LIFTING OF OPERATORS AND PRESCRIBED NUMBERS
OF NEGATIVE SQUARES

Gr. Arsene, T. Constantinescu, and A. Gheondea

1. Introduction. The problem we are interested in can be formulated in full
generality as follows.

Let 3C; be Hilbert spaces and let J; € £(J3C;) be symmetries (J e £(3C) is a sym-
metry if J=J*=J"1), i=1, 2. Consider also T e £(3C,, 3C,) such that the num-
ber of negative squares of the self-adjoint operator J,—7T*J,7T is a given car-
dinal x —see Section 2 for the terminology. (We denote this situation by writing
k (J1—T*J,T)=«.) For other Hilbert spaces JC/ and symmetries J/ e £(3C/),
consider JC; = 3C;® 3¢/ and J;=J,®J{, i=1,2. If & is another given cardinal,
then

%) { Give a description of all operators 7 e £(3C,, 3,) such that

Pi2T|3¢,=7, and « (J;—T*J,T)=r.
(For a closed subspace G of a Hilbert space 3C, P§C stands for the orthogonal
projection onto G.)

The “definite” case of Problem (*) (i.e., all the symmetries involved equal the
identity and « = & =0, making 7 and T contractions) is a well-known problem in
dilation theory. A full solution of it (which includes the description of the defect
spaces of T) and its (long) history can be found in [3]. The methods involved
proved to be useful for the geometric approach to dilation theory and to some
extrapolation problems.

The passing to the “indefinite” case has strong motivations and many efforts
have been made along this line both in extrapolation problems and in dilation
theory (see, as samples from a very large list, [16], [10], [1], [5], [12], [4], [8]).
This makes our Problem (*) quite natural. On the other hand, it is transparent
that Problem (*) involves linear operators on indefinite inner product spaces. In
this setting the formulations become simpler, and the “invariant” part (i.e., that
independent from the chosen symmetries) can be pointed out. Of course, the usu-
al difficulties of the “indefinite” case (e.g., the lack of an adequate substitute for
the square root of “positive” operators) will show up.

In this paper we adapt the methods of [3] for giving a solution for Problem (x)
in the Pontryagin case and when & has the least admissible value (see Theorem
5.3). Let us note that the existence problem for & bigger than the least admissible
value can be easily deduced from there, but the description of all solutions in-
volves (as suggested by Section 2) some new parameters and, on the other hand,
some parameters may be unbounded.

For proving the main result, we need several facts which are presented in Sec-
tions 2-4. We begin by recalling the necessary Krein space terminology, and with
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a discussion on indefinite factorizations of self-adjoint operators (to replace the
factorizations of positive operators in Hilbert space). Note that Corollary 2.6
deals with the best situation which will be used later. In Section 3 we analyze
the connections between the ranks of negativity and positivity for /—7*7 and
[—TT?*, where T is a Krein space operator and 7% is its J-adjoint. These connec-
tions will imply some restrictions on « and &. Section 4 contains the main tech-
nical point (Proposition 4.1) which provides a substitute for the defect relations
from the definite case (i.e., TD;= DT for a Hilbert space contraction; see
[18]). Some “link operators” are constructed and their properties are established.
These give the possibility of introducing (Corollary 4.5) the “elementary rota-
tion” in this indefinite case. Our solution (in the above-mentioned case) for Prob-
lem (x) is given in Section 5.

Some applications are given in [9]; other applications and connections with
previous results will be presented elsewhere.

We want to thank H. Langer and T. Azizov for making useful remarks on a
preliminary version of this paper, which circulated as INCREST Preprint no.
64/198S5.

2. Indefinite factorizations of self-adjoint operators. We will use without spec-
ification some elementary notions and facts from Krein space theory; these can
be found in [6] or [11]. Let us recall some of them here, merely for fixing the
notations.

A Krein space X can be thought as a Hilbert space endowed with a supplemen-
tary indefinite inner product [-, -] given by

2.1) [x,y]1=(Jx,»), x,yeX,

where J € £(X) is a symmetry (called a fundamental symmetry —f.s. for short —
of the Krein space (3, [-, -]1)). There are many (equivalent) ways of turning the
Krein space (I, [+, -]) into a Hilbert space, depending on the chosen f.s. Topo-
logical notions on X are associated to the Hilbert space structure of J; the same
is true for the notation £(X;, X»), where X;, X, are Krein spaces. Positivity,
negativity, and neutrality of vectors are referred to as the indefinite inner product
being (respectively) =0, <0, =0. The J-orthogonal of G C X (denoted G*1) is
its orthogonal with respect to [-, -]. A subspace G C X is called nondegenerate if
its isotropic part (= GNG™)) is trivial. If Te £(Xy, K,), its J-adjoint T* is
defined to be J,T*J,, where J; is a f.s. of X;, i=1, 2. A (possible unbounded)
operator 7 is J-isometric if [Tx, Ty] =[x, y] for every x, y € D(T), the domain
of 7T'; a continuous surjective J-isometry is called a J-unitary operator. The oper-
ator T e £(X;, X,) is called J-contractive (more precisely (J;, J>)-contractive) if
Ji—T*J>,T=0; that is, if I—T"7T is a J,-positive operator.

If J is any f.s. of the Krein space X, and J= P, — P_ is its Jordan decompo-
sition, then dim P, (X)(=«7(3)) and dim P_(XK) (=« ~ (X)) are independent
of the chosen J. If one of these numbers is finite (we always choose in this case
k~ (J) < o) then X is called a Pontryagin space.
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Let us come to the main topic of this section. Consider A e £(3C), a self-
adjoint operator on the Hilbert space JC. Denote by sgn the function signum
defined by

sgn: R—{—1,0,1}

2.2) -1 <0
) sgn(t) = 0 =0
1 t>0.

Put S, =sgn(A); then S, is the self-adjoint partial isometry which appears in the
polar decomposition of 4. Thus:

ker(S,4) =ker(A4)
(2.3) S4(3C) =R (A)
A=S,4|A4|,

where ®R(A) stands for the range of A. The signature numbers of A4 are defined
as follows:

k  (A)=dimker{(/+S,4)
2.4) kT (A)=dimker(/ —S,4)
k°(A) =dim ker S,.

Recall that k “(A) (k*(A)) is also the number of negative (positive) squares of
the quadratic form (Ax, x), x € JC (see, e.g., [11]). Denote by JC 4 the Krein space
obtained from R (A4) and its symmetry S4. The fundamental decomposition of
3C4 associated with S, is

(2.5) IC4=3C4[+]13CH,
where JCi = ker(/—S,4) and 3C3 =ker(/+S,4). It follows that

k(I =k (A) =k (S),
Kk (Ha)=«k"(A)=«"(Sa).

(2.6)

Note that (R(|A|l/ 2y is invariant by S4 and dense in 3C4. Denote this space by
R'(A).

Our analysis of indefinite factorizations of A4 is contained in the next proposi-
tion; its first part can be found in [7] (for the matrix case see [16]).

2.1. PROPOSITION. Let 3C be a Hilbert space, Ae £(3C), A= A* and let
X be a Krein space with a f.s. J. Then
(i) There exists Be £L(3C, X) such that

2.7) A= B*JB(=B"B)
if and only if
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+ +
2.8) {K (X)=«T(A),

kK (X)=k"(A).
(ii) Suppose (2.8) is fulfilled; then B e £(3C, X) verifies (2.7) if and only if
2.9) B=(C|A|"?|3, X)

(with respect to 3C = 3C D ker A), where C: R'(A)Y(C 3 4) —» XK is J-iso-
metric such that (C|A|1/2 |3c,) € £(FCa, X), and X € £L(ker A, X) such
that X*X (= X*JX) =0 and R(X) C(R(C))™*.

Proof. (i) Suppose that there exists a B e £(3C, &) which verifies (2.7). Then
(2.10) 0< (Ax, x)=(B*JBx, x) =[Bx, Bx],

for every x € 3¢} \ {0}. In particular, B | se 1s injective and B(3C}) is a nonnega-
tive subspace of ¥. Hence kT(A4)=«1(3C4) =k (&K). The second relation of
(2.8) follows similarly.

Conversely, suppose (2.8). Then it follows immediately that there exists a J-
isometry C e £(3C,4, X) such that

(2.11) N C*JC=SA ISCA-
Taking B= C|A|Y? e £(3C, k), we obtain (using (2.11))
@.12) BB =|A|"2CIC|A| 2= 4] 25,|41 2 = 4,

so B verifies (2.7).
(ii) If Be £(3C, X) verifies (2.7), then define the linear mapping

C:R'(A) - X,
C|A|1/2x=Bx, xe JCy,.

The mapping C is well defined, since |A|1/2 is injective on ®R(A). Define also
X e L(kerA4, X) by:

(2.14) Xx=Bx, xekerA.

The relation (2.9) follows from (2.13) and (2.14). Let us verify the properties of
C and X. For x, ye 3C4,

[C|A|Y?x, C|A|?y] = (JBx, By) = (Ax,y)
=(Sa|A|"?x, |A|2y)=1]|4]"%x, |A]'?»1],

which proves that C is J-isometric. The fact that C|A|'/2 |3, € £(IC4, 3) fol-
lows from (2.13). Now, for any xe JC4 and y € ker A4,

(2.13)

(2.15)

(2.16) [C|A|Y?x, Xy] = (JBx, By) = (Ax, ) =0,
s0 ®R(X) C (R(C)™). Finally
(2.17) (X*Xx, y)=[Xx, Xy] = (JBx, By) = (Ax, y)=0

for every x, y € ker A, which shows that X*X =0.
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Conversely, suppose B is as in (2.9). Then if x =x;+x; and y =y;+ )2, with
x,ye JC, x1, yi€ 3,4, and x,, y, € ker A, we have:

(B*JBx, y) = (JBx, By) = (JC|A|"?x,4+ JXx,, C|A|"/?x| + Xx7)
=[C|A|2x,, C|A|V?x,]1+[C|A|"*x1, Xx3]
+ [ X2, C|A|Y? %]+ [ Xx2, XX3]
=[]4]"?x,, |A4]"*x],

where we used that ® (X)) C (R(C))!], that C is J-isometric, and that X*x=o0.
Thus

(2.19) (B*JBx, y) =[|A|"?x,, |A|"2x11= (84| A|?x1, |A|'?x1) = (Ax, y),
which implies that B*JB = A. )

2.2. REMARK. From the preceding construction it follows easily that ® (X)) is
exactly the isotropic part of R(B).

(2.18)

In the rest of this section we keep the notations of Proposition 2.1. In the next
corollaries we present some supplementary facts on the formula (2.9).

2.3. COROLLARY. If B3C, is a nondegenerate subspace of X, then the cor-
responding C is closable.

Proof. Because B3C, = m is nondegenerate, it follows that
ClA|"*3c+(C|A|* 3¢y
is dense in X. Now, for xe 3¢, y=C|A|"?h, he 3C, and z € (C|A|'/?3C)], we
have:
2.20)  [ClA|"?x, y+z]1=[C|A|"*x, C|A|"*h]=[]|A]"*x, |A|/?h],

so y+zeD(C) and C*(y+z)=]A|"?h. In particular, C* is densely defined;
thus C is closable. ]

Since the closure of a J-isometric operator is J-isometric, Corollary 2.3 im-
plies that if (B3C4) is nondegenerate then C can be chosen closed.

2.4. COROLLARY. Suppose that 3C,4 is a Pontryagin space. Then C is bounded
if and only if B3C,4 is a regular subspace of X.

Proof. We choose k™~ (JC4) <oo. From (2.13) it follows that
(2.21)  D(C)=|A|Y?3C=|A|V?3Ck +|A|V23C =3Ca+|A|V2 3¢,

where [A4|Y23C} c 3¢} is a uniformly positive subspace of 3C4 (see [6, Theorem
V.5.6]). From [6, Theorem VI1.3.5], the isometry C is bounded if and only if
C3C4 and C|A|Y/23C} are uniformly definite. Because C3Cj is finite dimensional,
it follows that C is bounded if and only if C|A|"?3¢C} is uniformly positive. Now

(2.22) B3C,=®(C)=C3C4[+]C|A|/?3CH.
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Then B3C, is regular if and only if C|A|Y23C} is uniformly positive (see [6, The-
orem V.8.2]). U]

2.5. COROLLARY. Suppose that A has closed range. Then the J-isometry C
is bounded.

Proof. Follows immediately from the fact that |4|"/? is invertible on 3C, and

ClA|V?e £(3C4, X). =
2.6. COROLLARY. Suppose that k (A) =« (X) <oco. Then the formula
(2.23) B=C|A|"?

establishes a one-to-one correspondence between all operators Be £(3C, X) with
B*JB = A and all J-isometric operators Ce £L(I3 4, X).

Proof. Arguing as in (2.22), it follows that ® (B) contains a negative subspace
of maximal dimension, so ®(B) is nondegenerate. Then Remark 2.2 implies
that, in the representation (2.9) of B, we have X = 0. Moreover, from [6, Corol-
lary I1X.2.3] it follows that ®(B) is regular, so C is bounded by Corollary 2.4.

J

3. Connections with the J-adjoint. Let X be a Krein space (with a f.s. J) and
Ae £(X) a J-self-adjoint operator (i.e., A=A"). Then JA is self-adjoint, and
we define the J-signature numbers of A4 by:

(3.1) k' [A1=«’(JA), j=+,—,0.

Note that k/(A4), j =+, —, 0, are respectively the rank of positivity, negativity
and isotropy of the quadratic form [Ax, x], x € X (see [11]).

In this section we give some simple relations between the J-signature numbers
of the defect operators.

3.1. PROPOSITION. Let X, and X, be two Krein spaces and T € £(X;, X3).
Then:

(3.2). kEI—=T*T14+ k(X)) =x*[I—-TT*1+x* (X))
(3.2)o LI-T*T1=«11-TT"].

Proof. We use the known trick from the definite case. Take X = ¥;[+]3; and
T e £(&K) defined by

. 1 1
(3.3) T=<T I).

Note that 7" can be factorized in two dual ways:

L /T 0N\/I 0 I 7t
@-9 T=(T 1)(0 I—TT#)(O I)

and
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35 p_ (I T'N\(I-T'T 0\(I 0©
= (0 )0 )G 1)

The formulas (3.2) follow from the computation of «/[7T], j= +, —, 0, using

successively (3.4) and (3.5). ]
3.2. REMARK. If J;is a f.s. of X;, i =1, 2, then the formulas (3.2) become:

3.2). k(I =T T)+x*(J2) =k (Jo =TI T*)+k*(J)

(3.2)6 k(N —T*J,T)=«%(J,— T, T*).

3.3. COROLLARY. Suppose that X and X, are Pontryagin spaces and T €
L(Ky, Kp). Then x (I—-T'T)y< o if and only if k (I—TT") < oo, and in this
case

(3.6) K (I=T*T)—k~(I—TT") =k~ () —k~(K2).

3.4. REMARK. In the situation of Corollary 3.3, formula (3.6) can be also
written as (see Remark 3.2):

(3.6)’ kK (J1—T*J,T)—k  (J,—TIhT*)=x (J1)—« (J2).
For obvious reasons we shall refer to (3.6) or (3.6)’ as the “index formula.”

We also record here a well-known fact (see [16]), with the advantage of an ele-
mentary proof (see also [8]).

3.5. COROLLARY. Suppose that k (X)) =k (K3)<oo. Then T is a J-con-
traction (resp. strict J-contraction, uniform J-contraction) if and only if T* is a
J-contraction (resp. strict J-contraction, uniform J-contraction).

Proof. We only have to note that 7" being J-contraction means « [[—T*T]1=0;
T being strict J-contraction means k[ —T*T1=«°[I—-T*T]1=0; and T being
uniform J-contraction means x [[—7T*7T]1=0 and 7—T*T is invertible. Then
apply Corollary 3.3. OJ

4. Link operators. Consider X, J¢, two Krein spaces with f.s. (respectively)
Ji, Jo. Take T e £(XK;, ¥,) and define the following operators:

@4.1) Jr=sgn(J;—T*J.T) Jrr=sgn(Jo,—TJ,T*)
4.2) Dr=|J,—=T*),T|Y?  Dpe=|J,—TJ, T*|V2
The following relations follow immediately:

(4.3) JrDr=DrJr JreDy+=D7+ J7T;

4.4) JrD3=J,—T*J, T  Jr+D3.=J,—TJ, T*;

TH(1 —=T*I,T)Y=(J,—T/h T*)J, T
T*Jop(Jo—=THhT*)=(J1—T*J,T)J, T*.

4.5)
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Consider the Krein space D7 constructed from R (D7) with the f.s. Jr; analo-
gously D7 is constructed from R (D7) with the f.s. Jr-. Note that

(4.6) k(D7) =kE( ) = (N =T*T)=«*[I-T*T],

and similarly for ®«. These numbers are invariant to the changing of f.s. J; and
J». The operator D+ (resp. the Krein space D7) is called the defect operator (resp.
the defect space) of T. (For the definite case see [18], [10].)

The main technical point of the paper is the next proposition, which provides
an “indefinite” analog to the well-known defect relations from the definite case
(i.e., TDT=DT*T).

4.1. PROPOSITION. With previous notations, there exist uniquely determined
operators Lr€ £L(Dr, Or+) and Ly«€ L(D 7+, D7) such that:

(47) DT* LT= TJIDT | (‘DT;
4.7)x DrLr«=T*J2D7+| ..

Proof. The proof uses a result due to Krein [13] (see also [15] and [17]) which
asserts that a bounded linear operator on a Banach space & which is symmetric
with respect to a given (definite) continuous inner product on X is also bounded
with respect to the Hilbert norm on I associated to the inner product.

Define on the space X, the inner product
4.8) (x, y=(D%-x,y) for x,ye XK.

We will show that the operator S=JrJ,TJrJ, T* is -, -) symmetric. Indeed,
using the relations (4.3)-(4.5), we have:
D3S=(J,—TJ\T*)J,TJrJ, T*

“4.9) )
=T/ (J1=-T*), DI/ T*=TJ1D7+J,T*=0,
and analogously,

(4.10) S*D%.=TJ,D%J,T*.

Using the above-mentioned theorem of Krein (and the Schwarz inequality for
the inner product ¢-, -)), we obtain

(4.11) k D%.S < puD%.
for a positive u. From (4.9) and (4.11) it follows that
(4.12) TJ,D%J,T*< pD%.,

which implies the existence of an operator Lye€ £L(Dr, D+) verifying (4.7). The
uniqueness follows from the injectivity of D7+ on Dp-.
The statement concerning L7 follows similarly. O

We refer to L7 and L+ as the link operators associated to 7.

4.2. REMARKS. (1) The link operators can be explicitly written when 7 —T*r
has closed range (equivalently, —77T* has closed range —see Proposition 3.1).
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Indeed, in this case D7 is invertible on D and D7+ is invertible on D«. More-
over, (4.5) implies that

(4.13) T),D7C Dyv, T*J, D7+ C Dy
Thus, we infer that
4.14) Lr=D7'T/\Dr|9p,;  Lr+=D7'T*J;D7r+|op,..

In particular, this can be done when X; and X, are finite dimensional (see [16]
and [5] for applications of this situation).
(2) The link operators are also simple if 7.J, = J,T. Indeed, in this case, we have

4.15) Lr=J,T, Lys=0T%

the relations (4.7) and (4.7), become the classical “defect relations” DT =TDr
and Dy T*=T*D-.
4.3. COROLLARY. With the above notations:
(4.16) Ly=L%.
Proof. From (4.7) and (4.5) we infer:
@.17) DLy JrDr=T/ )\ Dy JrDr=TJ((J,—T*J,T)
=(Jo—TIhT*)J,T=Dp+JJr+Dp+J,T.

Because D+ is injective on D7+, (4.17) implies that

4.18) LyJrDr=Jr«Dpr:J,T,

which is equivalent with

4.19) DrJr Ly Jp=T*Jy Dr-.

Using the uniqueness of L;», we have that

(4.20) Lp=JrLtJr+ |9,

which proves the corollary. ]

4.4. COROLLARY. With the above notations:
4.21) (Jr—D7JyD7) |9, =L1J7r+ Lt
(4.21), (Jr+—Dp+J2 D7) | .= L7+ Jr L+
Proof. Using Corollary 4.3, the relation (4.21) is equivalent with
(4.22) Lr-Ly={U—JrDrJ1 D7) |9,
For proving (4.22), take x, y € X, and compute
(Lr+LrDrx,D7y)=(DrLr-LrDrx, )

(4.23) )
=(T*J2Dr+ Lt Drx,y)=(T*]2T/1D7x,y)

and
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(U~JrDrJ1Dr)Drx, Dry) = (D7x, y)—(Jr D} J1DFx, )
4.24) =(D1x, ¥) = ((J1=T*J2T)J1 D7 x, p)
=(D7x,¥)—(DFx, y) +(T*J,TJ,D7x, y).
From (4.23) and (4.24) we have
(Lr«LyDrx, Dry)=(({U—JrDrJ1D7)D7rXx,D71Y),
and (4.22) (and hence (4.21)) follows. The relation (4.21), is similar. ]

4.5. COROLLARY. The operator:
R(T): 3 [+]D7—» Ka[+]1D7

(4.25) /T D
R(T)—(DT —JTLT*>

is J-unitary.
Proof. Straightforward computations using previous results. O

The operator R(T) is the indefinite version of the “elementary rotation” asso-
ciated to a Hilbert space contraction. It is expected (see [9]}) that R(T') plays in
the indefinite case the same fundamental role as its definite analog plays in sev-
eral manipulations from dilation theory. This can be seen also from [8] where a
particular R(7T") (with Jr=0) is the basic cell in the analysis of a matrix having
k negative squares —in a perfect analogy to the positive definite case.

5. Main theorem. In this section we will analyze Problem (*) for Pontryagin
spaces. So, let X;, ¥, be Pontryagin spaces (« () <oo, k (¥3) <o) and T €
L(XK;, Ky) with k7 [I— T*T] equals a given cardinal k. The formula (3.2)_ im-
plies the necessary restriction:

5.1 k=zk (XK)—«k (X2),

which will be assumed throughout the rest of the paper. Fix J; (i=1,2) a f.s. of
X ;. Consider also Pontryagin spaces X} with f.s. J/ (i=1,2), and form &; =
K, [+1X: with f.s. J;=J;+J/ (i=1,2). Problem () asks for a descrlptlon of all
operators 7€ £(X;, X5) such that

- T A

5.2 T =
5.2) ( » ¥
with respect to &; = 3;[+1K{ and K= K,[+1XK%, and k(I —T*T) =&, where
K is a given cardinal.

As in [3], we consider first the corresponding problem for rows and columns,
In this respect we consider the following problems:
) Give a description of all operators 7, e £(X;, ¥,) such that

g T,=(I A) and « [I-T/T,1=k,
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T.=(T B)' and «x [I-T!T.1=x;

here ¢ stands for the matrix transpose.
Our solution to Problem (), is contained in the following.

5.1. LEMMA. (i) If Problem (x), has solutions then it follows that

%) { Give a description of all operators 7T.e £(X;, X,) such that
C

(5.3) g =max{k, k(K1) —k (32)].
(ii) The formula
5.9 T,=(T Dr.T)

establishes a one-to-one cozrespona’ence between the set of all solutions to Prob-
lem (%), with R=k=k (X;3)—«k (X,) and the set of all J-contractions I" €
L(X], Dr+). Moreover, in the above situation, the operators U(T,) and U,(T,)
defined by:

Uuli): Or, »Dr[+1Dr,

(5.5) Dy —JrLy.T
U(T,)Dr = ,
(7})Dr, ( 0 Do )
and
(5 6) U*(Tr): EDT,."_*ZDI‘*,
’ U*(T,)Dr:=Dr+Dr-

are J-unitary operators.

Proof. (i) As expected, several manipulations with Proposition 2.1 will be nec-
essary. Let 7, be a solution to Problem (*),. From (3.6)’ it follows that

(5.7) O0<k (Jo—T, iTH)=fk—k (K + £ (K2);

so k=« (X;)—« ~(J,). For proving that & = «, construct a Krein space X (with a
f.s.S)suchthatk (X)) =«k " (J,—T>J,T*) and « T (X) =« T (J,— T, J, T,*). Prop-
osition 2.1(i) implies that there exists an operator Y e £(X,, X) such that
(5.8) Jo—T, 1 T*=Y*SY.

Matrix computations show that (5.8) is equivalent with

Ji 0\ /A*
(5.9) Jo—TIHhT*=AJ{A*+Y*SY=(4 Y*)("! :

0O S Y
Applying again Proposition 2.1(i), for the operator J,—7TJ,T*, we obtain that
(5.10) K (Jp—TIhT*)Y=« (X])+c (X).

Using the index formula we have that (5.10) implies @ > «.

(ii) Suppose =k =« (K;)—« (I,) and take 7, as a solution to Problem
(*),. Repeating the construction from (i) we obtain the operator Y e £L(X;, X),
which verifies (5.9) and, moreover,

(5.11) K (Jo—=ThT*)=« (X])+« (X).
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As k (XD +x (X)=«k (X{[+]1X), X{[+]1X being the space acted on by the
operator (A Y*), Corollary 2.6 implies that there exists a unique J-isometric
operator A € £L(D7+, Xi[+]XK) such that

(5.12) (A* Y)Y =ADy-.
Represent A as (A; A,)’ with respect to J{[+]3C; then (5.12) implies
(5.13) A=Dr-Aj,

while the J-isometric condition on A implies
(5.149) Jr«—ATJ{A;=A%SA,.

Take I' = AT; then (5.13) implies (5.4). It remains to show that I" is a J-contrac-
tion. For this, note that

(5.15) kT (ASSAL) <k (S)=k—k (K1) 4+« (I2).
Writing the index formula for I' and using (5.14) and (5.15) it follows that
(5.16) k (Ji—-T*JT')=0

which says that I" is a J-contraction.
The identification of defect spaces is obtained as follows. First note that (using
(5.8), (5.9), and (5.4))

(5.17) D Jr:Dr:=J,— T, J\ T = Dp+(Jp«—TJ{T'*) D+ = Dy« Dy« Jp+ D+ D1+,

which shows that the operator U,(7,) defined by (5.6) is a J-isometry. But
Kk (Drr) =« (Dr+) <o and U,(7T,) has dense domain and dense range; thus by
Theorem VI1.3.5 of [6] it follows that U,(7,) is J-unitary. Then we have:

J\—T*J,T —T*J,D7T
5.18 Dr.Jr.Dr. =
(5.18) el it (—I‘*DT*JZT J{—I‘*DT*JZDT*I‘>
and

DT —JrLpT
5.19 F*LT Jr Dp 0 1331, Dr
' _ ([ JrD% —DyLyT
T\ —TI'*L%-Dy T*Ly.Jr LT+ D§

Using (4.21),, we infer:
(5.20) DA+ T*L3Jr LT =J{—T*(Jp+— L+ Jr L) = J{—=T*Dp+ J, DT

From (5.18), (5.19), (4.7)«, and (5.20) it follows that U(7,) defined by (5.5) is
J-isometric. The fact that U(T}) is J-unitary is obtained similarly as for U,(7}).
Conversely, taking a J-contraction I' € £L(X{, D7), we have that

(5.21) kK (Jo—TJIT*) =k —x (Ky)+ £ (3>).
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Taking 7, as in (5.4), the relation (5.17) implies that « (J7r-—T'J{T'*) =
k (Jo—T,J,T;). The index formula and (5.21) implies then that # < k. The con-
verse inequality being true by (i), we have that ¥ = «.

The fact that the correspondence from (5.4) is one-to-one is clear. ]

The solution to Problem (). follows using dual arguments:

5.2. LEMMA. (i) If Problem (*). has solutions then it follows that

(5.22) F=k—k (K2)+k (3K>).
(ii) The formula
(5.23) T.=(T TDr)

establishes a one-to-one correspondence between the set of all solutions to Prob-
lem (*) with & =k —k~ (K3)+«k~(K,), and the set of all operators T € £(D, 3¢3)
such that T'% is a J-contraction. Moreover, in the above Situation, the operators
U(T.) and U.(T;) defined by

(5.24) {U(Tc): H7, - Dr,
U(T:)D7,=Dr D7
and
UTe): D1 > D7+ [+]1Dps,
(5.25) Uu(To) D = (DOT. —JZI:P )
are J-unitary operators. O

The main result of this paper is the following.

5.3. THEOREM. (i) If Problem (*) has solutions then it follows that

(5.26) R=max{k—x (&K2)+ & (K2), k (K —k(K)].
(ii) The formula
(5.27) r=( T . Dr-T'
. I')Dr —FzLTJT*FI'*-DF;PDPI

establishes a one-to-one correspondence between the set of all solutions to Problem
(*) with =k —k ™ (K2) +x ~(K32) = k(K1) —«~(K3) and the triplets {I',T',, T},
where T'ye £(XK{, Dr+) and T'ye £(Dr, K5) () and T'} being J-contractions),
while T' € £(Dr,, Dr;) is a Hilbert space contraction. Moreover, in the above sit-
uation the operators U(T) and U,(T) defined by

U(T): D7 Dr,[+1Dr,

~ Dy, Dy —(Dr, L7JrT1+Jr,Lr:T'Dr)
U(T)DT=( 2 2 21 1 )
0 Dr Dy,

(5.28)

and
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Uu(T): D7+ — Dri[+]Dre,

U.(T)Dr-= (DFIODT' —(Dri L JZ)F; ;JrrLrlF*Drs))
rDr;

(5.29)

are unitary operators.

Proof. Some details will be omitted because the main idea is the same as in the
“definite” case, and the technical difficulties were described above.

We will consider a solution 7 to Problem (*) as a row extension of its first col-
umn 7. The assertion (i) follows by combining Lemma 5.1(i) and Lemma 5.2(i).
Indeed, by Lemma 5.1(i),

(5.30) f=max{x [I-T/T.1, «  (K;)—« (K,)}.
By Lemma 5.2(i)
(5.31) Kk [I—-T!T. )= k—k (K2)+x(X,).

The relations (5.30) and (5.31) implies (5.26).
For proving (ii), suppose first that

(5.32) R=k—k (K2)+k (K =k (K —k (K>).
By (5.22) it follows that
(5.33) k [I-T!T.]=x.

Thus, we can apply Lemma 5.2(ii) to find an operator I', € £(X{, Dr+) such that
I'§ is a J-contraction and
(5.34) T.=(T T.,D7).

From (5.32) and (5.33) it follows that it is possible to apply Lemma 5.2(ii) in the
description of 7 as a row extension of 7.. Thus, there exists a J-contraction
Ae £(Xi, D7y) with

(5.35) T=(T. Dr:A).
Using the J-unitary operator U,(7;) from (5.25), define the J-contraction

A'e (K, Dr[+]1Dr3)
(5.36) {A’z(JT*[+]I)U*(TC)JT;A.

Because U,(7;) is J-unitary we have
(5.37) A=UXNT)A.

We apply now Lemma 5.2 for the structure of the column operator A’; denoting
by I'; € L(X], Dr+) the first component of A’ and noting that £k (Dr-[+]1Dr3) =
k (D), we have that I'; is a J-contraction and that the condition of Lemma
5.2(ii) is verified. So, there exists an operator I' € £(Dr,, Orj) which is a Hilbert
space contraction such that

(5.38) A'=(T; TI'Dr).
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From (5.35), (5.37), (5.25), and (5.38) it follows that we have the formula (5.27)
for 7.

The converse assertion from the statement of (ii) can be deduced with the same
methods.

The identifications of defect spaces of 7 need thorough computations with the
corresponding identifications from Lemmas 5.1 and 5.2. We indicate only the
main part of the computations for obtaining (5.28). This consists in proving that

(5.39) U(T) 7, Lr; UNT) =(Dr,LTJ7r+  Jr,Lry)

as operators from Dz+[+]®Dr; into Or,. For this, take x€ Dp+[+1Dr3 and ke
X;. Then

(U(T)J7. L1: UXTA)X, Jr, Dr, Drk)
= (L7: UX(T.)x, Dr.k)

= (TC*JZDTCT Ui(T:)x, k)

* JZ 0 DT* 0
—((r* D,r k
(‘ T 2)(0 Jﬁ)(—FzL%JT* Dp5>x )

=((T*J2Dr+—DrT3J5T3 Ly Jr« D7U3J3T, Drs)x, k),
where we used successively (5.24), (4.7)., and (5.25). But
T*J,Dr-—D7T3J3T, Ly Jr+= Dy Ly+— D7 Jr Ly Jro+ D7 Jr,D¥, L J7-
=(DrDr,Jr,)(Dr,LTJr+),

where we used successively (4.7),, the equality JT—JFZD%Z =I'3J5T,, and (4.20).
On the other hand, again using (4.7)., we have that

(5.42) DrT3J5Dry=(DrDr,Jr,)(Jr,Lr;).
The relations (5.40), (5.41) and (5.42) imply (5.39). ]

5.4. REMARKS. (1) Theorem 5.3 contains, as particular cases, the structure of
2x 2 Hilbert space block-matrices whose defect operators have a finite number
of negative squares, and that of 2X2 J-contractions in Pontryagin spaces (see
also [8]).

(2) Theorem 5.3 permits us to say when a given operator on a Pontryagin space
has isometric or unitary extensions to a larger space, and to describe all of them
(if any). In particular, it follows that all unitary extensions can be obtained from
the elementary rotation of the given operator.

(3) Some results from [2] can be extended to the context of Theorem 5.3. In
particular, one can prove, using the same methods as in the proof of Theorem
5.3, that the elementary rotation of 7 has a similar formula as (1.5) in [2] end
the same lattice filter representation as in Remark 1.2(e) of [2] (in the figure of
that remark, I'y and I', are interchanged by mistake). The formula for the ele-
mentary rotation of 7 contains both the representation (5.27) and the identifica-
tions (5.28) and (5.29) —see (1.6) from [2].

(5.40)

(5.41)
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