AN EMBEDDING THEOREM FOR THE FELL TOPOLOGY

Gerald Beer

1. Introduction. Let 2^X (resp. CL(X)) denote the closed (resp. closed and non-empty) subsets of a metric space $\langle X, d \rangle$. The fundamental topology on CL(X) is the *Hausdorff metric topology*, induced by the infinite-valued metric on CL(X) defined by

$$h_d(E, F) = \sup\{\{d(x, E) : x \in F\} \cup \{d(x, F) : x \in E\}\}$$
.

If we replace d by the metric $\rho = \min\{d, 1\}$, then h_{ρ} is finite-valued and determines the same topology on CL(X). Most importantly [8], the map $E \to \rho(\cdot, E)$ is an isometry of $\langle CL(X), h_{\rho} \rangle$ into the bounded continuous real functions on X, equipped with the usual uniform metric.

A somewhat weaker topology on 2^X , which agrees with the Hausdorff metric topology on CL(X) if and only if X is compact, is the *Fell topology* [10], also called the *topology of closed convergence* [12]. To describe this topology, we introduce the following notation: if $A \subset X$, then

$$A^- = \{ E \in 2^X : E \cap A \neq \emptyset \}$$
 and $A^+ = \{ E \in 2^X : E \subset A \}.$

The Fell topology τ_F has as a subbase all sets of the form V^- , where V is an open subset of X and $(K^C)^+$, where K is a compact subset of X. Obviously, the Fell topology is similar in spirit to the stronger *Vietoris topology* ([12], [14]). With respect to convergence notions, it is known (cf. [3, Lemma 1.0] or [11, p. 353]) that a sequence $\langle E_n \rangle$ in 2^X converges in the Fell topology to a closed set E if and only if

$$E = \operatorname{Li} E_n = \operatorname{Ls} E_n$$

where Li E_n (resp. Ls E_n) consists of all points x each neighborhood of which meets $\langle E_n \rangle$ eventually (resp. frequently). In the literature, this form of convergence is usually called *Kuratowski convergence*, but sometimes it goes by the name *topological convergence* [15]. In an arbitrary Hausdorff space (not necessarily metrizable), Kuratowski convergence is stronger than convergence with respect to the Fell topology; also, Kuratowski convergence of *nets* of sets determines the Fell topology if and only if X is locally compact (cf. [7] or [12]). The Fell topology and Kuratowski convergence of sets have been particularly important in the study of the convergence of lower semicontinuous functions and their minima ([1], [4], [5], [16]), but these notions also arise in probability theory ([13], [19]), mathematical economics [12], and the study of C^* -algebras [9].

In this note we show that a locally compact metrizable space X admits a metric d for which $E \rightarrow d(\cdot, E)$ is a topological embedding of $\langle CL(X), \tau_F \rangle$ into the continuous real functions on X with the compact-open topology (the topology of uniform convergence on compacta), τ_{CO} , that can be extended to 2^X .

Received October 3, 1986. Revision received September 28, 1987. Michigan Math. J. 35 (1988).

2. Notation. Since $[(A \cup B)^C]^+ = (A^C)^+ \cap (B^C)^+$, a base for the Fell topology consists of all sets of the form

$$\left(\bigcap_{i=1}^n V_i^-\right) \cap (K^C)^+,$$

where $V_1, V_2, ..., V_n$ are open, K is compact, and $K \cap V_i = \emptyset$ for each i. We denote such a basic open set by $[V_1, ..., V_n; K]$. Thus, $F \in [V_1, ..., V_n; K]$ means that F hits each V_i and F misses K. If a fixed metric on X is understood, then $B[x; \alpha]$ (resp. $S[x; \alpha]$) will denote the closed (resp. open) ball about $x \in X$ of radius α . Also, if $E \in CL(X)$, we write $B[E; \alpha]$ for $\bigcup \{B[x; \alpha]: x \in E\}$. We denote the continuous functions from X to R by C(X, R). If $f \in C(X, R)$ and K is a compact subset of X, then $N(f, K, \epsilon)$ will denote

$$\{g \in C(X, R): \text{ for each } x \in K, |f(x) - g(x)| < \epsilon\}.$$

Such sets form a local base for the compact-open topology τ_{CO} on C(X,R) at f.

3. Results. A key notion in the sequel was introduced in [3].

DEFINITION. A metric space $\langle X, d \rangle$ is said to have *nice closed balls* if each noncompact closed ball in X is the entire space.

This class of spaces includes the metric spaces in which closed and bounded sets are compact, and the zero-one metric spaces. Theorem 2.3 of [3] says in part that a metric space has nice closed balls if and only if the Fell topology on CL(X) coincides with the stronger ball topology, having as a subbase all sets of the form $S[x;\alpha]^-$ and $(B[x;\alpha]^C)^+$. Our first result follows from this fact, but we prefer a self-contained presentation.

THEOREM 1. Let $\langle X, d \rangle$ be a metric space. The following are equivalent:

- (a) the map $E \to d(\cdot, E)$ is an embedding of $\langle CL(X), \tau_F \rangle$ into $\langle C(X, R), \tau_{CO} \rangle$;
- (b) the space $\langle X, d \rangle$ has nice closed balls.

Proof. (a) \Rightarrow (b). Suppose $\langle X, d \rangle$ fails to have nice closed balls. Then there exist x and y in X and $\alpha > 0$ such that $B[x; \alpha]$ is noncompact and $d(x, y) > \alpha$. Let $\langle x_n \rangle$ be a sequence in $B[x; \alpha]$ with no cluster point. Then $\langle \{x_n, y\} \rangle$ τ_F -converges to $\{y\}$, but $\langle d(x, \{x_n, y\}) \rangle$ does not converge to $d(x, \{y\})$. Thus, the map $E \rightarrow d(\cdot, E)$ cannot be an embedding of $\langle CL(X), \tau_F \rangle$ into $\langle C(X, R), \tau_{CO} \rangle$.

(b) \Rightarrow (a). Let d be a metric for X with nice closed balls, and let $F \in CL(X)$ be fixed. We first establish continuity of $E \to d(\cdot, E)$ at F. To this end, let K be a nonempty compact subset of X and let $\epsilon > 0$. We will produce a τ_F -neighborhood of F mapped into $N(f, K, 3\epsilon)$, where f is the function $d(\cdot, F)$. Let $\{x_1, ..., x_n\} \subset K$ be an ϵ -net for K, that is, $K \subset \bigcup \{S[x_k; \epsilon]: 1 \le k \le n\}$. For each $k \in \{1, ..., n\}$, write $\alpha_k = d(x_k, F)$. We partition $\{1, ..., n\}$ as follows:

$$J_1 = \{k : \alpha_k \le \epsilon\}$$
 and $J_2 = \{k : \alpha_k > \epsilon\}$.

Since proper d-balls in X are compact, for each $k \in \{1, ..., n\}$ we can choose $y_k \in F$ with $d(x_k, y_k) = \alpha_k$. Now for each $k \in J_2$, $y_k \notin B[x_k; \alpha_k - \epsilon]$. Again by the compactness of proper d-balls, the set

$$C = \bigcup_{k \in J_2} B[x_k; \alpha_k - \epsilon]$$

is compact. By construction, $C \cap F = \emptyset$ and for each $k \in \{1, ..., n\}$, $S[y_k; \epsilon] \cap C = \emptyset$. Because $\{y_1, ..., y_n\} \subset F$,

$$\Sigma = [S[y_1; \epsilon], ..., S[y_n; \epsilon]; C] \cap CL(X)$$

is a τ_F -neighborhood of F in CL(X). We claim that $E \to d(\cdot, E)$ maps Σ into $N(f, K, 3\epsilon)$. Let $E \in \Sigma$ and let $x \in K$ be arbitrary. We must show that

$$|d(x,E)-d(x,F)| < 3\epsilon$$
.

Choose $k \in \{1, ..., n\}$ with $d(x, x_k) < \epsilon$, and choose $y \in E \cap S[y_k; \epsilon]$. We have

$$d(x, E) \le d(x, y) \le d(x, x_k) + d(x_k, y_k) + d(y_k, y) < \alpha_k + 2\epsilon$$
.

Now if $k \in J_1$ then $d(x, E) < \epsilon + 2\epsilon = 3\epsilon$, and since

$$d(x, F) \le d(x, x_k) + d(x_k, y_k) < 2\epsilon$$

we have $|d(x, E) - d(x, F)| < 3\epsilon$.

If $k \in J_2$, then $d(x, E) \ge \alpha_k - 2\epsilon$ because $E \cap B[x_k; \alpha_k - \epsilon] = \emptyset$. Thus,

$$|d(x,E)-\alpha_k|=|d(x,E)-d(x_k,F)|\leq 2\epsilon.$$

Since $z \rightarrow d(z, F)$ is Lipschitz with constant 1, we obtain

$$|d(x,E)-d(x,F)| \le |d(x,E)-d(x_k,F)|+|d(x_k,F)-d(x,F)| < 3\epsilon.$$

To show that $E \to d(\cdot, E)$ is open is easier. It suffices to show that the image of each basic τ_F -neighborhood of a closed set F contains a neighborhood of $f \equiv d(\cdot, F)$ in the relative topology of the function space. Let $[V_1, ..., V_n; K] \cap CL(X)$ be such a τ_F -neighborhood of F (note that K can be empty). Choose $x_1, ..., x_n$ in F and $\epsilon > 0$ such that, for k = 1, ..., n,

$$S[x_k; \epsilon] \subset V_k$$
 and $B[F; \epsilon] \cap K = \emptyset$.

We claim that $N(f, \{x_1, ..., x_n\} \cup K, \epsilon) \cap \{d(\cdot, E) : E \in CL(X)\}$ is in the image of $[V_1, ..., V_n; K] \cap CL(X)$. Suppose $d(\cdot, E) \in N(f, \{x_1, ..., x_n\} \cup K, \epsilon)$. Since

$$|d(x_k, E) - d(x_k, F)| < \epsilon$$
 and $d(x_k, F) = 0$,

we have $E \cap S[x_k; \epsilon] \neq \emptyset$ for each index k. Thus, E hits V_k for each k. If K is empty, we are done. Otherwise, for every $x \in K$ we have both $d(x, F) \geq \epsilon$ and $|d(x, F) - d(x, E)| < \epsilon$. As a result, d(x, E) > 0 so that $E \cap K = \emptyset$. Thus, $E \in [V_1, ..., V_n; K]$.

An alternate proof of Theorem 1 can be constructed using the equivalence of the topology of pointwise convergence with the compact-open topology for distance functions (see [21, Thm. 43.14]). The proof of continuity is simplified exactly to the extent that the proof of openness is made more complicated. We also note that Theorem 1 above says more than the equivalence of conditions (1) and (3) of Theorem 2.3 of [3], because sequences do not in general determine the Fell topology. In fact, if X is not separable then the topology cannot be first countable. We find it worthwhile to single out as a lemma the (perhaps known) equivalence of first countability of $\langle CL(X), \tau_F \rangle$, second countability of $\langle CL(X), \tau_F \rangle$,

and separability of X in the locally compact case. (Actually, each is equivalent to *metrizability* of the hyperspace; see Theorem 4 below.)

LEMMA 1. Let $\langle X, d \rangle$ be a locally compact metric space. The following are equivalent:

- (a) X is separable;
- (b) $\langle CL(X), \tau_F \rangle$ is second countable;
- (c) $\langle CL(X), \tau_F \rangle$ is first countable.

Proof. (a) \Rightarrow (b). Let $\{x_n : n \in Z^+\}$ be a countable dense subset of X. For each n choose $\delta_n > 0$ such that $B[x_n; \delta_n]$ is compact. Then all sets of the form $S[x_n; 1/k]^-$ and $(B[x_n; \delta_n/k]^C)^+$, where n and k are positive integers, is a countable subbase for the hyperspace topology. Thus, $\langle CL(X), \tau_F \rangle$ is second countable.

- (b) \Rightarrow (c). This is trivial.
- (c) \Rightarrow (a). If X is not separable, there exists for some $\epsilon > 0$ an uncountable subset F of X such that $d(x, y) > \epsilon$ whenever $\{x, y\} \subset F$. Now a local base for τ_F at F consists of all sets of the form

$$[S[x_1; \delta], S[x_2; \delta], ..., S[x_n; \delta]; K],$$

where $\{x_1, ..., x_n\}$ is a finite subset of F, K is a compact subset of X, and $\delta < \epsilon$. Now if $\{\Sigma_j : j \in Z^+\}$ is any countable subcollection of this local base, where

$$\Sigma_j = [S[x_{j1}; \delta_j], ..., S[x_{jn_i}; \delta_j]; K_j],$$

then we can find $x \in F - \{x_{ji} : j \in Z^+ \text{ and } i \le n_j\}$. Clearly, $S[x; \epsilon]^-$ is a τ_F -neighborhood of F which fails to contain any Σ_i .

We now come to the main result of the paper.

THEOREM 2. Let X be a metrizable space. The following are equivalent:

- (a) X is locally compact;
- (b) X admits a metric d bounded by 1 such that each closed ball of radius less than 1 is compact;
- (c) X admits a metric d with nice closed balls;
- (d) X admits a metric d such that $E \to d(\cdot, E)$ is an embedding of $\langle CL(X), \tau_F \rangle$ into $\langle C(X, R), \tau_{CO} \rangle$.

Proof. Conditions (c) and (d) are equivalent by Theorem 1, and the implications (b) \Rightarrow (c) and (c) \Rightarrow (a) are trivial. It remains to establish (a) \Rightarrow (b). This follows from general results on refinements of open covers of a metrizable space (see [6, p. 196]); we provide a simple direct proof here. Let ρ be a fixed metric for X. Let $\{V_i: i \in I\}$ be an open cover of X such that for each $i \in I$, cl V_i is compact. By paracompactness, there exists a locally finite open cover $\{W_i: i \in I\}$ of X with $W_i \subset V_i$ for each $i \in I$. By paracompactness and regularity, there exists a locally finite closed cover $\{F_i: i \in I\}$ such that $F_i \subset W_i$ for each $i \in I$. For each i such that F_i is nonempty, define $g_i \in C(X, R)$ by

$$g_i(x) = \frac{2\rho(x, F_i)}{\rho(x, F_i) + \rho(x, W_i^c)}.$$

By local finiteness and continuity of each g_i ,

$$\rho^*(x,y) \equiv \rho(x,y) + \sum_{i \in I} |g_i(x) - g_i(y)|$$

is a metric on X equivalent to ρ . For each $x \in X$ there exists $i \in I$ for which $x \in F_i$. By construction, $\rho^*(x, y) \le 1$ forces $y \in W_i$. This means that $B_{\rho^*}[x; 1]$ lies in V_i . Since cl V_i is compact, the ball is compact. The desired metric d is min $\{\rho^*, 1\}$.

THEOREM 3. Let X be a locally compact metrizable space. Then $\langle 2^X, \tau_F \rangle$ is homeomorphic to a closed subspace of $\langle C(X, R), \tau_{CO} \rangle$.

Proof. Let d be a metric on X as described in condition (b) of Theorem 2. We extend $E \to d(\cdot, E)$ from CL(X) to 2^X by mapping \emptyset to the constant function $g \equiv 1$ on X. If X is compact then \emptyset is an isolated point of the hyperspace, because $\{\emptyset\} = (X^C)^+$. Clearly, $N(g, X, \frac{1}{2})$ contains no distance function, because each such function assumes the value zero somewhere. Thus, g is also isolated in the relative topology for

$$\Omega = \{g\} \cup \{d(\cdot, E) : E \in \mathrm{CL}(X)\},\$$

and the extension to 2^X remains a homeomorphism. If X is noncompact then all sets of the form $(K^C)^+$, where K is a nonempty (proper) compact subset of X, form a local base for τ_F at \emptyset . Since K is compact, for each ϵ in (0,1) we have $d(x,K) \le \epsilon$ if and only if $x \in B[K;\epsilon]$. Also, by the choice of the metric, for each such ϵ the generalized ball $B[K;\epsilon]$ is compact. As a result, for each such K and ϵ , the open set $(B[K;1-\epsilon]^C)^+$ is mapped onto $\Omega \cap N(g,K,\epsilon)$, and the extension to 2^X again remains a homeomorphism.

To show that Ω is closed in C(X,R), suppose a net $\langle d(\cdot,F_{\lambda}) \rangle$ converges uniformly on compact at $h \in C(X,R)$. Set $F = \{x : h(x) = 0\}$. If K is a compact subset of X for which $K \cap F = \emptyset$, then $\langle F_{\lambda} \rangle$ must miss K eventually, because K is compact and h vanishes at any point of Ls $F_{\lambda} \cap K$. On the other hand, if F hits an open set V, choose $x \in F$ and $\epsilon > 0$ with $S[x; \epsilon] \subset V$. Now h(x) = 0 implies that $d(x, F_{\lambda}) < \epsilon$ eventually, so $\langle F_{\lambda} \rangle$ hits the subset $S[x; \epsilon]$ of V eventually. Thus, $\langle F_{\lambda} \rangle$ τ_F -converges to F, whence $\langle d(\cdot, F_{\lambda}) \rangle$ converges to $d(\cdot, F)$ or to g (if F is empty) under the embedding. Since limits are unique in C(X, R), we have $h \in \Omega$.

From Theorem 3, we immediately get the two most important facts about the Fell topology, which can be established using the natural embedding of $\langle 2^X, \tau_F \rangle$ into $CL(X^*)$ with the Vietoris topology, where X^* is the one-point compactification of X [12]. For a direct proof, consult [1].

THEOREM 4. Let X be a locally compact metrizable space. Then $\langle 2^X, \tau_F \rangle$ is a compact Hausdorff space, and $\langle 2^X, \tau_F \rangle$ is metrizable if and only if X is separable.

Proof. The family $\Omega = \{g\} \cup \{d(\cdot, E) : E \in CL(X)\}$ in the proof of Theorem 3 is equi-Lipschitzian and is thus equicontinuous. Also, for each $x \in X$, $cl\{f(x) : f \in \Omega\}$, as a subset of [0, 1], is compact. Since Ω is closed, by the Ascoli theorem (cf. [21, Thm. 43.15]), Ω is compact with respect to the compact-open topology.

By Lemma 1, separability of X is necessary for first countability of the hyperspace, and thus for metrizability. Conversely, if X is separable, then X admits a metric d for which closed and bounded sets are compact (cf. [2] or [18]). Fix x_0 in X; then a countable collection of seminorms determining the (locally convex) compact-open topology on C(X, R) is

$$p_n(f) = \sup\{|f(x)|: d(x,x_0) \le n\} \quad (n \in Z^+),$$

whence the space $\langle C(X,R), \tau_{CO} \rangle$ is metrizable [17]. By Theorem 3, the hyperspace $\langle 2^X, \tau_F \rangle$ is metrizable, too.

In this author's view, the natural way to extend the notion of distance function for nonempty closed sets in a metric space $\langle X, d \rangle$ to include \emptyset is to identify \emptyset with $g: X \to [0, \infty]$ defined by

$$g(x) = \sup\{d(x,z) \colon z \in X\}.$$

If d is a bounded metric, then $\{g\} \cup \{d(\cdot, E) : E \in CL(X)\}$ is an equicontinuous family. In the literature, a different program has been used, following [20]. Independent of d, one sets $d(x, \emptyset) = \infty$ for each x in X, and a net $\langle F_{\lambda} \rangle$ in 2^{X} is declared Wijsman convergent [11] to $F \in 2^{X}$ provided $\langle d(\cdot, F_{\lambda}) \rangle$ converges pointwise to $d(\cdot, F)$. Wijsman convergence is compatible with a uniformizable topology on 2^{X} , and it is metrizable when X is separable (see [11, §4]). If d is a bounded metric, then the Wijsman topology, of course, agrees with the compact-open topology on CL(X), but the two topologies differ in the way they treat the empty set: In the Wijsman topology, the empty set must be an isolated point; whereas under our suggested correspondence, it need not be.

REFERENCES

- 1. H. Attouch, *Variational convergence for functions and operators*, Pitman, Boston, Mass., 1984.
- 2. J. P. Aubin, Applied abstract analysis, Wiley, New York, 1977.
- 3. G. Beer, Metric spaces with nice closed balls and distance functions for closed sets, Bull. Austral. Math. Soc. 35 (1987), 81-96.
- 4. G. Beer and P. Kenderov, On the arg min multifunction for lower semicontinuous functions, Proc. Amer. Math. Soc. 102 (1988), 107-113.
- 5. S. Dolecki, G. Salinetti, and R. Wets, Convergence of functions: equi-semicontinuity, Trans. Amer. Math. Soc. 276 (1983), 409-429.
- 6. J. Dugundji, *Topology*, Allyn and Bacon, Boston, Mass., 1966.
- 7. E. Effros, Convergence of closed subsets in a topological space, Proc. Amer. Math. Soc. 16 (1965), 929-931.
- 8. R. Engelking, General topology, PWN, Warsaw, 1977.
- 9. J. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280.
- 10. ——, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476.
- 11. S. Francaviglia, A. Lechicki, and S. Levi, *Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions*, J. Math. Anal. Appl. 112 (1985), 347–370.

- 12. E. Klein and A. Thompson, *Theory of correspondences*, Wiley, New York, 1984.
- 13. G. Matheron, Random sets and integral geometry, Wiley, New York, 1975.
- 14. E. Michael, *Topologies on spaces of subsets*, Trans. Amer. Math. Soc. 71 (1951), 152–182.
- 15. S. Mrowka, On the convergence of nets of sets, Fund. Math. 45 (1958), 237-246.
- 16. R. T. Rockafellar and R. Wets, *Variational systems, an introduction*. Multifunctions and integrands (Catania, 1983), 1-54, Lecture Notes in Math., 1091, Springer, Berlin, 1984.
- 17. A. Taylor and D. Lay, Introduction to functional analysis, Wiley, New York, 1980.
- 18. H. Vaughan, *On locally compact metrizable spaces*, Bull. Amer. Math. Soc. 43 (1937), 532–535.
- 19. W. Vervaat, Stationary self-similar processes and random semicontinuous functions. Dependence in probability and statistics (Oberwolfach, 1985), 457-473, Birkhäuser, Boston, Mass., 1986.
- 20. R. Wijsman, Convergence of sequences of convex sets, cones and functions, II, Trans. Amer. Math. Soc. 123 (1966), 32-45.
- 21. S. Willard, General topology, Addison-Wesley, Reading, Mass., 1970.

Department of Mathematics California State University Los Angeles, CA 90032