ELLIPTIC CURVES IN TWO-DIMENSIONAL
ABELIAN VARIETIES AND THE ALGEBRAIC
INDEPENDENCE OF CERTAIN NUMBERS

Robert Tubbs

I. Introduction. A fruitful line of study in transcendental number theory has
been an investigation into the number of algebraically independent values which
belong to some prescribed set. The points under consideration are usually asso-
ciated with the ordinary exponential function, or, more recently, with a Weier-
strass elliptic function. In this paper we find some conditions which imply that a
nontrivial one-parameter subgroup of a two-dimensional abelian variety is con-
tained in an elliptic curve. From this we deduce several consequences concerning
the algebraic independence (or transcendence) of certain values.

THEOREM. Let A be a two-dimensional abelian variety defined over Q and
¢: C— A(C) a nontrivial analytic homomorphism which is defined over some
subfield K of C (i.e., $’(0) € 3 4(K) where 3 4 denotes the tangent space of A at its
identity element). Suppose yq, ¥1, Y2, V3 are linearly independent complex num-
bers with ¢(y;) e A(K) (0=<i=23) such that either

(a) ¢(y0) EA(Q)[orss or

(b) ¢(y0) EA(Q) and .)’0,.)’1,)’2,)/3 e K.
Then trans deg g K < 1 implies that $(C) is an elliptic curve.

COROLLARY 1 (Elliptic analogue to the Brownawell-Waldschmidt theorem;
(31, [10)). Let ®(z) be a Weierstrass elliptic function with algebraic invariants
and let O denote the ring of multiplications of ®. Suppose that {u,, u,} are O-
linearly independent and {v,, ..., v4} are Z-linearly independent sets of complex
numbers with ®(u,v,) and ®(u,v,) algebraic. If all of ®(u; v;) are defined, then
at least two of

U, v;, (P(u,'vj) (ISISZ, 15]54)
are algebraically independent.
Proof. Let E be the elliptic curve associated with @(z), put A =FE X FE and

#(z)= (1, ®(u12), ®'(112), 1, ®(122), @' (422)).

¢(C) is Zariski dense in A since the O-linear independence of u;, u; implies that
®(u1z) and @ (u#,z) are algebraically independent [4].

Put K=Q(u;, v, ®(u;v})), 1=i=<2, 1=<j=<4. Then ¢’(0)e I (K), ¢(v))€
A(Q) and case (b) of the Theorem implies trans degg K = 2. (I
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COROLLARY 2. Suppose that ®(z) has algebraic invariants. For any u e C at
least one of

@), @u?), @?), @u?), @)
is transcendental (wWhenever they are all defined).

Proof. If u is algebraic, u# 0, then it is a basic result of Schneider’s that @(u)
is transcendental. When u is transcendental, apply Corollary 1 with u;=u, u,=
u? vy=1, v,=u, v3=u? vy=u> Since y; and v; (1=i=<2, 1=<j=<4) are alge-
braically dependent, Corollary 2 follows. [l

II. Preliminary results. The proof of the Theorem relies on some recent joint
work of Masser and Wiistholz. However, the following generalization of a result
of Gelfond’s, due to Brownawell, is central.

LEMMA 1. Let a > 1 and suppose that (6,),cn and (v,),e N are positive, strictly
monotonic, unbounded sequences such that for each t € N

O, 41=ad;, Yi+1=ay,.

Let 0 € C. If there exists a sequence of nonzero integral polynomials P,(X) such
that for each t e N

deg P,<6,, loght P,<~,
and
log|P,(8)| < —(2a+1)5,(6,+,)-

then 0 is algebraic and P,(0) =0 for each t € N.
Proof. See [2, Theorem 1]. ]

Masser and Wiistholz have provided estimates for the number of zeros (with
respect to a certain measure of multiplicity) of a polynomial on a finite subset of
a quasi-projective group variety GG. Suppose that the dimension of G is d and I
is a finitely generated subgroup of G of rank £> 0. For each integer r, l <r=<d,
define an integer p, as the minimum corank of any subgroup I" which lies in some
algebraic subgroup of G of codimension r. If G has no codimension r algebraic
subgroups put p,=¢. When I'=2Z~,+ --- +Z~, we also use the notation

L(S) =Z(S)v1+ --- +Z(S) v,

where Z(S)={n:0=n<S}.

Let ¥: G - P, be an embedding as in [7]. If 35 denotes the tangent space of G
at its identity element with coordinates z;, ..., 24, then expg: 35— G S Py is giv-
en by holomorphic functions fy, ..., fny- When ¢: C— G(C) is a nontrivial ana-
lytic homomorphism there exists an injective linear map £:C — 35 such that
$:C—- G(C)<= Py is given by ¢ =expg°L. The condition ¢'(0) € 35(K) insures
that £ is defined over K.

Now suppose that G= G; X --- X G is a product of group varieties Gy, ..., G,
with each G; embedded in Py, (1 </ =< k). We define the order of vanishing of P
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at ge G along ¢: For each i, 1=i=k, choose z;€ 35, with expg,(z;) = 7;(g),
w;: G — G; being the projection map. Then if expg,;(z) is given by the holomor-
phic functions (f{(z), ... (‘)(z)) choose j;=j(i, g) with f(')(z )# 0. Let

0(1) f(k)
J1

where m;°¢$(2) =expg; °L;, with £;: C— CSGi(C) llnear. Define the order of van-

ishing of P at g along ¢ by:

oo, if x(§)=0,
d t
T: | —
o ()
ord, P is independent of our choices z; and fjf.“ (z).
Suppose that G, ..., G, have dimensions d,, ..., d; respectively and that I" =
I'i+---+TI' is a sum of finitely generated subgroups I'},...,I', of G of ranks

¢y, ..., £, respectively. Let ¢: C— G(C) be an analytic homomorphism of G. In
this context Masser and Wiistholz have provided the following result.

ord, P =
=0, forall r< T}, otherwise;

£=0

LEMMA 2. There exists a constant Cg depending only on Gy, ..., Gy and their
embeddings in Py, with the following property. Suppose for some real numbers
51=0,...,8,=0, D=0,...,D, =0, and T=0 there exists a multihomogeneous
polynomial P of multidegree (Dy, ..., Dy) which vanishes along ¢ to order at least
TonI'y(S)+---+1,(S,). For each ril=sr=sd=d+---+dy, let X, equal the
minimum of the products p, at a time of the numbers S, ..., S,({, times),...,
Sps ey Sp(ly, times) and A, equal the maximum of the products r at a time of the
numbers Dy, ..., D\(d, times), ..., Dy, ..., D, (d; times). If

TY, =CsdPrA, (1=r=d)
and
EX =CgsgdPrA, (1=r<d),
where E=min(D,, ..., Dy), then P vanishes on all of v+ ¢ for some yeT.
Proof. See [6]. ]

III. Proof of the Theorem. If K< Q then the Theorem follows from Théo-
reme 3.1.1 of [9]; hence we assume that the transcendence degree of K over Qs 1.
Then there exists a transcendental number 6, and a complex number 6,, integral
over Z[0] of degree n, where K =Q[0, 6;]. In this situation let Ox=Z[86, 6,]. For
a € K* there is a representation

X, Pioi!
= P,

with Py, ..., P, coprime polynomials in Z[6]. We put

deg(a) =max{deg Py, ...,deg P,},
ht(a) =max{ht Py, ..., ht P,}.
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We first show that the Theorem holds in case (b). We consider case (a) in Sec-
tion IV below. Assume that A4, ¢, ¥y, ¥, V2, ¥3, and K satisfy the hypotheses of
the Theorem (with y,, y;, ¥,, ¥3 all in K) but not the conclusion. When ¢(C) is
not an elliptic curve, dim ¢(C) =2 and ¢(C) is Zariski dense in A.

Let

(1) Y=yZ+y 2+ y,Z+ y;Z
and for a vector of non-negative reals .S = (S, S;, S,, S3) put
Y(S) =Y0oZ(So) + Y1 Z(S)) + ¥, Z(S,) +y;Z(S;).

For G=G,X A the embedding ¥: A — P, described above may be extended to
an embedding ¥*: G— P X P, defined by ¥*(z) = (1, z, ¥(z)). Put ¢ = ¥o ¢ and
¢*(2) = (1,2, ¢(z)): C— G(C) = P, X Py. A finitely generated subgroup I" of G is
then associated with Y by I' = ¢*(Y).

Our next lemma gives estimates for the exponents p,(I', G), defined above,
which suffice for our proofs. To establish these estimates we assume that

2) rankz(YNker ¢)=0.
Otherwise we are in the situation of case (a).

LEMMA 3. With Y, ¢*, T', and G as above, let p,= p, (I, G) forl<r=<3. Then
P1=2and p,=p;=4.

Proof. Let 7;: G— G, denote the projection mapping. Suppose that '’ is a
finitely generated subgroup of I" of corank p; which is contained in a codimen-
sion 1 algebraic subgroup H of G. If I'’ = 0 then p; = 4. Otherwise, the connect-
ed component of H at the identity element of G, H® has 7,;(H°) #0. (7 (H) =
U (g+ 7(H %)), where the union is over a finite set, which implies that if 7 (H°) =
O then =,(H) is a finite subgroup of G,. There are no such finite subgroups.)
Hence 7,(H°) =G,,.

Using Lemma 7 of [6] one sees that G, and A are “disjoint,” so H°=G,x B
where B is a codimension 1 algebraic subgroup of A. Then G/H? is isogeneous
to A/B and hence is an elliptic curve £. Choose Y’ C Y such that ¢*( Y’ )=TIand
rankz(Y’) =rankz(I'’). For the projection map p: G— G/H° we have the exis-
tence of a linear map £: C — Csuch that expz £ = pog*. If £=0then ¢*(C)C
H and ¢(C) % A. Therefore £ is injective, £(Y’) Cker(expg), rank, Y’ <2, and
D=2

The arguments that p, = p;=4 are a bit simpler. If I'’ is a finitely generated
subgroup of I" of corank p, which is contained in a codimension 2 algebraic
subgroup H of G, then (as before) 7,(H°) = G,. Moreover, H%=G_,x T where
dim(7) =0, and H° connected implies 7= 0. Then by (2)

rankz(I'') =rankz(¢(Y)NA,,)=0.

Therefore p,=4.
Finally if H is a codimension 3 algebraic subgroup of G, then H is finite. Hence

HNT is finite and p;=4. O
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The above lemma will be used, in conjunction with Lemma 2, to obtain a non-
zero value for a certain analytic function whose existence is guaranteed by the fol-
lowing result. Let G denote the bihomogeneous ideal which defines Gin P; X P,.
The constants c¢;, ... throughout the remainder of this paper depend at most on
G, yo, V15 V2, Y3, and the embedding of G into multiprojective space.

LEMMA 4. Suppose Y, ¢*, I', and G are as above. There exists D,> 0 such that
Jor every integer D= D, there exists a bihomogeneous polynomial

Pe OklY, XI\G
of bidegree at most (D? log~V2D, D) and with coefficients having
deg <c,D?log™ V3D, loght=<c,D?log?3D

such that the function

(3) ®(z)=P(,2, $9(2), ..., dn(2))

satisfies

4) log max|® (z)| = —c;D*log?D
lz|=r

Jorall r<c,Dand t <csD3.

Proof. For every positive integer D let
T=|c'D%log~3D), L=[D?log~"?D],

&)
So=1DY?log"?D], S=[D"*log~"¢D],

where we take 0 < c’< 1 below. Also, let 9 denote an indexing set for a maximal
set of bihomogeneous monomials

.= VJ/oV/iXio... X¥iN
mj ;= YgoY{1iX 0. Xy

of bidegree (L, D) which are linearly independent modulo G. Note that card 9=
ceLD?>.

Put

PY,X)= X pj;im;(Y,X)
(j,i)ed

with undetermined coeflicients pj,i and consider the function ®(z) associated
with P by (3).

With §=(S,, S, S, S) we let ®,(z)=®(z+y) for each ye Y(S). Then if y=
SoYo+S1Y1+5,¥,+53y3; there are bihomogeneous polynomials Ay, ..., Ay and

0s --+» AN with deg +log ht =< ¢; such that, for z near 0,

(Ao(d(z+5020), (S Y1+ - +533)), ..., AN(D(Z2+ 50 Y0), d(Sy ¥+ -+ +S3J’3)))

are projective coordinates of ¢(z+y) and

(Ax(#(2), (50 0))s ---» An(9(2), D(50 Y0)))
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are projective coordinates of ¢(z + s y,). Further, by Lemma 7 of [1], there are
trihomogeneous polynomials Fy, ..., Fn with deg +log ht < cg S? such that

(s Fi(p( 1), &(2), &(¥3))5 .- Jo<i=nN

are projective coordinates of ¢(s;y;+ 5, ¥, +53V3).
Then if ¢(S0y0) = )\0 20 and ¢(y,) = )\i ‘EI with £,~E O}{V_‘_l (OS i< 3), we have
(I)y(z) = )\SQDP(ls z+y,A(A’(¢(z), EO)’F(EI: 229 ES)))

=N 2 D, ,(1,2, ¢(2)),
(.hed

where N # 0; each a; ; ,€ K[ &, &, &2, £3]1[Y, X ] has bidegree at most (¢ L, ¢ D)
with coefficients of deg =< ¢, DS? log ht < c5(DSZ+ Llog S,).
Choose ¢;(z) such that ¢;(0) # 0. Then

®,2) 1_./4dY é(2)
<d2>[¢f“D(z)] )\(dz (L%espj’iaj’i’yo ¢,())

=\ E Dj.i @} (I) (I,Z, o(2) >’

(j,i)e9d 0i(z)

with aj(",)y e K&, &1, &2, £3]1Y, X] of bidegree at most (ci oL, ¢;; D+ ci4t) with

coefficient polynomials of

deg <c;sDS? and loght <c(DS+ Llog Sy+¢tlog(z+1)).

The system of equations

S priaf (10, 50 )=0 (1=0,.... T 1 ye V(S))
(.hed $:(0)
has a nonzero solution by the box principle, provided ¢’ is sufficiently small.
Moreover, each p; ;€ Ok has deg = cy DS? and log ht < ¢,3 DS3.

Schwarz’s lemma [9, Lemma 7.1.3] applied to circles of radii r >max ¢ y(s)|¥|
and R = r*? implies that

R
log max|®(z)| =< cotlog t+ o DR?— ¢y TS, S? log(T).
z|=r

Hence (4) holds when r < ¢, D and ¢ < ¢5D3. This completes the proof of the
lemma. [l

The estimates for p,, p,, and p; given by Lemma 3, applied with Lemma 2,
imply that for some y, € Y(S) the exact order of vanishing, 7., of P(Y, X) at y.
along ¢ satisfies ¢, < ¢y, D?log~Y3D. Hence

(6) @ I(p,)#0.
There exist differential operators
A;: KY—& .,—)—(ﬁ]—»KY,XO,..,XN
Xz Xi J Xl Xi

such that, for any Pe K[Y, X1,
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b9 ¢N) (d) ( b0 ¢N>
A:P)1L,z,—,..., — )J={— |P|1,2, —,..., —
(4 )( < o; Pb; dz < b; b;

on ¢~ 1(V;), where V;= AN{X,;#0}. Let ¢; (z) denote the component function
for ¢(z) for which |¢;(y.)| is maximal. By the theory of theta functions,

| ;. (ya)| = exp(—cp(|y«|?+1)).

If we then choose addition laws A,, ..., Ay valid in a neighborhood of y. and

put
P(l, 24y, 6(2+4)) _ P(l,z2+y., A(d(2) d(r4)))

;?(Z'*'y*) A£(¢(Z)s¢(y*))
d\"
(BZ) ¥(2)

))‘I’(Z)=P 1,z+y*,A(

¥(z)=

we deduce from (6) that

#0.

z=0

By homogeneity,

o () s()
"\ 9:.(z) ¢ (Vs

?(z) (V) ))
¢:1,(2) " &i,(s)

¢(z)  o(y«) )
d’i*(z) ’ ¢i*(.y*) ’

where P(M e K[Y, X, X’] is trihomogeneous of multidegree at most

(coaD?log V2D, cys D, Co6 D)

with coefficients in K having deg < ¢,; D?log =3 D, log ht < c,3 D?log%3D. Then

o(2) B (ys) X d(yy)
A,,D , )\Il(t*) ] =AL-p) Y, ,
[ "N (2) & (Vs) () z=0 te Xi, & (Ys)
=P(2)(l,y*, d)(y*) ),
¢i*(y*)

with PP e K[Y, X] of bidegree at most (c,9D?log~Y2D, ¢33 D) and with coeffi-
cients having

X=¢(0)
Y=(,y.)

deg = C31(D210g—1/3D+ t*) = C32D210g_1/3D,
log ht < c33(D?%log?3D+t, log(t.+1)) <c3, D2log??D,

since t, < c3sD?*log~/3D.
In addition, P @)(1, y., ¢(¥+))# 0 and
log|P@(1, y., (1)) = —c3s D4 logV2D.

Since

(Do(Vx)s-ees DN (V) _ (Fo(hokos MiEs M Ea, N3E3), oo Fn(No &gy -aas N3 E3)
b, (V) F; (Mo&os---5 N3 E3) ’

we have
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IP(Z)(ILy*sF(XOEOs ey k3 E3))l

_ (IFi.()\oEo, coes N3 £3)]
| i, (y)]

degy P2
) (PO, yu, ¢(ya))]-

Therefore,
log| P @1, ys, F(Ng&gs ---> A3 E3))| = —c3; D*log /2D

Replacing y. and &; (i=0, ..., 3) by their integral polynomial representations
in 6 and 6,, by expanding out and regrouping terms we obtain a nonzero poly-
nomial P ®(x, y) e K[x, y] with

PO,y , F(No£g,---» N3£3)) = N38PP 3)(9, 0,).
Moreover, P 3 (x, y) satisfies
deg, PP =<c39D%log™?D, deg, PP =<n
with coefficients in K having
deg <c4D%log™3D, loght <c,D%log??D,
such that
log| P30, 0,)| = —cy D*logV?D.

From the estimates for the coefficients of P ) given above, there exists a poly-
nomial 6(x, y) € Z[x, y] with 6(8, 8,) # 0 such that

PW(x, y)=56(x, y)PD(x, y)

has coefficients in O and satisfies the same estimates as P ), possibly with dif-
ferent constants.
Put
Op(x) = Nk/q (PP (x, 6))).

Then Qpe€ Z[x] is a nonzero polynomial with deg Qp=<c,;D%log~Y3D,
loght Qp=<csuD?log??D, and log|Qp(0)| =—c,sD*log?D.

For each choice of D= D,,

(D+1)*(log(D+1) "'/ _ (D+1)*(log(D+1)*? _
D2(log D)-3 - D(log D)3
and
(log D)6> cys(2a+1)

hold with a=5/2. So for 1 e N put
P(X)=0Qp,+(X),
8= ca3(Dz+1)*(log (D, + 1)) ~'/73,
V= Caa(Dy+ 1) (log (D, +1))*/>.
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Then, for £e N,
IOgIPt(B)l <—(2a+1)6,(6,+7,),

where deg P, <6, and log ht P, <+v,. Lemma 1 implies that P,(8) =0 for each ¢,
contradicting the transcendence of 6. This completes the proof of the Theorem
in case (b).

IV. For case (a) the same general proof applies. If we assume that the hy-
potheses of the Theorem in case (a) hold but that ¢(C) is not an elliptic curve,
we obtain the following analogue to Lemma 4. Here G defines A in P.

LEMMA 5. With Y, ¢, and A as above there exists D,= 0 such that for each
integer D = D, there exists a homogeneous polynomial P(X) e Og[ X1\ G of de-
gree at most c4; D, with coefficients satisfying

deg <c i D" log?°D, loght<cyuD"’log?’D
such that ®(z) = P(¢y(z), ..., dn(2)) satisfies
@) log max|® ) (z)| = —csoD?rlog D,

[z|=r

provided 0 <r<cs D%, 0=<t<cs, D>

The proof depends on the choice of parameters
T={c’D"Slog=3°D], S=[DY’log"’D]

for 0 < c¢’< 1 sufficiently small. The inequality (7) is deduced from the observa-
tion that for some neZ, n-y,# 0 lies in the kernel of ¢. Therefore for each i the
function F;(z) = ¢; P(z) ®(z) is periodic.

With G=Aand I' = ¢(Y) the estimates p;(I', G) =2 and p,(I', G) = 3, applied
with Lemma 2, yield y. e Y(S) (here §=(S, S, S, S)) such that, for some 7, <
cs3 T, ®(y,)# 0. The conclusion of the proof is as before. ]

Note added in proof. Masser and Wiistholz [11] have obtained several general
results concerning the algebraic independence of values of elliptic functions. In
particular, Theorem 5 of their paper is our Corollary 1 with the stronger hypoth-
esis that all of @(u,vy), ..., ®(uv4) are algebraic.

We also note that in Corollary 1 the hypothesis that all of the values @ (u;v;)
are finite may be dropped, if we alter the conclusion to say that at least two of
the finite values among u;, v;, ®@(u;v;) (1=i=<2, 1=<j=<4) are algebraically in-
dependent. Corollary 2 would then be that for any nonzero u € C, at least one of
® ), ..., ®(u°) is transcendental.
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