LOCAL INDEX THEOREM FOR FAMILIES

Harold Donnelly

1. Introduction. The index theorem for families of elliptic operators was proved
by Atiyah and Singer [1] using global topological methods. Recently, Quillen [7]
provided the formalism for a heat equation proof. This program has been car-
ried through by Bismut [3] and Berline and Vergne [2]. A strong local theorem is
obtained by the evaluation of certain heat equation asymptotics.

The purpose of the present paper is to give an alternative proof of the local
index theorem for families. We develop the method of Getzler [5], who proved
the local index theorem for a single elliptic operator. This solution to the prob-
lem appears to be more direct than other approaches. Hopefully, it should facili-
tate further developments.

Here is a brief outline of our paper. In Section 2, we derive certain curvature
identities for connections on fiber bundles. Similar identities seem to be under-
stood in [3]. Section 3 gives the precise statement of the local form of the index
theorem for families of elliptic operators. One uses the superconnection formal-
ism of Bismut and Quillen. The most substantial part of the work is Secticn 4.
We use Getzler’s e-rescaling to prove the index theorem for families. In addition
to the arguments of [5], certain judicious conjugations must be chosen to remove
the new singularities in the rescaled differential operator and to bring the coper-
ator into standard form.

The author thanks E. Miller and T. Spencer for helpful conversations during
the development of this work.

2. Curvature identities. Let M be a compact connected differentiable mani-
fold. Suppose that M is the total space of a fiber bundle F— M — B, where the
fiber F and base B are compact connected manifolds. A connection on this fiber
bundle provides a splitting TM = THM @ TF of the tangent space to M. We iden-
tify vector fields X € TB with their horizontal lifts X € T7M.

Suppose a Riemannian metric is given for B. Let VZ denote the Levi-Civita
connection on 7B. The metric of TB lifts to a smooth inner product on 77M.
Define TM and TF to be orthogonal. A smooth inner product along the fibers
TF then gives a Riemannian metric for M. The corresponding Levi-Civita con-
nection will be denoted by V¥.

The connection V# need not preserve the splitting of 7M into horizontal and
vertical subspaces. Therefore, we define a second connection V on 7M. Let
Pr: TM — TF be the orthogonal projection. As in [3], there is a unique connec-
tion V on 7M satisfying the following properties:
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(i) if YeTB, ZeTB, VyZ=VEZ;

(ii) if YeTF, ZeTB, VyZ=0;

(iii) if YeTM, ZeTF, VyZ=Pp(V¥Z).
Clearly, V preserves the metric of M and the splitting TM = T?M@®TF. The
tOAI;[SiOIl tensor of V will be denoted by 7. One has an auxiliary tensor field S =
V7 —V.

Let R be the curvature tensor of the Levi-Civita connection V¥, Define R to
be the curvature for V. One has the following basic identity.

PROPOSITION 2.1. Forany X, Y, Z, WeTM,
(RIX,Y)Z,W)Y=(RM(X,Y)Z, W)—{(VxS)yZ, W)+ (VyS)xZ, W)
—ASxZ, SyW))+{(SyZ,Sx W) —<{Strx,v)Z, W).
Proof. By definition
(R(X,Y)Z, W)= (VX —Sx) (V¥ —S¥)Z— (V¥ —Sy) (VX —Sx)Z
— (V% r1— S, v1)Z, W).
Expanding the right-hand side gives
(R(X,Y)Z, W)
=(RM(X,Y)Z,WY—(V¥SyZ, Wy —(SxV¥Z,Wy+(SxSyZ, W)
+{SYVHZ, WY+ (V¥ SxZ, Wy—(SySx Z, W) +{Six.v1Z, W).
Since VM =V + S, we may write
(R(X,Y)Z, W)
(2.2) =(RM(X,Y)VZ,W)—(VxSyZ, W)+{(VySxZ, W)Y—{(SxVyZ, W)
+{SYyVxZ, W)+{SySxZ, W) —(SxSyZ, W) +<{Six,v1Z, W).
The extension of a connection must satisfy
(VxSYyZ, W)={(VxS)yZ, W)+ (Sv,vyZ, W)+ {(SyVxZ, W)

and the analogous formula with X and Y interchanged.
We substitute these formulas in (2.2). Using the definition of the torsion

T(X,Y)=VyY—-Vy X—[X,Y]

yields
(R(X,Y)Z,W)=(RM(X,)Z,W)—(VxS)yZ, WY+ {(VyS)x Z, W)

+{(SYySxZ, W) —(SxSyZ, W) —<{Srx,)Z, W).

The endomorphism Sy is skew adjoint since S is the difference of two metric pre-
serving connections. Proposition 2.1 follows. O

Our primary concern is the curvature of V restricted to the tangent bundle 7F
along the fibers. A more restricted choice of vector fields gives the following.



LOCAL INDEX THEOREM FOR FAMILIES 13

PROPOSITION 2.3. If Xe TB, Y€ TM and W, Z € TF, then
(RIX,Y)Z, W) =(VzS)w X, Y)—U(VwS8)z X, Y)+ (52 X,SwY—SyW)
+(SwX,SyZ—SzY).

Proof. If U is any vector field and V is in TF, the definition of S implies that
Sy V is horizontal. Using Proposition 2.1, we obtain

(R(IX,Y)Z,W)=(RM(X,Y)Z,W)—(VxS)yZ, W)
+VyS)xZ, W)—(SxZ,SyW)+{(SyZ,SxW).

The definition of V gives (R(Z, W)X, Y )= 0 since horizontal vector fields have
zero covariant derivatives in vertical directions. Also 7(Z, W) =0, since V; W
coincides with the Levi-Civita connection of the fiber, for Z, We TF. Applying
Proposition 2.1,

(RM(Z, W)X, Yy =(VzS)wX, V>~ {(VwS)z X, Y)
+{(SzX,SwY)—{(SwX,SzY).
A basic symmetry for the curvature of a Levi-Civita connection is
(RM(X,Y)Z,Wy=(RM(Z,W)X,Y).

Substitution into (2.4) yields

(R(IX,Y)Z, W)
(2.5 =(VzSYw X, Y)—VwS)zX,Y>—UVxS)yZ, W)+ {UVyS)xZ, W)

F{(SzX,SwY)—(SxZ,SyW)+{(SyZ,SxW)—(SwX,SzY).

(2.4)

Using the property, of S, which was mentioned at the beginning of our proof:
UAVyS)xZ, W) =(VySxZ, W) —(Sv,xZ, W) —<(SxVyZ, W)
={(VySxZ, W).
Because V is metric-preserving,
UVyS)xZ, W) =Y{(SxZ, W)—(SxZ,VyW)=0.

Similarly, the corresponding term with X and Y reversed also vanishes.
Equation (2.5) reduces to

(RX, Y)Z,W)={VzS)wX,Y)—{(VwS)zX, Y)+{(SzX,SwY)
—ASxZ,SyW)H+{(SyZ,SxW)—(SwX,SzY).

According to [3, p. 99], T(U, V) has values in the vertical space 7TF, for any
vectors U, V. Thus, using the definition of S and 7,

(SZX—SXZ’ SYW>= (T(X, Z), SYW> =0,
(SXw—SwX, SyZ>= (T(W,X),Syz) =0.

(2.6)

Proposition 2.3 follows by substitution into formula (2.6). O
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We now restrict the values of Y. It is easy to deduce the following.

PROPOSITION 2.7.
(i) If XeTBand Y,W,Z e TF, then

(R(IX,Y)Z,W)=(VzS)w X, Y)—{(VwS)zX,Y)
(ii) If X, YeTB and W, Z e TF, then
(R(X,Y)Z,W)={Vz)HwX,Y)—{(VwS)zX,Y)
+{PpSz X, PrSyY)—(PprSwX,PrSzY).

Proof. ) IfY,W,ZeTF,onehas Sy Y—-SyW=T(Y,W)=0and SyZ—SzY =
T(Z,Y)=0. The last two terms in Proposition 2.3 vanish.

(i) If YeTB and W, Ze TF, then Sy Y—SyW=T(Y, W) lies in TF. However,
Sy W is horizontal and therefore Sy Y —Sy W =PrSy Y. Similarly, SzY—SyZ =
PrSzY. The result follows from Proposition 2.3.

It will be necessary to rewrite Proposition 2.3 in classical tensor notation. Let
f« be an orthonormal frame field for 7B and e; an orthonormal frame field for
TF. In general, Greek indices «, 8 will refer to the base and Latin indices i, j, k£ will
refer to the fiber. In the frame field £, e; for TM, one has
2.8) Ruijk = Sjic,k — Skic, j

Ropij = Siga,j— Sipa,i t SikaSjkg— SjkaSiks-

The equations (2.8) follow from Proposition 2.7 and the fact that S is skew sym-
metric in its second and third indices.

Apparently, curvature identities similar to those above are implicit in [3]. It
seems worthwhile to have a clear statement and proof of these basic facts.

3. Asymptotic expansion. Suppose that the bundle 7F along the fibers is spin.
One has the corresponding spin bundles 8 = 8 @ 8_. The exterior algebra A(B)
lifts from B to form a bundle over M. The connection V induces connections
on 8, A(B), and the twisted tensor product S@A(B). Assume that £ > M is
a Hermitian vector bundle with unitary connection 4. The curvature of 4 will
be denoted by L. Naturally, one has an induced connection on sections of §®

ERA(B).
Let n=2/ be the dimension of the fibers F. The Clifford algebra along the
fibers is generated by ey, es, ..., e,. We think of Cliff(n#) as an exterior algebra

A(n) with a new multiplication . The Clifford multiplication is defined by vea =
vAa+vJa for veR"” and ae A(n). Here A is exterior and J is interior multi-
plication.

In [3], Bismut introduced a remarkable superconnection. The curvature 7 of
Bismut’s superconnection is a second-order differential operator on sections of
SR ERA(B) over F. Let I, be the corresponding operator when the metric on 7F
is scaled by the factor # ~!. In local coordinates on the fiber, one has
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.. 1 1 1
I, = —tg”(@,'-l- Z—I‘;abea/\ebo+A,-+ -2—\/t—S,'1a61°fa/\+ Z?S,'gyfﬁl\f,y/\)

1 1 1
X (6,—+—I‘jabea/\ebo+Aj+ 'E\/—t—Sj(ael"fa/\'i‘ —Sjg.yfﬁl\f.r/\)

4 4¢
(3.1) . : 1
iik
+tg”I‘,-j(ak+ ZI‘kabea/\ebo + A+ ?\/'7—‘Sk1a61°fa/\+ 'E'Skﬁ'yfﬁf\f-y/\)
1 1 1
+ZtK———2—te,-/\ejoL,-j—Efa/\fBALa,g—\/t_e,-ofa/\L,-a.

Here 9; =9/dx;, " are the Christoffel symbols, and X is the scalar curvature of
the fiber.
Consider the heat equation problem on sections of S® £ A(B) over F:

3
(g +Iz)g(x,s) =0,

g(x,0)=g(x).

The theory of parabolic equations provides a fundamental solution, which is
smooth for s > 0: exp(—sI;)(x, y). Our concern is with the value s =1.
The first issue is to establish existence of an asymptotic expansion for

exp(—1;)(x,x) as tl0.

Some care is required because of the singularities in the coefficients of 7,. Here,
the exterior algebra A(B) plays a crucial role. One has the following.

PROPOSITION 3.2. For some positive integer p = n,
exp(—1;) (x,x) ~t 7P 3 t'E;(x,x)
i=0
for endomorphisms E; of the fiber $,QtR@A(B).
Proof. Let J, be the operator obtained when the Dirac Laplacian of S®#£ is

extended trivially to S® £ A(B). The extension is well defined since V annihi-
lates horizontal lifts from B. In local coordinates, one has

Jr=—1tg"(3;+ §TigpeaNepo+A;) (3 + 5Tjapeahepe + Aj)
+tgij1_‘,'l;'(ak+ %I‘kabea/\ebo +Ap)+ %tK—' %te,—/\ejoL,-j.

Since J; has no singular terms in #, the heat kernel exp(—J,)(x,x) has a well
known asymptotic expansion [6] with p =n.

We now construct exp(—1,) as a perturbation of exp(—J,). Duhamel’s prin-
cipal gives:

3.3) exp(—I,)—exp(—J,)=k§IeXD(—J;)(Ir—Jz)exp(—J;)---(It—J;)exp(—J:)-
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The kth term on the right is the k-fold iterate of the usual convolution integral
over (0,1)x F. The key point is that each term in I,—J, contains at least one
exterior variable f,,. So there are only finitely many nonzero terms on the right-
hand side of (3.3). Proposition 3.2 now follows from the standard expansion for
exp(—J;)(x,y) and elementary methods.

The operator I, commutes with the right action of the exterior algebra A(B).
Therefore, we have exp(—1;)(x,x) e Hom(Sy X ¢x)RA(B). Taking the super-
trace, associated to the splitting $ = 8§, @ 8_, yields Try(exp(—1;) (x, X)) in A(B).
According to Proposition 3.2, Try(exp(—1;)(x, x)) has an asymptotic expansion
as ¢10. Our primary goal is to show that the singular terms vanish and to com-
pute the constant term.

Let © be the curvature form of the bundle along the fibers 7F. In the ortho-
normal frame field ¢;, f,, we may write:

Q=3 Rapij€aNep+ Rokij fuNex+ S Rupii fu N S
L=3Lspe,Nep+Log fulhex+ 3 Log [N f5.

In the notation of [5], one pas the differential form A(Q) ch(L) e A(M). Now
AM)=ABINAF). Let [A(Q) ch(L)], € A(B) denote the coefficient of the vol-
ume form e;Ae; A --- Ae, in the A(B)AA"(F) component. O

The remainder of this paper is devoted to the proof of the following.
THEOREM 3.4. For each point p e F,
lim Try(exp(—1;) (p, p)) = (27i) " [A(R) ch(L)].(p).

t—>0
Different proofs were given earlier by Bismut [3] and Berline and Vergne [2].
As explained in these works, Theorem 3.4 represents a strong local form of the
index theorem for families of elliptic operators.

4. Local index for families. We proceed to prove Theorem 3.4. The first step
is to transplant the problem from F to R”. Using the exponential map at our base
point p € F, we construct an operator I, which agrees with the normal coordinate
expression for I, near the origin. One may assume that 7, coincides with the cor-
responding Euclidean operator, with S =0, outside a compact set. The analo-
gous statements for the auxiliary bundle £ hold by parallel translation along ra-
dial geodesics. We identify p € F with the origin 0 in R”.

Consider the heat equation problem over R”, for fixed ¢,

F: .
(5; +It>g(x,s) =0,

g(x,0)=g(x).

PROPOSITION 4.1. There exists a unique fundamental solution exp(—sl,)(x, y),
which satisfies the decay estimate
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lexp(—sT;) (x, ¥)| < Cis ~"?* exp(—Cz|x —y|/s)
along with analogous estimates for the derivatives in x, y, and s.

Proof. This follows from the construction in [4] of the heat kernel on noncom-
pact manifolds of bounded geometry.

By applying Duhamel’s principle in a sufficiently small normal coordinate neigh-
borhood, centered at p, we find that

exp(—1,)(0,0) =exp(—1,)(p, p) + O(e~“3)

Therefore, it suffices to investigate the limit as ¢ {0 of Tr,(exp(—1;) (0, 0)).
The key idea of [5] is to use the rescaling x — ex, ¢ — €%t, e;— ¢ 'e;. The re-
sulting operator has the coordinate expression:
—1

I.=—tg(ex)(8;+ 54—I‘,-,,b(ex)eaAeb o, +€A;(€x)

-1 -1

€ €
4.2) + ﬁsila(ex)ez°efa/\+ —

a7 Siﬁ'y(ex)fﬁ/\f'y/\)

-1
X (6j+ ETFJ'ab(ex)ea/\ €y +eA;(ex)

-1 -1

€ €
+ E\/T‘Sjla(ex)el"efa/\'i' —

7 Sjﬁ'y(ex)fﬂf\fv/\)

1
~Trap(ex)ezAepo. + 2 Ar(eX)

+tgY (ex)Tf(ex)  edr + 2

1
2\/— Skia(ex)ejoe fo N+ — a7 Skﬁy(ex)fﬁf\f-y/\)

2
t
—4—1‘K(ex) —ejNejo. Lij(ex)— fa/\fgl\Laﬁ(ex) —Vtejo, fou\ Lio(€x).
The asymptotic expansion in # of Proposition 3.2 for exp(—1;) (0, 0) yields an
expansion in e for exp(—1.)(0, 0). Moreover, one has

lim Tr; exp(—1;) (0, 0) =1lim Tr, exp(—1,) (0, 0).
t—0 e—0
This means that if either limit exists, then both limits exist and are equal. We will
deal directly with the limit in e.
Unfortunately, the tensors S, and S;g, need not vanish at the origin. This
means that the coefficients of (4.2) are singular as € 0. Define
-1 ¢!
h(x,e, t)= eXp(Z\/_ Sita(0)Xi e\ foo + 4t lﬁ‘y(O)xtf,G/\f‘y)

Since one is dealing with exterior variables, % is actually of polynomial growthin x.
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Fix € and conjugate I, by A to obtain

Jo=hI.h~!
-1 -1

. € €
= —1g"7(ex)(9;+ Triab(fx)ea/\eb+ E (Sita(ex) —Si1a(0))e/A [

-1 1
+ fa—t— (Sigy(ex)—Sig,(0)) NSy — a7 tIa(O)SkIB(O)xkfa/\fB)
“4.3)

—1 —1
€ €
X (3j+ e Fjap(ex)eANep+ W (Sj1a(ex) —S;1.(0))erA fo

-1

1
+ ar (Sjgy(ex)—S;jg, (0)) fe N S, — Z;Sjla(o)sklﬂ(o)xkfa/\fﬁ)

— —;—te,-/\ejL,-j(ex)— %fa/\fBLaﬁ(Gx)——\/t—e,-/\faL,-a(ex)+r(x, E).
The quadratic terms in S arise from applying e ~!S;;,(0)e to the exponential,
since one has o, = A+¢2 1. The symbol r(x, ¢) denotes terms which vanish when
e¢ — 0 and will not contribute in the final analysis.

A fundamental solution of the heat equation problem for J, may be obtained
by conjugation:

“4.4) exp(—sJ.) (x, ¥) = h(x) exp(—sI.)(x, y)h ().

The right-hand side clearly satisfies the heat equation (d/ds+J.)g(x,s)=0 and
approaches 6, , as s — 0. Since #(0) =1 we have, for each fixed e,

(4.5) Trs exp(—1.) (0, 0) = Tr; exp(—J) (0, 0).

Thus one need only evaluate the limit of the right-hand side as € — 0.

Our choice of conjugation yields an operator J, whose coefficients are non—
singular for small e. One has the estlmates Tiap(ex) = ZR,jab(O)ex,-}-r(x € ),
Sita(ex) = Si1o(0) + Sita JEX;+r(x,e ) StB'y(fx) = 137(0)+Stﬁ"y,1(0)exj+r(x € )

Fixing x, we obtain

Jo=1imJE——t2 ( B,,xj) —tL,

e—0

where

1 2 1
B;j= ERijab(O)ea/\ €~ Jr Sita, j(0)erN foo— 7 [Sigy, i (0) —Si(0) Sy (0 SN 1,
(4.6) 1
> ELaB(O)faAfB-
There is a fundamental solution exp(—sJy) (x, ¥) which may be given in closed
form. Separate B;; = C;;+D;; into its symmetric and skew symmetric parts. Of

1 1
L= —L;,-(O)e,-/\ej+ Tt—‘L,‘a(O)e,'/\fa‘i‘
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course, 2C;; = B;;j+ Bj; and 2D;; = B;;— Bj;. Here B, C, D are matrices of differ-
ential two-forms. We may state the following.

PROPOSITION 4.7.
exp(—sJy)(x,0)= (47st)~"?A(stD) exp(Cijxix;/8)
1 stD/2
tL— i Xi|.
X exp [S 4st (tanh stD/2 ),-j i x’]

Proof. If B;; were skew symmetric, the method of [5] could be applied directly.
One reduces to the skew symmetric case by conjugation. Set

h(x) =exp(Ci;xix;/8).
Since Cj; is a differential form, /4 has at most polynomial growth. A calculation
using C;; = Cj; gives

1 2
K0=h_1J0h= —1 2 (6,-—-Z-D,-jxj> —tL.

Since D;; = —Dj;, the argument of [5] may be transcribed verbatim. This gives

4st \ tanhstD/2

Set exp(—sJo)(x,0) = h(x)exp(—sKp)(x,0). Clearly exp(—sJy)(x,0) satisfies
the heat equation for Ky and approaches 6, ¢ as s — 0. This proves Proposition
4.7. O

We now return to our primary goal for computing the limit in (4.5) as e— 0.
As in [5], one may apply Duhamel’s principle and the explicit expression for
exp(—sJgy)(x,0) to deduce:

lim exp(—J) (0, 0) = exp(—Jo)(0,0).

e—0

exp(—sKp)(x,0)= (47rst)"'”/2ﬁ(stD) exp [stoﬁ — ! ( stD/2 ) _xij].
ij

Using Proposition 4.7 to compute the supertrace of the right-hand side gives

nf2
lim Tr, exp(—J,)(0,0) = (%) (47t)""2[A(tD) ch(t£)],.
e—0
According to the explanation in [5], the factor (2/i)"/? arises in computing the su-
pertrace. The n-form component is taken since Clifford multiplication approaches
exterior multiplication when e — 0.

Recall that D is the skew symmetric part of B, given in (4.6). The curvature
identities (2.8) show that we may write

1

1 1
D;;= —Z—Rabij(o)ea/\eb+ V—t—Rakij(O)fa/\ek+ E‘;Raﬁij(o)fa/\fﬂx

1 1 1
L= ELab(O)ea/\eb'*' —\/'}—_Lai(o)fa/\ei"' 'Z_I'Laﬁ(o)fa/\fﬁ-

Theorem 3.4 follows by elementary algebra. d
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