we will make finer distinctions according to type
(e.g., a section of L™M9 is called a relative 1-form of type (1, 0)).

1.4. LOCAL COORDINATES. When local holomorphic coordinates are needed
they will be chosen as follows. Given a point xo € M there is a holomorphic coor-
dinate chart ‘
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(1.5) P:U-APXAICC?xCY,

where A¥ denotes the unit polydisc in C¥, centered at x, and such that ¢ ~!(A? x 0)
is contained in the leaf of & containing xy and such that all leaves of & intersect
U transverse to the fibers of the submersion ;o ¢, where w; denotes projection
onto A”.

1.6. LOCAL COORDINATE FRAMES. Given local coordinates as above thereisa
local framing for the bundle L ¢y given by the vector fields of the form
d 2
1.7 X(h= A% ,
1.7 N= G TN 9z
where N} = N\ (w, z) are uniquely determined by the spanning condition. The nor-
mal vector fields defined by the formulas

a
(1.8) [aia]sw*@
frame Q = Q(;,0y and, by duality, the 1-forms
(1.9) 0% =dz*—\sdw’
frame the bundle Q*= Q"' ? and the relative 1-forms
(1.10) [dw/]=aw!, j=1,2,...,p

frame L*=L 19,
1.11. THE INTEGRABILITY CONDITION. The Frobenius integrability condition,
(1.12) dU'(M, Q*) cT'(M, Q*)AT (M, Q7),

where 2 denotes the sheaf of germs of smooth complex-valued differential forms,
yields three important identities. To get them begin by observing that the inte-
grability of the complex structure on M yields the formula

o N b ingB s IN 4ingR
do® = =~ dw/nO° + ——5 dw/ A0

ONY, N}
B8 J
()\ 32" + Y j)dw Adw

()\'6 O | O )dw Ndw.

3ﬁ+a J

By (1.12) the last two terms on the right-hand side vanish, giving the three identi-
ties:

o ON e 0N
(1.13) do® = =5 dw’/ NP+ —— dw’ nD?,
d — 0 \..
(1.14) (awf”‘J a—ﬂ))‘ =0,

and
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(1.15) (aij +>&‘3aa )x¢=<aak+>\k aa ))&*.
Equations (1.14) and (1.15) can be rewritten in the forms:
(1.16) [X()s X1 =0

and

1.17) [X (), Xx]=0

respectively. These identities are basic and will be used to obtain the Cartan struc-
ture equations for the complex Bott connection of F (see Section 3).

2. The relative de Rham complex. The relative de Rham complex of & makes
precise the notation of exterior differentiation in the directions tangent to leaves,
and will be used extensively here. Detailed discussions of this complex can be
found in the works of Heitch [8], Kamber-Tondeur [9], and Vaisman [12], and
we give here a rather short presentation adapted to the case of complex foliations.

2.1. DEFINITION. A relative form of degree i is a smooth section of the sheaf Qi
of germs of sections of the bundle A'L*; a relative form of type (j, k) isa smooth
section of the sheaf @Y"® of germs of sections of the bundle A/L*O® A¥LOD;
a normal form of degree o is a section of the sheaf 2§ of germs of smooth sec-
tions of the bundle A*Q*; a normal form of type («, 3) is a section of the bundle
A OEDR AP0 More generally, a section of 95®C? QQ is called a A°Q*
valued i-form whlle a section of 2{""® =05 is called a A*Q*-valued form of
type (J, k).

The graded sheaf Q3 inherits the structure of a bi-graded, exterior dlﬂerentlal
algebra from the Dolbeault complex (ﬂ M d 0+ d) via the restriction map i*
2¢;") - 2L ") induced by the inclusion ¢: L *—»TM The Frobenius integrability con-
dition, the integrability of the complex structure on M, and the fact that the leaves
of F are holomorphic are used to show that the operators d, 9, and d induce op-
erators

d F - 1P 5 - Q -+l ’

35: 05" - n; e,
with dg = 85+ d¢, making «* a map of bi-graded differential algebras.

2.2. DEFINITION. The complex (g, dg) is called the relative de Rham complex
of § and the bi-complex (25, 35, 35) the relative Dolbeault complex of .

It is easily checked that the above derivations are Cg-linear and therefore ex-
tend to give the tensor product 953 ')®Cao9“ the structure of a bi-complex. De-
fine a wedge product operation

2.3) A (QI;@C?Q“QI)@)(Q?@C?Qan) —’ﬂ:}+t2®cg’ﬂan+a2

by the formula
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2.4 MmAn= (=124 Ay, @ b1A 62,
where 9, =y, X Pr € ﬂ?@cgg Q“Q" for k=1, 2. Then the identity
(2.5) ds(mAn2) =dgz () Ana+(—1)*1 199, A 85 (175)

is easily verified and shows that ds, d5, and 35 are derivations of degree 1 and bi-
degrees (1,0) and (0, 1), respectively. Finally, an interior evaluation i(X') opera-
tor can be defined in the obvious manner for X eI'(M, L).

2.6. REMARK. With respect to local coordinates chosen as in paragraph 1.6, the
following formulas characterizing the derivation ds hold:

2.7 dsff=X(j)(f)[de]+)_((j)(f)[dwj],
(2.8 ds[dw’/1=dz[dw/1=0,

o O} . NG L —
(2.9) ds0%= ﬁ [dw/1®6° + ?‘é’ [dw/1®05,

where f is any function. Formula (2.7) follows from the easily derived identity

af of
df = 0~
S 9z« + 0z«
and the equalities dg f=*(df) and *(6%) = *(6%) =0, while (2.8) is clear and
formula (2.9) is immediate from (1.13).
From the decomposition dg = 85+ d5 one then obtains the local formulas

ds f=X(j)(f)aw'],

0%+ X () dw’ + X, (f)dw’

(2.10) _ — .
ds f =X () [dw’],
and
AS . N f e
350%= 9 fﬁ[dwf]®eﬁ+ _*;3 [dw/ 1R 68,
@2.11) 0z 0%
5590:___0.

Formula (2.11) can be interpreted as follows. If «: N— M is a leaf of & then the
pull-back bundle .*Q " ? is a holomorphic bundle over N, and it is not difficult to
show the commutativity of the diagram

Q1.0 %, 2PV @ce b
(2.12) L )
04O 900 ®,, QY.

Therefore, the restriction to N of the framing 0 yields a holomorphic framing of
its conormal bundle.

2.13. DEFINITION. Let # be a normal framing of type (1, 0). Then 6 is said to be
relatively holomorphic if the equation ds8 = 0 holds.

Formula (2.11) shows that relatively holomorphic framings of Q™9 exist.
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2.13. RELATIVE CHERN CLASSES. The relative de Rham complex (25, ds) is a
fine, free resolution of the sheaf C§ of germs of complex-valued functions which
are locally constant along the leaves of &F; therefore, there is an isomorphism of
cohomology groups,

H*(M, €)= H*(T'(M, 03), ds),

and H*(M, C®) is called the kth relative de Rham cohomology group of &. The
map of complexes, ¢*: (2,,, d) = (23, ds) induces a map from de Rham cohomol-
ogy with coefficients in C into relative de Rham cohomology,

(2.14) i Hyp(M, C) — H (M, CT),

and if j: N— M is an immersion into a leaf of & then there are maps of complexes
J*: 2, — 2 and j: 25— Q) induced by the restriction map on forms, and the
identity j* = j-.* holds. Consequently, induced maps in cohomology factor sim-
ilarly:

- A P
(2.15) jt=7%t: H*(M, C) > H*M, CT)’> H(N, T).

2.16. DEFINITION. If ¢, (Q)e H 2k(M, €) denotes the kth Chern class of the com-
plex bundle Q then its image c;(F) = L#(Ck(Q)) is called the kth relative Chern
class of &F.

2.17. REMARK. Note that, by virtue of (2.15), if ¢, (Qn) denotes the kth Chern
class of the pull-back of the bundle Q to N then

ci(Qn) =7 Fer (F).

In Section 5 the complex Bott connection will be used to exhibit explicit repre-
sentatives of the relative Chern classes of &.

3. The Bott connection. In this section we wish to define a partial connection
on the normal bundle Q. Because it is closely related to the connection given by
Bott in [4], we call it the complex Bott connection. Unlike Bott’s connection,
which is partially flat, the complex Bott connection has nonvanishing curvature
precisely when the foliation & is not holomorphic. By virtue of the results at the
end of the previous section, the complex Bott connection can be used to construct
relative forms representing the relative Chern classes of the complex vector bundle
O, and these forms vanish identically when & is holomorphic. For background
material on partial connections we refer the reader to [4] and [9].

For the convenience of the reader we begin with a presentation of the elemen-
tary properties of partial connections. If we regard the foliated manifold (M, F)
as a smooth family of manifolds (the leaves of the foliation) parameterized lo-
cally by normal coordinates to the leaves, then a vector bundle over M can be
viewed as a family of bundles over the leaves of & and a partial connection is
nothing but a family of connections —hence covariant differentiation is defined
only in the directions tangent to the leaves. From this point of view, a relative
form is nothing but a family of forms on the leaves of & and the relative differ-
ential ds nothing but the ordinary exterior differential on the leaves. All of the
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familiar constructs and identities for connections (e.g., the definitions of curva-
ture and torsion and the Cartan structure equations) hold if the connection 1-
forms are replaced by relative 1-forms and the exterior derivative operator d is
replaced by the relative de Rham differential ds.

In the notation of the previous section, then, we have the following definition.

3.1. DEFINITION. Let £ — M be a vector bundle on the foliated manifold M. A
partial connection is an IR-linear map

(3.2) V:I'(M,E) > T'(M,EQL*)=Hom(L,E)
which satisfies the condition
(3.3) V(fe)=fVe+e@Rds f

for eeI'(M, E) and f a smooth function. As usual, we write Vye for the value
of Ve: L - FE at X € L. The curvature 2-form, Ry e I'(M, AZL*®Hom(E, E)),is
defined by the formula

(3.4) Ry(X,Y)e=(VxVy—VyVx—Vix, v])e

for X, YeT'(M,L) and eeI'(M, E), and the partial connection V is called par-
tially flat if its curvature form vanishes.

3.5. MOVING FRAMES. Consider a rank-r vector bundle E with connection V
and suppose that e =(e;, e, ..., ¢,) is a local frame. Then we write the matrix
equation

(3.6) Ve=eQ®w,

where w = (w!) is the matrix of relative 1-forms defined by the condition Ve,=
e, ®w!. The curvature matrix @ is the matrix of relative 2-forms defined by the
equation Ry = Q.e*®e,, and one easily checks that the following identities hold:

(3.7 Q=dsw+wAw, (curvature formula);
(3.8) dsQ=QNw—wAQ, (Bianchi identity).

3.9. REMARKS. A partial connection on a complex vector bundle is a C-linear
map satisfying condition (3.2). Note that a partial connection on a real vector
bundle naturally extends to a complex partial connection on the complexified
bundle. Note also that if E is a complex vector bundle and V is a complex partial
connection then it induces, in the standard way, partial connections on the bun-
dles E, E*, and A*E defined by the following local formulas:

(3.10) ve, =& ®a;,
(3.11) Ve = —e!@uwy,
k
(3.12) Ve, ANes,N---Nes, )= 3 e A== Ne A+ Aes, @',
i=1

Finally, the following change of frame formulas hold:

(3.13) w’=g_1d3:g+g_lwg,
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(3.14) 0'=g"'Qg,

where g is a GL(r, C)-valued function and w’ and @’ are the connection and cur-
vature forms of V with respect to the local frame e’ =eg.

There are two natural partial connections on the normal bundle Q, the smooth
Bott connection V, which is partially flat but respects the complex structure only
when F is holomorphic, and the complex Bott connection V, which respects the
complex structure but is partially flat only when & is holomorphic.

3.14. DEFINITION. The smooth Bott connection is the partial connection de-
fined by the formula

(3.15) VxY=7[X,Y],

for XeI'(M,L), YeT'(M, Q), and YeI'(M, TM) such that = (Y) =Y.

To define the complex Bott connection, first recall that there the complex vec-
tor bundles Q and Q,,¢) are naturally isomorphic; then observe that the compo-
sition

v w
(3.16) V:T(M, Qu,0) =T (M, Q%) —T' (M, Q*QL*) 5 T(M, Q1,00 @ L*)
defines a connection on Q(, ).

3.17. REMARK. There is a useful formula for the smooth Bott connection on the
conormal bundle Q*:

(3.18) Vxn=i(X)dsn=Lxn.

The partial flatness of V then follows from the identity for the Lie derivative,
LXLY —LyLX —L[X’ Y = 0.

Formula (3.18) holds on all of the exterior product bundles A°*Q*.

3.19. LOCAL COORDINATES. To get some feeling for both the smooth and com-
plex Bott connections on the complexified bundle Qc, it is useful to compute their
connection 1-forms relative to the framing of Q defined in paragraph 1.6. Equa-
tions (1.14)-(1.17) can be used to derive the following identities:

_[ 9 3 3 —
3.20 v = B L g
(3.20) [az“] [azB ]®w°‘ + [62'3 ]®A°"
3 3

— = B
(3.2D) V[aza]-" [azﬁ]@)"’“’
where

s aNg .
(3.22) wg=—7% [dw/] and
8 .

(3.23) A2 = —%’E [dw’].

In this notation, formula (2.9) assumes the form

(3.24) dz0%=—w§NO®— ASAGP.
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The following proposition summarizes the important properties of the com-
plex Bott connection.

3.25. PROPOSITION. Let e = (ey, ez, ..., e5) be a local framing for Q, o), let 0 =
(0%, 62 ...,09) be its dual coframe, and let w= (wg) and A = Aj be the q X q ma-
trices of relative connection 1-forms defined by the equations Ve =e® w and Ve =
eQw+eRA. Let @ = (Q§) denote the curvature matrix of V on the bundle Qo).
Then

(a) the following structure equations are satisfied:

(3.26) ds0=—wN0—ANG,
3.27) Q=—AAR,
(3.28) dsA=—wNANA—ANG; and

(b) if the frame e is relatively holomorphic then the connection 1-forms w§g
are of type (1,0).

Proof. (a) Formula (3.26) follows from (3.24). To obtain (3.27) and (3.28) take
the exterior derivative of (3.26) and substitute equation (3.26) and its complex
conjugate into the resulting expression to arrive at the equation

0=—(dsw+wAw+AAA)AD
—(dgA+wANA+AAND)NG,

from which the results follow.
(b) Choose local coordinates (w, z) as in paragraph 1.4 and write e = eqg, where

€ is the framing
e = 9
=137 |

Let 6 and 6, be the dual coframes. By assumption, ds60 = 0 and 336, = 0 by (2.17).
It follows that d5g = 0. But then

i 1

wog =g '05+g 'wog,

where wg is the matrix of connection forms relative to the framing ey and hence w
is of type (1, 0). ]

3.29. THE ANTIHOLOMORPHIC TORSION TENSOR. Observe that the connec-
tion matrix of V relative to the framing (e, €) of the bundle Qc is

- _ (o A
(3.30) w=(K E))

and that the connection matrix relative to a new framing (e’, €’) = (eg, eg) is given
by the formula

_,;(g‘lds;g 0 ) ( log g“A‘g‘)
W = ——1; = )t 12y s-1—2 )
0 g dsg g Ag g wg

Hence the matrix A transforms according to the formula

w=g 'deg+g”
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(3.31) AN=g 'Ag
and therefore defines a tensor as follows.

3.32. DEFINITION. The tensor 7e (M, L&Y® 0®Y® Q1. 0)), defined by the
local formula .
T=A3R0°®e,,

is called the antiholomorphic torsion tensor of ¥. The foliation & is said to be
holomorphic at a point p € M if and only if 7, =0.

3.33. REMARKS. The tensor 7 is the fundamental tensor associated to a complex
foliation. It was first introduced by Bedford and Burns [1] and given the name
antiholomorphic twist in [S5]. However, by virtue of formula (3.26) it is the tor-
sion tensor of the complex Bott connection.

The importance of the antiholomorphic torsion tensor lies in the next lemma,
which is contained in [1].

3.34. LEMMA. The foliation ¥ is holomorphic if and only if the torsion tensor
7 vanishes.

Proof. Recall that the foliation ¥ is holomorphic if and only if the bundle L is
a holomorphic subbundile of the tangent bundle 7M, and that this is the case pre-
cisely when the spanning vector fields Xy, defined by formula (1.7), are all holo-
morphic. Now by virture of the easily checked identity 0.X ;) = i(X(;))7, it follows
that L is holomorphic if and only if 7 vanishes. ]

We are now in a position to give representatives for the relative Chern classes
cx(F)e H¥* (M, CT).

3.35. PROPOSITION. The relative Chern forms of the complex foliation §, de-
fined as the coefficients Ci(F) e T'(M, R ®)) of t* in the polynomial

t t -
det{/———Q )=det(I———AAA =1+C1(8‘)I+C2(€F)t2+---+Cq(EF)tq,
2wl 2wi

are representatives of the relative Chern classes cy(F)e H**(M, C). In particu-
lar, the first relative Chern class is represented by the relative (1,1)-form

i —
C}(f):) = '—E %A%/\Ag.

Proof. It is shown in [9, p. 25] that a partial connection V on a vector bundle
E — M can be extended to an ordinary connection V’ on E as follows: Let V” be
any connection on E and choose a splitting 7M = L ® Q; then the connection V’
is defined by the formula

Vie= VXLe—i-V)’;Qe, eecl'(M,E),

where X = X; @ X € TM. Denoting the curvature matrix of V’ by @', one easily
checks the identity *Q’'= Q.
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Applying this construction to the complex Bott connection on the normal bun-
dle Q and denoting the Chern forms of Q with respect to the connection V’ by
Cr(Q) then yields the formula *(Cy(Q)) = Cr(F), and the proposition follows
from Remark 2.17. ]

The next proposition follows from Lemma 3.34 and Proposition 3.35, and can
be thought of as a generalization of the well-known fact that the Chern classes
c(Q\NYEH 2k(N, €) of the normal bundle of a leaf of a holomorphic foliation
vanish.

3.36. PROPOSITION. The relative Chern classes of a holomorphic foliation all
vanish.

4. Monge-Ampere foliations. In this section we examine the condition under
which a complex foliation & arises from local solutions of the complex Monge-
Ampére equation

4.1) (83u)?*t1'=0, (33u)?#0,
where u is a real-valued, plurisubharmonic function. (Here (33u)* denotes the
wedge product of k-copies of ddu.) The foliation & is said to be (locally) Monge-

Ampere if in a neighborhood of each point of M there is a solution « to (4.1) such
that the tangential distribution of & is given by the formula

“4.2) L={XeTM|i(X)0du=0}.

Recall that a real form o of type (1,1) is said to be nonnegative if for every
vector X € Ty, 0)M the inequality

4.3) o(X,X)=0

holds. Since every real closed nonnegative form ¢ can be locally expressed in the
form iddu, we are led to the next definition.

4.4. DEFINITION. A complex foliation F is said to be (locally) tangentially
Monge-Ampeére if (in a neighborhood of each point of M) there is a nonnega-
tive, real form o of type (1, 1) such that the equalities L={XeTM |i(X)o =0}
and

@.5) dso=0

both hold. If the stronger condition, do =0, holds then the foliation F is said to
be (locally) Monge-Ampere.

4.6. REMARK. Condition (4.5) is equivalent to the requirement that the Lie de-
rivatives Ly o vanish for all X eI'(M, L); that is, that the form o be covariant
with respect to the smooth Bott connection.

For o as above and @ a local framing of Q* by (1, 0)-forms, there is a unique,
positive definite Hermitian matrix U = (U,3) defined by the identity

(4.6) o= (i/2)U,50%N65,
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which in turn defines a Hermitian inner product
@.7) h=U,50°®0°

on the normal bundle Q. Condition (4.5) now has a nice geometric interpretation
in terms of the complex Bott connection and the antiholomorphic torsion tensor.

4.9. PROPOSITION. Let h be a Hermitian inner product on the normal bundle
of F and let ¢ be the associated normal (1,1)-form. Then the form o is dg-closed
if and only if both of the following conditions hold:

(4.10) Vh=0

and

4.11) Tx0=0,

where

(4.12) 7% 0= (i/2)ALU,z Q0N 05.

Proof. Expand —2idgso using the structure equation (3.29) and its complex
conjugate as follows:

—2idgo=dsUg ANONOB+ U,z Ads0*AOP— Uz NO*Adg0P

= (dg Upg — Uyl — Upg@§ ) NO*NOB — ALU,5 AO*NOP — U5 AL AO* NG5,
This can be rewritten in the invariant form
(4.13) dso=Vo—717%o+7%o0,

and since no two terms have the same type it follows that ds o =0 if and only if
Vo =0 and 7 % ¢ = 0. Finally, because Vo =0 if and only if V2 =0, the result fol-
lows. [l

4.14. DEFINITION. A complex foliation & equipped with a Hermitian inner
product 4 satisfying (4.10) is called a Hermitian foliation.

4.15. REMARK. In the case where F is Monge-Ampeére, Bedford and Burns [1]
showed that if j: N< M is a leaf then the curvature matrix Q4 of the unique Her-
mitian connection of type (1, 0) on the normal bundle Q| — N satisfies the iden-
tity

(4.16) Qv =—Jj*(AAA).

But by virtue of Proposition 3.25(b), if F is Hermitian then the complex Bott
partial connection also restricts to the canonical connection on each leaf of &. In
this way Proposition 3.25 generalizes the results of [1].

Condition (4.11) is a symmetry condition on the torsion tensor 7. For suppose
that (4.11) is satisfied, and choose a Hermitian framing 8 for Q* of type (1, 0) with
respect to which the equation U,z = d,5 holds, where 6,5 denotes the Kronecker
delta; then condition (4.11) can be written in the form

4.17) %—AS=0.
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This leads to the following definition.

4.18. DEFINITION. A complex foliation is called symmetric (resp. antisymmet-
ric) if in the neighborhood of each point there is a local framing # with respect to
which the torsion matrix A is symmetric (resp. antisymmetric), and framings with
respect to which A is symmetric (resp. antisymmetric) are called symmetric (resp.
antisymmetric) framings.

4.19. PROLONGATION OF THE EQUATION d5o0=0. We now want to present
a set of necessary and sufficient conditions for a foliation to be locally tangenti-
ally Monge-Amp¢ére. The idea is to repeatedly take Lie derivatives of the sym-
metry condition (4.11) with respect to vector fields tangent to ¥, using the invari-
ance condition Vo =0 to turn the resulting differential equations for the form o
into a set of purely algebraic conditions. We show that at a generic point, there
are only a finite number of such independent conditions which, together with the
conditions that (i) ¢ be nonnegative and (ii) 09 0, are necessary and sufficient
for the local solvability of the system of equation dso =0.

Begin by letting X1y, ..., X(p) be a local framing of L, ¢y chosen so that the
conditions [ Xy, Xy]1=[X(y,» Xxy] =0 for 1 =j, k< p hold, and choose a co-
framing & so that the connection form w is of type (1, 0). (Such frames are con-
structed in paragraph 1.4.) If f is a smooth function on M and J = (j,j2, ---5 Jk)
is a multi-index, we will write f, ; = X(;)(X,) (... (X(;)0...))) and denote the in-
ner product i(X(;))Aj by Ajz;. Finally, set I's; = wg(X(;)) and Aj; = i(X(;))Az.
With these conventions we have the following lemma, which is nothing but a lo-
cal coordinate version of Proposition 4.9.

4.20. LEMMA. The complex foliation F is (locally) tangentially Monge-Ampére
if and only if there is a matrix U = (U,g) which is a solution of the system of
equations

4.21) Uag,j = UygTdjs
4.22) U,aAY;—U,zAY; =0,
(4.23) Uyng— Uz =0,

and which satisfies the open condition that it be positive definite.

Differentiating equation (4.22) with respect to the vector field X4, will yield
another equation that must be satisfied by the form o. After differentiation use
the identity (4.21) to obtain the prolonged equation

4.24) U'y&{Ag’j,k + I‘gkA%j} — UyB[Ag'zj,k + ngAgj} =0,
which, upon setting A§; ; = Ag;  +I'yk Aj;, assumes the form
(4.25) UyaAf; r—UypAL; =0.

4.26. REMARK. Differentiating (4.22) with respect to the vector fields X, will
not yield a new equation, because (4.21), (4.22), (4.23), and (4.25) imply the
identity
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(UY&A%J-—— U,z AL) k=0.
To see this, note that the structure equation (3.28) is equivalent to the equations
57k = A5 T,
Bk — Ak, j = (Dyj A — T3 Ag))-
Equations (4.27) and (4.22) can be used to calculate as follows:
(UvaA%j - U‘YEAgj) k= (U'yﬁI‘—gkA%j + U'V&A%j,}f) - (U'VEI‘_gkA’clvj + U,z Agj,k")

= (U.,,—,-I‘gkA}j + U-y&AYa'jI‘gk) — (U'yc?l-‘gkA}(j + U‘Yﬁ A},-'jI‘gk)
= (U, gTarAL; + U, e AL T8r) — (Uyalge AL + U g AL Tgk)
=0.

Inductively obtain prolonged conditions on ¢ by assuming that the quantities

[o4

3, x have been constructed such that the condition

(4.28) U’y&A%j,K —U,gA%;j k=0

“4.27)

holds for every multi-index K = (ky, k>, ..., k) of length s <r. Differentiating
with respect to X ) then yields the new conditions

(4.29) Uy&A%j, (K, ky UvBA;L:j, &5 =0s
where
(4.30) B, . k) = (AF; k) k + ok Agj, k-

Conditions (4.29) are clearly necessary for F to be tangentially Monge-Ampe¢re;
in fact, they were shown in [2] to be necessary conditions for & to be Monge-
Ampére. We will show that near a generic point of M they are also sufficient for
F to be tangentially Monge-Ampeére.

It will be helpful to reformulate the condition that F be tangentially Monge-
Ampere. Denote by 7 : E — M the real subbundle of Q *'? consisting of real, nor-
mal forms of type (1, 1); that is,

E={(i/2)U,50°N0P | U,z = Uga},

and observe that, by virtue of the easily checked identity V& = Vo, the complex
Bott connection restricts to a partial connection on E. Denote by V' — M the sub-
set of E defined as follows:

(4.34) V={Ug0*N0P € E | Uy A}; — U,gAL; =0, Va, 8, j},

and observe that V has locally constant rank on an open dense subset of M. Since
we are interested in analyzing & at a generic point, we may assume that V is a sub-
bundle of E of constant rank r. In general, the connection V does not leave the
subbundle V' < FE invariant. We want to find conditions for the existence of a co-
variant constant section of V. To this end define V,, to be the largest subset of V'
satisfying the invariance condition

(4.35) Vxsel'(M,Vy) vXel'(M,L) and vseI'(M,V,).
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Again, by restricting to an open dense subset of M if necessary, we may assume
that V, is a subbundle of ¥V of rank r,,. The next lemma shows that, at a generic
point of M, there are covariant constant sections of V if and only if ¥V, is not
empty; consequently, the foliation § is tangentially Monge-Ampere if and only
if the intersection of the subbundle V., with the open set of positive definite Her-
mitian inner products on Q is nonempty.

4.36. LEMMA. The subbundle V < E satisfies the partial flatness condition
R(X,Y)s=0

Jor X, Yel'(M,L) and seI'(M, V). Moreover, if V. has constant rank r., >0
in a neighborhood U of the point xo € M then the connection V restricts to a par-
tially flat connection on V., and if sq is contained in the fiber of V. at x, then
there is a section s e T'(U’, V), U’ C U a neighborhood of xy, such that s(xy) =
So and the equality Vs =0 holds on U’.

Proof. Denote the curvature matrix of Q' relative to the local framing
L by Q"‘ Then, from the structure equations for V we have the identity

Q28 = 0265 + 6708 = AZA AL S8+ 5IABAAL.
So if s = (i/2)U,z0%A 98 is a section of V, then
Ry (X(jys Xy)s = Q52X jy, X iy)s

= (i/2) (A% N Uns — A% AB U, 5)0 NG
= (1/2)(A5j kUﬁ——A" ABkUB.,)G"’/\G"
= (i/2)(AY; WkUﬁ-—Aﬁ,AekUau)onﬂ
= (i/2)(A%; AL, Uz — A%, A, U,5)0"NO°
=0.

By the results of the previous paragraph, the partial connection V restricts to
define a partially flat partial connection on V,. To obtain the section s, extend
So in any way to a smooth section along a real submanifold X of dimension 2g
transverse to & and containing the point x3. The process of parallel translation

along the leaves of & can now be used to extend s’ to a covariant constant section
s with the required properties. O

Before proceeding it will be convenient to simplify the notation by re-indexing.
Let el, e?, ...,e™, m=qg? be alocal framing of E, let the indices a, b, and ¢ range
between 1 and m, and write the (partial) covariant derivative in the form

4.37) Ve’ =T{;[dw/1®e’+Tldw/ |®e®.

Then there are smooth functions P/, r =1, 2, ..., m—r, such that conditions (4.34)
for a section s =s,e? e E to be a section of the bundle V can be rewritten in the
form

(4.38) SaPf=0, t=1,2,...,m—r.
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Suppose now that s is a section of ¥V with Vs =0 (so that in fact s is a section of
V,). Then the identities

(4.39) - Xy (Sa) +Tosa=0,  Xu)(s.)+Tos,=0

hold, and differentiating equation (4.38) with respect to the vector fields X4, and
X k) respectively gives the equations

Xy (S)PL + 5, X1y (PF) =0, Xy (S)PL 45, X 1y (Pf)=0,

which by virtue of (4.39) can be rewritten in the form

(4.40) s,,P,‘fk =0, Sq P,‘fg =0,
where '
(4.41) Pir=Xu (P ~T&PP,  Plr=X(Pf)—TiPl.

More generally, for each multi-index
K=(ky,kz,...,k;), kie(l,2,...,p,1,2,..., P},
inductively define functions P/ ¢ by the formulas
(4.42) Pf ki =Xu(Pig)~TiPlx,  Pfwk=Xuw(P{x) TPk
and set P/, = P/. Then any section s of V' with Vs =0 satisfies the additional set
of linear homogeneous equations
(4.43) sqaPf k=0,
which are the defining equations for ¥, as the next lemma shows.

4.44. LEMMA.

(a) Suppose that the system of equations (4.43) has constant rank r in a neigh-

borhood of the point xo. Then the equality
Voo ={s=5,"|5,P}xk=0,0=<|K|=r}
holds. Here |(ky,k,, ..., k;)| denotes the length t of the multi-index, and
" k= PJ when |K|=0.

(b) Ifs=s,e’is asection of V then the expressions s, Py g, for K = (ky, ks, ...,

k;), are completely symmetric in ki, ko, ..., K,

Proof. (a) Begin by considering the restriction on the length | K| of the multi-
index K. Suppose that for some integer r’ the rank of the sets of equations

(4.45) S P g=0, VvO=<|K|=<r’
Js

and

(4.46) sePixk=0, VO=<|K|=r'+1

are equal. Then it is easy to see that the rank of the full system of equations (4.43)
with no restriction on the length of the index X is also r’. Hence, because the rank
of Vis r and V is defined by equations (4.43) with |K|=0, at most we need con-
sider multi-indices of length r.
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The inclusion < is easily demonstrated, for by Lemma 4.36 if s( is a point in
V- then it extends to a covariant constant section s e I'(M, V'), and by construc-
tion conditions (4.41) are satisfied by the section s.

To prove the reverse inclusion begin by letting s = s,e“ be a section of the bun-
dle V satisfying equations (4.41), and differentiate the equation s, P/ x = 0 with
respect to each of the vector fields X ) and X, to obtain the identities

Xy ($) Pl k = —Sa Xy (Pr k)» Xy Pl xk=—5.Xuy(Pi k).
But then
(X (k) (8a) + Tax8a)Pf k = — (X 1y (Pf k) =Tk P{ k)0 = — P (k,1) =0,
showing that A2 satisfies (4.41). A similar calculation shows that VxS also
satisfies (4.41).
(b) To prove the symmetry condition, compute as follows:
Pf k. j.ky =X oy (PE k) —TE P k. jy
= X X () (P k) — Xy (T8 PP ) —T8(X () (PP k) + T Pf k)
= X (k) X () (Pf k) — (T8 X 1y (P{ k) + T8 X (5 (P k)
— (X (TE) +T5T2) Pl k.
Now use the fact that the vector fields X4, and X, (1 <k =<p) commute (see
(1.16) and (1.17)) to arrive at the identity
P{ (x,j, k) — Pt &, k) = — Rk Pi k-
But by Lemma 4.36, s,Rfjx =0 for s =s,e’e I'(M, V). Similar calculations with
the pairs of vector fields Xy, X () and X ), X(;) show that
SaPr &, ;0 =Sa Pk, kjy and  saPr (k7,8 =SaPr (k. k,5)»
thereby proving part (b). ]
The final result of the above computations is summarized in the next theorem.

4.47. THEOREM. Let A%; i be as above. Suppose that the system of equations

Uya Az’?j,K — U, AL k=0
Uaﬁ - Uﬁa = 0

Jor K= (k1,ks, ..., ks), 0 <5 =<2q, has constant rank in a neighborhood of a
point xoe M. Then § is tangentially Monge-Ampeére in a neighborhood of xg if
and only if there is a solution U,z which is positive definite.

Proof. Observe first that the quantltles Ag; x are precisely the quantities P} g
in the case where the framing el,e? ... is taken to be i(B%AOB+08A0%), 1=a=<
B=gq, (NGB —08A0%), 1 <a < B <gq. The theorem then follows from the above
lemma and Remark 4.26, which by virtue of the symmetry condition shows that
multi-indices involving conjugate indices need not be considered. O
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4.48 REMARK. If one is interested in Lorentz metrics then the positive defi-
niteness condition in Theorem 4.47 can be replaced by a condition that the ma-
trix U,p have the proper signature.

We now wish to consider the problem of determining sufficient conditions for
a complex foliation & to be Monge-Ampére. Let £ be a closed complex subman-
ifold of M transverse to the leaves of &F. Note that the bundle V,, restricts to X
and that a positive section of the restricted bundle corresponds to a Hermitian
metric, Ay, on X satisfying the algebraic conditions of Theorem 4.47. Call such a
metric admissible.

4.499 THEOREM. Assume that the bundle V,, has constant rank in a neighbor-
hood of . Then ¥ is Monge-Ampere in a neighborhood of X if and only if it
supports an admissible Kdhler metric.

Proof. Let og be the Kahler form of an admissible metric. It defines a section
of the restriction to X of the flat bundle V,,. Extend the form by parallel transla-
tion to a neighborhood of X; call the extended form o. We need only show that ¢
is closed. But by Remark 4.6, if X is any vector field tangent to & then the Lie
derivative i (X )do vanishes, and since Lie differentiation commutes with exterior
differentiation the form do is locally constant along the leaves of &F. But clearly
do =0 at all points of X. It follows that o is closed in a neighborhood of X. O

4.50. REMARK. The problem of determining the existence of admissible Kihler
metrics remains open and will be addressed in future work using the techniques
of exterior differential systems.

4.51. REMARK. Note that in the special case of codimension-1 foliations the con-
ditions of Theorems 4.48 and 4.49 are empty (all 1 X 1 matrices are symmetric and
every (1, 1)-form on a complex curve is closed). Hence, in this case we obtain the
well-known result that every codimension-1 complex foliation is (locally) Monge-
Ampere.

S. The first Chern class of symmetric foliations. In Section 3 we observed that
the first relative Chern class ¢;(F) e H*(M, CF) of a holomorphic foliation van-
ishes. In this section we will prove that under certain conditions (e.g., if the leaves
of & are compact and Kahler) the converse holds. The fundamental result is con-
tained in the next lemma.

5.1. LEMMA. Let F be a symmetric (resp. antisymmetric) foliation. Then the
Jirst relative Chern form C,(5F) is nonpositive (resp. nonnegative) and the folia-
tion is holomorphic precisely at those points where C,(F) vanishes.

Proof. Let 8 be a symmetric (resp. antisymmetric) frame for Q*%. Then the
torsion matrix A is symmetric (resp. antisymmetric), and it follows from the struc-
ture equations for the complex Bott connection that the first Chern form satisfies
the identity
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(5.2) Ci(F)=—(i/2m)tr(AAA)=F(i/27) X A%‘/\A—g.
a, B
Since each of the terms
(i/2m)AGAAE = (i/2m) AS A A
is a nonnegative (1, 1)-form so is their sum (i/Zw)A%AA—g, whence the claim
that the first Chern form is nonpositive (resp. nonnegative).
From the form of (5.2) it is clear that the first Chern class vanishes exactly

where the forms A‘g all vanish. But, by Proposition 3.34, the foliation is holo-
morphic exactly where these forms all vanish. O

5.3. THEOREM.

(@) Let § be a symmetric or antisymmetric foliation of a complex manifold
M, let N be a compact leaf, and assume that N is Kdhler. Then ¥ is holo-
morphic on N if and only if the Chern class c,(Qn) € H*(N, C) vanishes.

(b) Suppose that M is a compact Kdihler manifold and that F is a globally tan-
gentially Monge-Ampere foliation of M. Then & is holomorphic if and
only if the relative Chern class c;(F) € H*(M, C) vanishes. In particular,
if the Chern class c;(Q)e H 2(M, C) vanishes then F is holomorphic.

Proof. (a) Let wy be the Kdhler form on N and consider the top dimensional

form
v=C(FI)nAwf,

where C(F)y is the restriction to N of the relative form C;(F). Since that partial
connection V restricts to an ordinary connection on the bundle Qx — N, the form
C1(F)y is a representative of the first Chern class ¢;(Qn) € H*(N, C).

Let !, 9% ..., n” be a local Hermitian framing for 7N*. Then

on=(i/2)Z ;7' A7’
and the restriction of A% to N can be written in the form
(5.9 SIn=A%7,

where A3; are smooth functions satisfying the symmetry condition A3; = Ag j
(resp. the antisymmetry condition A3; = ——Af-l ;)- Now compute as follows:

*i o AT iNTE 1

iP(p—1)!

=F— AL P AFIA - AP ATP
P a,%:,,-l Bil"n A7 77 A7
1
=5F—|( X A"‘-2>wp.
pw a,ﬁ,jl Bl Jon

It is clear that & is holomorphic if and only if the form » vanishes. But » is a non-
positive (resp. nonnegative) multiple of the volume form wf, and N is compact.
Consequently, the form » vanishes identically if and only if its cohomology class
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[»]=c1(Qn)Ulwn]? "' e H*(N, CT)

vanishes. Part (a) is now clear.

The proof of part (b) is similar: Let w,,; be the Kédhler form of M and let o €
'(M, QD) be the ds-closed normal form defining &. Observe that the normal
(g, q)-form o9 is d-closed. (It is easily shown that if & is a real codimension-2q
foliation and » is a dg-closed, normal 2g-form then » is in fact d-closed.)

Choose a splitting of the cotangent bundle, 7M* = L*&® Q*, and use it to iden-
tify relative forms with ordinary forms. In particular, consider the (7, n)-form
on M,

v=c(F)Awf 'Ad?,

and note that » is independent of the splitting. Next let 8 be a local framing of
Q19 unitary with respect to the inner product on Q induced by the form o, and
let 3%, 92 ..., 7" be a unitary framing for 7M *? chosen so that the forms %/, for
Jj > p, are sections of Q(1:0), With these choices there are formulas

o=(i/2) 3 0*n0°
and :
o 2 o k
AB = kgl Aﬁk L*(n ),

where the functions 43; are symmetric in @ and 3 and where ¢: L <7TM is the in-
clusion map. A short computation then yields the identity

1 2
ypV=—— A%, det (U
pw (a,EB.jl 2 ) (V)
where U = (U,3) is the positive definite Hermitian matrix defined by the formula

o= (i/2)Ugn?TongPtE,

plq!
n!

WL,

Since » is a nonpositive multiple of the volume form w}; which vanishes if and
only if F is holomorphic and since M is compact, it follows that F is holomor-
phic if and only if the cohomology class [»] € H2*(M, C) vanishes.

Now suppose that ¢;(F) = 0. Then there is a relative 1-form ¢ with ds¢ =
C;(%); because the forms wys and o9 are d-closed, the form » is exact, as shown
by the computation

d(d)Aw]{'Z,_l/\oq) =dsp Aol 'NoT=v.

Hence, by the reasoning of the previous paragraph, the vanishing of ¢;(F) im-
plies that F is holomorphic.
The last statement of the theorem follows from the fact that the relative first
Chern class is images of the Chern class ¢;(Q) € H(M, C) (see Definition 2.16).
O

An examination of the above proof shows that, because the Kahler form ap-
pears to the (p —1)th power in all formulas, for the special case p =1 the assump-
tion that M be Kahler can be dropped, vielding the following theorem.
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5.5. THEOREM. Let F be a globally tangentially Monge-Ampeére foliation of a
compact manifold by complex curves. Then F is holomorphic if and only if its
relative first Chern class c,(F) e H*(M, CT) vanishes.

5.6. REMARK. The assumption that & be globally tangentially Monge-Ampére
is too strong. We need only assume (i) that F is symmetric or antisymmetric and
(ii) that there exists a closed, nondegenerate normal 2g-form. A foliation for
which condition (ii) is satisfied is called an SL (2g)-foliation, and the obstruction
to a foliation being an SL(2q)-foliation is a cohomology class in H'(M, CR,5),
where CR, g is the sheaf of germs of real-valued functions which are locally con-
stant along the leaves of &F. (To see this observe that forms satisfying (ii) exist lo-
cally and are unique up to multiplication by functions which are locally constant
along the leaves of F. The obstruction to consistently fitting together local forms
is a C&ch cocycle with values in CR,5.)

6. An intrinsic metric on leaves. Let j: N’— M be a leaf of a symmetric or anti-
symmetric foliation §. We showed in the previous section that the restriction to
N’ of the first Chern form is a nonpositive (resp. nonnegative) form of type (1, 1).
Assume that the nondegeneracy condition C;(F)? # 0 holds on a nonempty open
set, N = N’. Then the closed, positive (1,1)-form

(6.1) oy = (sgn(F)m)j*Cu(E) = F(/2) 3 AZAAE,

where sgn(¥) = —1 for & symmetric and sgn(F) = +1 for F antisymmetric, en-
dows N with the structure of a Kéhler manifold. We will denote the underlying
Kihler metric by Ax. Since the Kédhler structure on N is defined in terms of the
complex Bott connection, it is clearly a local biholomorphic invariant of the leaf
N’.

Of particular interest is the special case p =1, for in this case the nondegener-
acy assumption is satisfied at all points at which the foliation fails to be holomor-
phic. There are two cases where the induced metric 4, can be shown to have con-
stant curvature.

6.2. THEOREM.

(@) Let § be a complex foliation of a complex two-dimensional manifold M
by complex curves. Let N’ be a leaf and suppose that the antiholomorphic
torsion is nonvanishing on the open set NS N’. Then the metric hy has
constant Gaussian curvature, Ky= —4.

(b) Let § be an antisymmetric complex foliation of a complex three-dimen-
sional manifold M by complex curves and let N C N’ be as before. Then
the metric hy has constant Gaussian curvature, Ky = +2.

Proof. Recall that the Gaussian curvature can be computed as follows. Choose
a unit (1, 0)-form, say 7; then there is a unique connection 1-form ¢ characterized
by the conditions

dp=—¢An and o+¢=0,
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and the Gaussian curvature is the scalar function K defined by the equation

AT
dé = KNu )
2
(a) Let 6 be a normal form of type (1, 0). Then the structure equations for the

complex Bott connection assume the form

(6.3) ds0=—wA0—AND,
6.4 Q=dsw=—AAA,

dsA=—wANA—ANG
(6.5) — _AAG,

where both w and A are relative 1-forms of type (1, 0) and we have used the fact
that w AA =0 because N has complex dimension equal to 1. Observe that since
wy=(i/2)j*(A AA), the Hermitian metric on N is given by Ay =j*A®j*A and
therefore n =j*A is a unit (1, 0)-form.

It follows from equation (6.4) that the form ¢ = j*(w— ®) is the connection
1-form of the canonical Hermitian connection on N relative to this frame. The
computation

do=dj*(w—®)
=Jj*ds(0—®)
=j*(—AANA+AAA)
—2/*(AAA)
=—=27A7

then shows that Ky = —4.
The proof of part (b) is similar. Let # be an antisymmetric framing. Then

A=(5 o)

where A is a relative 1-form of type (1, 0). From the structure formula 2 =AAA
W€ can compute wpy:

wn = (i/2)j* tr(R) = (i/2)n A7,
where n=V2j*A and tr denotes trace. From the structure equation
dsA=—wANA—AANG,
we find after a short computation that the connection 1-form relative to 75 is
¢ =(1/2)j*tr{w— &}.
Hence ¢ is the connection 1-form and
do = (1/2)j*{tr(—wAw—AAA)—tr(—wAw—AAA)}
=(1/2)j*tr(—AAA+AAA)
=N\,
from which the equality Ky = +2 follows. O
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6.6. EXAMPLE. It follows from the results of the previous section that any foli-
ation of a compact complex two-dimensional manifold by compact holomorphic
curves is necessarily holomorphic. (To see this recall that, by a theorem of Ed-
wards, Millett, and Sullivan [7], such a foliation is Hausdorff and is therefore an
oriented Riemannian foliation. But the restriction of the normal bundle of a real
codimension-2 oriented Riemannian foliation to a leaf is a flat SO(2)-bundle.
Since SO(2) = U(1), the result now follows from Theorem 5.3.) This is not true
for foliations of complex manifolds of dimension greater than 2, as the following
example of Calabi [6] of a foliation of CP3 shows.

Recall that the quaternions IH can be identified with C? by the map
C’-H,

(6.7) X

(21,22) = 21+22°],

where quaternions are written in the form e+ b-i+c-j+d-k; a, b, ¢, and d real;
and the complex numbers are embedded in the quaternions via the map a + bi -
a+ b-i. Using the relations

i-j=k=—j-i, j-k=i=-k-j, i’=j’=k’=-1,

one easily checks the formula z-j=j-Z for z € C, which in turn can be used to
prove the identity

(6.8) (§+8-3)-(w+z-j)= (52— )+ (E2+ W) -j.
The map (6.7) induces a diffeomorphism between C* and H?,
m:(21,22,%3,24) ~ (21 + 22§, 23+ 24°§),

and it is easy to see from formula (6.8) that the image of every complex line in C*
containing the origin is contained in a quaternionic line containing the origin.
Therefore, the map = induces a submersion #: CP? —» HP!, which sends each
complex line to the unique quaternionic line generated by its image under «. It is
not hard to check, again using formula (6.8), that the fibers of # are of the form

(6.9) ([£z'— ¢4 822+ ¢zl £22 — 124 82+ ¢221 | (8, ©) e €2)

and form a complex foliation & of CP? by CPs.
In affine coordinates (w, 2/, zz) ~ [1, w, z!, z2] the tangent bundle L is spanned
by the vector field

X=a (ZZ—Wzl ] <Z‘+Wz2 d

aw ¥ 1+|w| /az! 1+|w| /odz?
and the bundle Q"'? is spanned by the 1-forms
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Also, relative to this frame, the antiholomorphic torsion matrix A assumes the
form

fdw]
~ O THwp
- [dw]
- 1+|w|? 0

This foliation is then antisymmetric and, by virtue of the previous theorem, its
leaves inherit a metric of constant curvature +2. Of course, because the leaves of
F are spheres and the foliation is homogeneous, this is to be expected. Note,
however, that the metric is given by /ocal data and its curvature properties are
not dependent on the global properties of &.
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