AN EMBEDDING THEOREM FOR THE FELL TOPOLOGY

Gerald Beer

1. Introduction. Let 2% (resp. CL(X)) denote the closed (resp. closed and non-
empty) subsets of a metric space (X, d). The fundamental topology on CL(X) is
the Hausdorff metric topology, induced by the infinite-valued metric on CL(X)
defined by

hg(E,F)=sup({d(x,E):xe FiU{d(x, F):xe€ E}).

If we replace d by the metric p =min{d, 1}, then 4, is finite-valued and deter-
mines the same topology on CL(X). Most importantly [8], the map £ — po(+,E)
is an isometry of (CL(X), Ah,) into the bounded continuous real functions on X,
equipped with the usual uniform metric.

A somewhat weaker topology on 2%, which agrees with the Hausdorff metric
topology on CL (X)) if and only if X is compact, is the Fell topology [10], also
called the topology of closed convergence [12]. To describe this topology, we in-
troduce the following notation: if A C X, then

A ={Ee2X:ENA= O} and A*={(Ee2X:ECA].

The Fell topology 7 has as a subbase all sets of the form V', where V is an open
subset of X and (K €)*, where K is a compact subset of X. Obviously, the Fell
topology is similar in spirit to the stronger Vietoris topology ([12], [14]). With
respect to convergence notions, it is known (cf. [3, Lemma 1.0] or [11, p. 353])
that a sequence ¢(E,) in 2% converges in the Fell topology to a closed set E if

and only if
E=LiE,=1s E,,

where Li E,, (resp. Ls E,,) consists of all points x each neighborhood of which
meets {E,) eventually (resp. frequently). In the literature, this form of conver-
gence is usually called Kuratowski convergence, but sometimes it goes by the
name fopological convergence [15]. In an arbitrary Hausdorff space (not neces-
sarily metrizable), Kuratowski convergence is stronger than convergence with re-
spect to the Fell topology; also, Kuratowski convergence of nets of sets deter-
mines the Fell topology if and only if X is locally compact (cf. [7] or [12]). The
Fell topology and Kuratowski convergence of sets have been particularly impor-
tant in the study of the convergence of lower semicontinuous functions and their
minima ([1], [4], [5], [16]), but these notions also arise in probability theory ([13],
[19]), mathematical economics [12], and the study of C*-algebras [9].

In this note we show that a locally compact metrizable space X admits a metric
d for which £ — d(-, FE) is a topological embedding of (CL (X)), 7x) into the con-
tinuous real functions on X with the compact-open topology (the topology of
uniform convergence on compacta), 7co, that can be extended to 2%,
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2. Notation. Since [(AUB)C1" = (A)*N(BC)*, a base for the Fell topology
consists of all sets of the form

n
( N V,-—) N(KO)Y*,
i=1
where V1, V>, ..., ¥V, are open, K is compact, and KNV; = & for each i. We de-
note such a basic open set by [V4, ..., V,; K]. Thus, Fe [V, ..., V,; K] means that
F hits each V; and F misses K. If a fixed metric on X is understood, then B[x; ]
(resp. S[x; a]) will denote the closed (resp. open) ball about x € X of radius «.
Also, if E e CL(X), we write B[E; o] for U {B[x; a]: x € E}. We denote the con-
tinuous functions from X to R by C(X, R). If fe C(X,R) and K is a compact
subset of X, then N(f, K, €¢) will denote

fge C(X,R):foreach xe K, |f(x)—g(x)|<e}.

Such sets form a local base for the compact-open topology rco on C(X, R) at f.

3. Results. A key notion in the sequel was introduced in [3].

DEFINITION. A metric space (X, d) is said to have nice closed balls if each
noncompact closed ball in X is the entire space.

This class of spaces includes the metric spaces in which closed and bounded sets
are compact, and the zero-one metric spaces. Theorem 2.3 of [3] says in part that
a metric space has nice closed balls if and only if the Fell topology on CL (X)) co-
incides with the stronger ball topology, having as a subbase all sets of the form
S[x; «]” and (B[x; «]€)*. Our first result follows from this fact, but we prefer a
self-contained presentation.

THEOREM 1. Let (X, d) be a metric space. The following are equivalent:

(@) themap E —d(-, E) is an embedding of {CL(X), 7r) into {C(X,R), 7co);
(b) the space {X,d) has nice closed balls.

Proof. (a) = (b). Suppose (X, d) fails to have nice closed balls. Then there
exist x and y in X and « > 0 such that B[x; «] is noncompact and d(x, ¥) > «. Let
{(x,) be a sequence in B[x; «] with no cluster point. Then {{x,, y}) 7r-converges
to {y}, but {d(x, {x,,¥})) does not converge to d(x, {¥}). Thus, the map £F—
d(-, E) cannot be an embedding of (CL(X), 7) into {C(X, R), 7co)-

(b) = (a). Let d be a metric for X with nice closed balls, and let e CL(X) be
fixed. We first establish continuity of £ — d(-, E) at F. To this end, let X be a non-
empty compact subset of X and let e > 0. We will produce a 7g-neighborhood of
F mapped into N(f, K, 3¢), where f is the function d(-, F). Let {x;,...,x,} CK
be an e-net for K, that is, K C U {S[x;€]: 1 <k < n}. For each ke{1, ..., n},
write oy = d(xi, F). We partition {1, ..., n} as follows:

Ji={k:ar=<e} and Jry={k:op>¢€}.

Since proper d-balls in X are compact, for each ke {1, ..., n} we can choose y, e F
with d(xy, yx) = ax. Now for each ke J,, yi ¢ B[xy; o —e]. Again by the com-
pactness of proper d-balls, the set



AN EMBEDDING THEOREM FOR THE FELL TOPOLOGY 5

C= U Blxy; ox—el
kGJZ
is compact. By construction, CNF = and foreach k€ {1, ..., n}, S[ys; elNC=
. Because {¥1,...,Vn} CF,

L =[S[yi;el,-.., S[yn; €]; CINCL(X)
is a 7p-neighborhood of F in CL(X). We claim that £ —d(-, E) maps X into
N(f,K,3¢). Let Ee€ X and let x € K be arbitrary. We must show that
|d(x, E)—d(x, F)| < 3e.
Choose ke {1, ..., n} with d(x, x;) <e, and choose y € ENS[yx; e]. We have
dx,E)Y=sd(x,y)=d(x,x;)+d (X, V) +d(Vi,y) <o+ 2e.
Now if k € J; then d(x, E) < e+2e =3¢, and since
d(x,F)=d(x,x;)+d(Xe, ye) <2e
we have |d(x, E)—d(x, F)| < 3e.
If ke J,, then d(x, E) = o —2€ because ENB[xy; o —e] =. Thus,
|d(x, E)—ay|=|d(x, E) —d(x¢, F)| < 2e.
Since z - d(z, F) is Lipschitz with constant 1, we obtain
|d(x, E)—d(x, F)|<|d(x, E)—d(x¢, F)|+|d(xx, F)—d(x, F)| < 3e.

To show that E — d(-, E) is open is easier. It suffices to show that the image of
each basic 7p-neighborhood of a closed set F contains a neighborhood of f=
d(-, F) in the relative topology of the function space. Let [V, ..., V,; K]NCL(X)
be such a 7g-neighborhood of F (note that K can be empty). Choose xy, ..., X, in
F and e > 0 such that, for k=1, ..., n,

Sixr;elCVy and B[F;e]NK=.

We claim that N(f, {x1,...,X,JUK,e)N{d(-, E): Ee€ CL(X)} is in the image of
(V15 ..., Vs KINCL(X). Suppose d(-, E)e N(f, {x1,...,X,} UK, €). Since

Id(xk,E)—d(xk,F)|<e and d(xg,F)=0,

we have ENS[xy; e] # D for each index k. Thus, E hits V; for each k. If KX is
empty, we are done. Otherwise, for every x € K we have both d(x, F) = € and
|d(x, F)—d(x,E)| <e. As a result, d(x, E) > 0 so that ENK = . Thus, Fe
(V15 ..o Vs K. O

An alternate proof of Theorem 1 can be constructed using the equivalence of
the topology of pointwise convergence with the compact-open topology for dis-
tance functions (see [21, Thm. 43.14]). The proof of continuity is simplified ex-
actly to the extent that the proof of openness is made more complicated. We also
note that Theorem 1 above says more than the equivalence of conditions (1) and
(3) of Theorem 2.3 of [3], because sequences do not in general determine the Fell
topology. In fact, if X is not separable then the topology cannot be first count-
able. We find it worthwhile to single out as a lemma the (perhaps known) equiva-
lence of first countability of {(CL(X), 7¢), second countability of (CL(X), 7x),
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and separability of X in the locally compact case. (Actually, each is equivalent to
metrizability of the hyperspace; see Theorem 4 below.)

LEMMA 1. Let {X,d) be a locally compact metric space. The following are
equivalent:

(a) X is separable;

(b) (CL(X), 7r) is second countable;

(c) (CL(X), 7r) is first countable.

Proof. (a) = (b). Let {x,: ne Z*} be a countable dense subset of X. For each n
choose 6,, > 0 such that B[x,; ,] is compact. Then all sets of the form S[x,; 1/k]™
and (B[x,;d,/k1€)", where n and k are positive integers, is a countable subbase
for the hyperspace topology. Thus, (CL(X), 7) is second countable.

(b) = (c¢). This is trivial.

(c) = (a). If X is not separable, there exists for some € > 0 an uncountable sub-
set Fof X such that d(x, y) > e¢ whenever {x, y} C F. Now a local base for 7 at F/
consists of all sets of the form

[S[x1; 6], S[x2;61,...,S[x,;0]; K1,

where {xi,...,X,} is a finite subset of F, K is a compact subset of X, and 6 <e.
Now if {X;: jeZ *1 is any countable subcollection of this local base, where

then we can find x e F— {xj,-:jeZ+ and i < n;}. Clearly, S[x; €] is a 7p-neigh-
borhood of F which fails to contain any X;. [

We now come to the main result of the paper.

THEOREM 2. Let X be a metrizable space. The following are equivalent:

(@) X is locally compact;

(b) X admits a metric d bounded by 1 such that each closed ball of radius less
than 1 is compact;

(¢) X admits a metric d with nice closed balls;

(d) X admits a metric d such that E — d(-, E) is an embedding of (CL(X), 7r)
into (C(X, R), 7CO)-

Proof. Conditions (¢) and (d) are equivalent by Theorem 1, and the implica-
tions (b) = (¢) and (c) = (a) are trivial. It remains to establish (a) = (b). This fol-
lows from general results on refinements of open covers of a metrizable space (sce
[6, p- 196]); we provide a simple direct proof here. Let p be a fixed metric for X.
Let {V;:iel} be an open cover of X such that for each i 17, cl V; is compact.
By paracompactness, there exists a locally finite open cover {W;:i eI} of X with
W; CV; for each i e I. By paracompactness and regularity, there exists a locally
finite closed cover {F;:i e I} such that F; C W; for each i € I. For each i such that
F; is nonempty, define g; e C(X, R) by

2p(x, F;)
p(x, Fi)+p(x, WF)

gi(x)=
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By local finiteness and continuity of each g;,
p*(x,y)=p(x,y)+ _21 |gi(x)—gi ()]
le

is a metric on X equivalent to p. For each x € X there exists i € I for which x e F;.
By construction, p*(x,y) =<1 forces y € W;. This means that B,+[x;1] lies in V;.
Since cl V; is compact, the ball is compact. The desired metric d is min{p*,1}. 0O

THEOREM 3. Let X be a locally compact metrizable space. Then (2%, 1¢) is ho-
meomorphic to a closed subspace of {C(X, R), 7co)-

Proof. Let d be a metric on X as described in condition (b) of Theorem 2. We
extend E - d(-, E) from CL(X) to 2% by mapping & to the constant function
g=1on X. If X is compact then & is an isolated point of the hyperspace, because
(D} =(XC)*. Clearly, N(g,X,3) contains no distance function, because each
such function assumes the value zero somewhere. Thus, g is also isolated in the
relative topology for

Q={g}Uld(-,E): EeCL(X)},

and the extension to 2% remains a homeomorphism. If X is noncompact then all
sets of the form (K€)*, where K is a nonempty (proper) compact subset of X,
form a local base for 7 at &. Since K is compact, for each ¢ in (0,1) we have
d(x, K) < e if and only if x € B[K; €]. Also, by the choice of the metric, for each
such e the generalized ball B[K; €] is compact. As a result, for each such K and e,
the open set (B{K;1— e])*is mapped onto QN N(g, K, €), and the extension to
2% again remains a homeomorphism.

To show that Q is closed in C(X, R), suppose a net {d(-, F))) converges uni-
formly on compacta to e C(X, R). Set F={x: h(x)=0]}. If K is a compact sub-
set of X for which KNF = &, then {(F)) must miss K eventually, because X is
compact and /4 vanishes at any point of Ls /), N K. On the other hand, if F hits an
open set V, choose x € F and € > 0 with S[x;e] C V. Now A(x) = 0 implies that
d(x, F)) < e eventually, so {(F)) hits the subset S[x; €] of Veventually. Thus, ()
Tr-converges to F, whence {d(-, F))) converges to d(-, F) or to g (if F is empty)
under the embedding. Since limits are unique in C(X, R), we have he(}. E]

From Theorem 3, we immediately get the two most important facts about the
Fell topology, which can be established using the natural embedding of (2%, 75)
into CL (X™*) with the Vietoris topology, where X™* is the one-point compactifica-
tion of X [12]. For a direct proof, corsult [1].

THEOREM 4. Let X be a locally compact metrizable space. Then (2%, 1) is a
compact Hausdorff space, and (2%, 1) is metrizable if and only if X is separable.

Proof. The family Q={g}U{d(-, F): Ee€ CL(X)} in the proof of Theorem 3
is equi-Lipschitzian and is thus equicontinuous. Also, for each x e X, cl{ f(x):
S e}, as a subset of [0, 1], is compact. Since Q is closed, by the Ascoli theorem
(cf. [21, Thm. 43.15]), Q is compact with respect to the compact-open topology.
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By Lemma 1, separability of X is necessary for first countability of the hyper-
space, and thus for metrizability. Conversely, if X is separable, then X admits a
metric d for which closed and bounded sets are compact (cf. [2] or [18]). Fix xpin
X; then a countable collection of seminorms determining the (locally convex)
compact-open topology on C(X, R) is

pn(f)=sup{|f(x)|:d(x,x0)=n} (neZ"),

whence the space {C(X, R), 7co) is metrizable [17]. By Theorem 3, the hyper-
space (2%, 7r) is metrizable, too. d

In this author’s view, the natural way to extend the notion of distance function
for nonempty closed sets in a metric space (X, d) to include O is to identify J
with g: X' — [0, co] defined by

g(x)=supf{d(x,z):ze X}.

If d is a bounded metric, then {g}U{d(-, E): E € CL(X)} is an equicontinuous
family. In the literature, a different program has been used, following [20]. Inde-
pendent of d, one sets d(x, @) = o for each x in X, and a net {F)) in 2X is de-
clared Wijsman convergent [11] to F € 2% provided (d(-, F))) converges pointwise
to d(-, F). Wijsman convergence is compatible with a uniformizable topology on
2%, and it is metrizable when X is separable (see [11, §4]). If d is a bounded met-
ric, then the Wijsman topology, of course, agrees with the compact-open topal-
ogy on CL (X)), but the two topologies differ in the way they treat the empty set:
In the Wijsman topology, the empty set must be an isolated point; whereas under
our suggested correspondence, it need not be. ‘
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