NOTE ON A PAPER OF P. PHILIPPON

W. Dale Brownawell

In Proposition 3.3 of [6], Philippon has sharpened previous results of Masser
and Wiistholz on the degrees of the isolated components of ideals generated by
polynomials of known degree over a field of characteristic 0. Here we propose to
shorten and, we hope, render the scheme of that proof more transparent by (a)
returning to the systematic use of localization (as in [2], [3], [4]) and (b) by defin-
ing a convolution to state the multihomogeneous Bezout theorem and to evalu-
ate the highest homogeneous term of the Hilbert polynomial. The first half of
Philippon’s proposition would also fit neatly into our framework, but a concise
version was given in [1] already.

We need some notation. A multihomogeneous ideal in R = k[x;,...,X,] is an
ideal I generated by polynomials which are simultaneously homogeneous in each
of the p sets of variables x; = (X;o, ..., X;n,) separately. If 7 is also prime and no
x; C I, then [ is called relevant. For d =0, let

N(A)=i=Ur---sip)€ZE0: j1+ -~ +jp=d]}.

For D= (D, ...,Dp) and & = (§;)jen), define the convolution = = é* D by the
formula m;=%%_, D; 8j+¢; for each je N(d—1), where ey, ..., e, are the standard
basis of Z”. We note that if dim I =d =0, then I has a degree 6(/) with com-
ponents 6;(/) € Z~ for every j e N(d) and some §;(I) positive. Moreover when
d =1, the multihomogeneous Bezout theorem (see, €.g., Lemma AS of [4]) states
that if P is multihomogeneous of degree D and P lies in no associated prime of
I, then (I, P) is multihomogeneous of dimension d —1 and its degree can be ex-
pressed in our notation as 6(Z, P) =6(/) * D.

For a fixed multihomogeneous ideal U, Philippon works in the open set U of
the maximal spectrum M consisting of those maximal (relevant) ideals, It € M,
such that 9% 7 U. We say that a multihomogeneous ideal J is U-perfect if for
every MM € U, the ring Rqy /JRgy is Cohen-Macaulay. Then, if P is a multihomo-
geneous prime ideal in such an IR, Ry /JRy is also Cohen-Macaulay. For any
multihomogeneous ideal 7, a primary component contained in an It € M will be
called a primary U-component of I, and similarly for associated prime compo-
nents. Philippon introduced a function Sy H(/; D), which can be written in our
notation as

d d
SuH(I; D)= Y 6;(I 1)) *D* - xD= 3 8([))*D*,
1mes

where 14, is the intersection of all isolated U-components of I of dimension k.
The U-degree (U-dimension) of an ideal is the degree (dimension) of the inter-
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section of its U-components. We say that 7 is U-unmixed if all its U-components
have the same dimension. The first-time reader is invited to ignore all U prefixes,
that is, to restrict his attention to the usual global case U= M.

From now on, let J be U-perfect and let I = (J, Py, ..., P,,) with Py, ..., P,, mul-
tihomogeneous of multidegree at most D; that is, all degy, P; < D;.

PROPOSITION. If J is U-unmixed of U-dimension d, then
d
> 6(Iy) * DX =8(J) % D7
k=0

Proof. Let dy=0 be the minimal dimension of isolated U-components of 7,
that is, do=min{k: 6(l(x)) #0}. Fori=d,...,dy let M; = R\U P, where P runs
through C;, the set of all isolated prime U-components of 7 of dimension at
most i{. Our aim is to construct a sequence of multihomogeneous polynomials
Qa—1,---, Qg, of multihomogeneous degree D which are linear combinations of
the P’s (possibly times appropriate monomials) such that

(a) for each A;=(J,Q4-1,...,0;) and P e C;, (A;)y is of the principal class

in the localization Ry and therefore (A4;) M; and J; = (A:))m; N R are un-
mixed of dimension /; and such that

d

(b) Y 0y *DF 4 8(J) < 8(N)* DY,

k=i+1
where < denotes inequality in each component.

Note that when i = d we have equality in (b). Assume now that for a particu-
lar i (do<i =d) we have constructed Q,_1, ..., Q; so that (a) and (b) hold. Then
write J; = G;N B;, where G; is the intersection of all the (good) primary compo-
nents of J; corresponding to isolated prime U-components of 7, and B; is the in-
tersection of all the other primary components of J;.

We first remark that all the isolated prime U-components of I of dimension /
appear associated to a primary component of G;. For let P be such a prime. Then
IpD(J,Q4-1, ..., Qi)p=(A;)p and so the *P-primary component & of 7 contains
J,'Z

Q=IpNRDO(A)m,NR=1J,.

Since J; is of the dimension of ‘P, P is a prime component of J;, and thus it fol-
lows from the preceding inclusion and Lemma A4 of [4] that

6(Ly) =6(Gy).

Each prime component of B; lies properly within an isolated prime U-com-
ponent of I; so a sufficiently general linear combination Q;_; of the P’s (possibly
times appropriate monomials to obtain polynomials of degree exactly D) will lie
outside all prime components of B;. Set A;_;=(J, Qg—-1,..-, Q;i_1) so that for
each isolated U-component P e C;_1, (A;-1)y is of the principal class in Ry and
therefore unmixed of dimension i/ —1. Thus the ideals (A4;_)as,_, and J;_; are un-
mixed of dimension i —1, and by Bezout’s theorem, since J;_; omits any primary
non-U-components of (B;, Q;_1),
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6(Ji—1) =6(B;) *D.
Thus by the two preceding displayed lines and the induction hypothesis,

d d
> 6(I(k))*Dk—i+l+5(Ji—l)5( > a(I(k))*Dk-i‘l‘a(Gi)'i‘&(Bi))*D
L .

J=i k=i+

d
=( > 5(I(k))*Dk_i+5(Ji))*D
k=i+1

=i+
< §(J)*xDI—G-D,

which completes the proof of (b).

Now we obtain the theorem by convolving inequality (b) for i = dg with D (dj
times), noting that 8(/(;)) < 6(G;) < é(J;) for i =d, in particular, and recalling
that 74y = (0) and therefore 6({(x)) =0 for k <d,. O]

When J = (0) and U =M, we obtain the following global result, where (7))
denotes the degree of the isolated components of 7 in dimension k.

COROLLARY 1. Let I =(Py, ..., Py) in R and N=N;+ --- +N,. Then
N
2 6(I(k))*DkSDN.
k=0

To obtain the full result of the second part of Proposition 3.3 of [6], we use the
following observation.

LEMMA. All components of J contained in a fixed I € M have the same di-
mension.

Proof. According to the Corollary on p. 258 of [5], all prime components of
the zero ideal in the Cohen-Macaulay ring Rg, /JRg; have the same dimension.
But then this is the dimension of their counterparts in RN JRgy. O]

COROLLARY 2 (Proposition 3.3 of [6]). SyH(I; D)< Sy H(J; D).

Proof. Let J have U-dimension d and fori =0, ...,j<d, let 6} denote the sum
of the U-degrees of the isolated U-components of /7 of dimension /i containing
some U-component of J of dimension j. Then by our Lemma,

d
B(I(j)) = 25}
i

_l =
For fixed j, define U; by replacing ? in the definition of U with UND;, where
D; is the intersection of all isolated primes of J of dimension other than j. Then
J is U;-unmixed and Uj;-perfect of U;-dimension equal to j. By our Proposition,
Jj . ) .
E 6; *D'SB(J(,-))*DJ’.
i=0

Thus, on reversing the order of summation, we find that
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d Y A
SUH(I,D)‘: 2 6(1(’-))*DI= E E (S_;*D’
i=0 j=0i=0

d .
= > 8J()*D/ =Sy H(J; D),
j=o :

as desired. O
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