A COVERING LEMMA FOR MAXIMAL OPERATORS WITH UNBOUNDED KERNELS

Steven M. Hudson

I. Introduction. Calderon and Zygmund [1] proved that certain maximal operators are bounded on $L^p(\mathbf{R}^n)$ for p > 1, using the rotation method. It is unknown whether they take $L^1(\mathbf{R}^n)$ into Weak $L^1(\mathbf{R}^n)$. We prove a positive result for a certain subclass of these operators. The method is to prove an analog of the usual covering lemma [4], even though the kernels are unbounded.

More specifically, let $g(\theta)$ be a positive, integrable, decreasing function on the interval (0,1) such that $\theta g(\theta)$ is increasing. For $(x_1, x_2) = x \in \mathbb{R}^2$, set

$$\Omega(x) = \begin{cases} g(x_2/x_1) & \text{if } 0 < x_2 < x_1 \text{ and } |x| \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

For r > 0, let $\Omega_r(x) = r^{-2}\Omega(x/r)$. Define, for $f \in L^1(\mathbb{R}^2)$,

$$M_{\Omega} f(x) = \sup_{r>0} (\Omega_r * |f|)(x) = \sup_{r>0} \int_{\mathbb{R}^2} \Omega_r (x-y) |f(y)| dy.$$

THEOREM. M_{Ω} is weak-type (1,1). That is, there is a constant C such that, for every $f \in L^1(\mathbb{R}^2)$ and every $\alpha > 0$,

$$|\{x \in \mathbf{R}^2 = M_{\Omega} f(x) > \alpha\}| \le \frac{C}{\alpha} \|f\|_{L^1} \|g\|_{L^1}.$$

There is a similar result on \mathbb{R}^n , n > 2, if $\theta g(\theta)$ is replaced by $\theta^{n-1}g(\theta)$ and $g(x_2/x_1)$ is replaced by $g(|x-(x_1,0,0,...,0)|/x_1)$, for $|x| \le 1$. Soria has proved such a result without restriction on $\theta g(\theta)$, but with a stronger size condition than $g \in L^1$ [3]. The idea of the proof is to use a covering lemma. However, the usual type of covering lemma does not apply because Ω may be an unbounded function. We will use the following substitute.

DEFINITION. $\Omega \in L^1(\mathbb{R}^2)$ has the selection property with constant C if, given any positive continuous function r(x) defined on a measurable set $D \subseteq B_1(0)$, the unit ball of \mathbb{R}^2 , there is a measurable subset $E \subseteq D$ such that

$$(1) |E| \ge \frac{1}{2} |D|,$$

(2)
$$S(E, \Omega, r)(y) \equiv \int_{E} \Omega_{r(x)}(x - y) dx \le C$$
 for almost every $y \in \mathbb{R}^{2}$.

Here, |E| denotes the Lebesgue measure of E.

LEMMA. If Ω has the selection property with constant C, then M_{Ω} is weak-type (1,1).

Received May 13, 1986.

Michigan Math. J. 34 (1987).

Proof of Lemma. f and α are given. We may assume there is a continuous function r(x) such that $M_{\Omega} f(x) = (\Omega_{r(x)} * |f|)(x)$ for all $x \in \mathbb{R}^2$. Set

$$D = \{x \in \mathbf{R}^2 : M_{\Omega} f(x) > \alpha\}.$$

By dilating, we may assume $D \subseteq B_1(0)$. By (1) and (2),

$$|D| \le 2|E| \le \frac{2}{\alpha} \int_{E} M_{\Omega} f(x) dx$$

$$= \frac{2}{\alpha} \int_{\mathbb{R}^{2}} |f(y)| \int_{E} \Omega_{r(x)}(x-y) dx dy \le \frac{2C||f||_{1}}{\alpha}.$$

It seems unlikely, but possible, that the lemma has a converse.

II. Proof of the Theorem. We will show that Ω has the selection property with constant $C \cdot \|g\|_{L^1}$. We may assume $\|g\|_{L^1} = 1$, so that $\|\Omega\|_{L^1} \le 1$. Also, we may assume that $r(x) > \epsilon > 0$ on D, for some ϵ .

Now, if the function $g(\theta)$ is replaced by a Dirac mass supported at 0, M_{Ω} is essentially the one-dimensional Hardy-Littlewood maximal operator, which has the selection property. More specifically, we claim that there is a measurable set $\tilde{D} \subseteq D$ such that $|\tilde{D}| \ge |D|/2$, and

$$\int \frac{dx_1}{r(x)} \le C' < \infty \quad y \in \mathbb{R}^2,$$

where the integral is over $\{x \in \tilde{D}: x_2 = y_2 \text{ and } y_1 < x_1 < r(x) + y_1\}$. The proof of this claim is nontrivial, but is contained in the following argument for the more general M_{Ω} and so we omit it. Now \tilde{D} plays the role of D; we look for $E \subseteq \tilde{D}$ with $|E| \ge c|\tilde{D}| \ge c/2|D|$. It is irrelevant that c/2 < 1/2 (see condition (1)), because the argument can be repeated on $D_2 = D \setminus E$ to build a larger "E".

Let $\ell(q)$ be the side length of the dyadic square $q \subseteq \mathbb{R}^2$. We want to cover \tilde{D} with disjoint squares q_k and let $E = \bigcup_k \{x \in \tilde{D} \cap q_k : r(x) > \ell(q_k)\}$. The q_k are chosen in stages. At stage $i \ge 0$, we have chosen all desired q_k such that $\ell(q_k) > 2^{-i}$ (so q won't be chosen if $\ell(q) > 1$).

Stage i. (Choosing q_k with $\ell(q_k) = 2^{-i}$); set

 E_i = points certain to belong to E, at stage i

$$\equiv \{x \in \tilde{D} : \exists q_k, \text{ chosen before stage } i, x \in q_k \text{ and } r(x) > \ell(q_k)\}$$

$$\bigcup \{x \in \tilde{D} : x \notin q_k, \forall \text{ chosen } q_k, \text{ and } r(x) > 2^{-i}\}.$$

We can't define E_{i+1} yet, but we will have $E_i \subseteq E_{i+1}$.

The square q is chosen into $\{q_k\}$ at stage i if its interior is disjoint from the chosen squares, if $\ell(q) = 2^{-i}$, and if one of the following holds:

- (a) $S(E_i)(q) \equiv |q|^{-1} \int_q S(E_i, \Omega, r)(y) dy > \frac{1}{2};$
- (b) $|E_i \cap q|/|q| > \frac{1}{2}$;
- (c) q touches some q_k (their boundaries intersect), where q_k has been chosen prior to stage i, or during stage i for reason (a) or (b).

(Condition (a) is the crucial one; condition (c) merely insures that adjacent q_k will have comparable sizes.) This completes stage i.

We repeat this for i = 0, 1, 2, ... and define $E = \bigcup_{i=1}^{\infty} E_i$.

Claim 1. The $\{q_k\}$ cover \tilde{D} , a.e.

It is trivial that they cover $x \in \tilde{D} \setminus E$; $r(x) > 2^{-i}$ for some i, so $x \notin E_i$ implies $x \in \text{some } q_k$. Also, they cover each E_i , by Lebesgue's differentiation theorem and condition (b).

Claim 2. $|E| \ge c \sum_k |q_k| \ge c |\tilde{D}|$.

The first claim gives the second inequality. Let $k \in K_{\alpha}$ (resp. K_b, K_c) if q_k was chosen by condition (a) (resp. conditions (b), (c)). By simple geometry,

$$\sum_{k \in K_c} |q_k| \le 25 \sum_{k \in K_a \cup K_b} |q_k|,$$

and

$$\sum_{k \in K_{q}} |q_{k}| \le 2 \int_{\mathbb{R}^{2}} \int_{E} \Omega_{r(x)}(x - y) \, dx \, dy = 2 |E| \cdot ||\Omega||_{1}$$

by (a). And by (b),

$$\sum_{k \in K_b} |q_k| \le 2 \sum_{K_b} |q_k \cap E| \le 2|E|.$$

These prove Claim 2. We must now prove condition (2) of the definition, that $S(E, \Omega, r)(y) \le C$ on \mathbb{R}^2 .

Choose y. We may assume $S(E, \Omega, r)(y) > 1/2$. So $S(E_j, \Omega, r)(y) > 1/2$ for some j (monotone convergence), and by the differentiation theorem, $S(E_j)(q) > 1/2$ for some dyadic $q, y \in q$, $\ell(q) \le 2^{-j}$. By condition (a), q is contained in a chosen square. Thus $y \in q_k$, a chosen square.

Let

$$H = \{x \in E : |x - y| \le 10 \cdot \ell(q_k)\}$$

$$A = \{x \in E : y_2 \le x_2 \le y_2 + 2\ell(q_k) \text{ and } y_1 + 2\ell(q_k) \le x_1\}$$

$$B = E \setminus (H \cup A).$$

Therefore, $S(E, \Omega, r)(y) \le S(H, \Omega, r)(y) + S(A, \Omega, r)(y) + S(B, \Omega, r)(y)$. H is the region near q_k , A is the region where $g((x_2-y_2)/(x_1-y_1))$ is large, and B is the large remaining region.

The estimate for H. We claim that if $x \in H$ and $\Omega_{r(x)}(x-y) \neq 0$, then $r(x) \geq \ell(q_k)/2$. This is obvious if $|x-y| \geq \ell(q_k)/2$. If $|x-y| < \ell(q_k)/2$, then condition (c) insures that $x \in \text{some } q_j$ with $\ell(q_j) \geq \ell(q_k)/2$. But since $x \in E$, $r(x) \geq \ell(q_j)$, and the claim is proved. So,

$$S(H, \Omega, r)(y) = \int_{H} \Omega_{r(x)}(x - y) dx$$

$$\leq C \int_{H} \Omega_{10 \cdot \ell(q_k)}(x - y) dx \leq C \|\Omega\|_{L^{1}}.$$

The estimate for B. Let q_k^* be the (non-dyadic) square with the same center as q_k , and $\ell(q_k^*) = 3\ell(q_k)$. Let $4\ell(q_k) = 2^{-i}$ and set $B_i = B \cap E_i$. Since g decreases,

$$S(B_i)(q_k^*) > c \cdot S(B_i, \Omega, r)(y).$$

Also, there is an absolute constant c' and a dyadic square \tilde{q}_k such that \tilde{q}_k touches q_k (as in condition (c)), $\ell(\tilde{q}_k) = 2^{-i}$, and

$$S(B_i)(\tilde{q}_k) \geq c' \cdot S(B_i)(q_k^*).$$

By condition (c), \tilde{q}_k is not, and is not contained in, a chosen square. Thus $S(B_i)(\tilde{q}_k) \le 1/2$, by (a). We have shown that $S(B_i, \Omega, r)(y) \le C$. The case of $x \in B \setminus B_i$ proceeds as for H; if $\Omega_{r(x)}(x-y) \ne 0$, then

$$2 \cdot \ell(q_k) \le |x - y| \le r(x) < 2^{-i} = 4\ell(q_k).$$

Therefore,

$$S(B \setminus B_i, \Omega, r)(y) \le c \cdot S(B \setminus B_i, \Omega, 4\ell(q_k))(y) \le C.$$

The estimate for A. For $x = (x_1, x_2) \in A$, let $\pi(x) = (y_1 + 2\ell(q_k), x_2)$ be its projection onto the left edge of A. The hypothesis that $\theta \cdot g(\theta)$ is increasing implies

$$\Omega_{r(x)}(y) \leq \frac{c\Omega_1(\pi(x)-y)}{2 \cdot \ell(q_k) r(x)}.$$

And, since $A \subseteq \tilde{D}$,

$$\int_{\{x \in A = x_2 = x' \text{ and } r(x) > x_1 - y_1\}} \frac{dx_1}{r(x)} < C$$

for each x', $y_2 < x' < y_2 + 2\ell(q_k)$. Thus,

$$\begin{split} S(A,\Omega,r)(y) &\leq \frac{C}{2\ell(q_k)} \int_{y_2}^{y_2 + 2\ell(q_k)} \Omega_1((y_1 + 2\ell(q_k), x') - y) \, dx' \\ &\leq C \|g\|_1 = C. \end{split}$$

This completes the proof of (2), and of the theorem.

- III. Remarks. 1. This theorem is a slight improvement on the observation of R. Fefferman and F. Soria, that M_{Ω} is weak-type (1.1) when g is decreasing and in $L \log L$ (see [3]). The latter result follows from the lemma of Stein and N. Weiss about summing weak-type operators [5]. Any decreasing h in $L \log L$ can be majorized by a g, as in the theorem. Any decreasing h in L^1 can be majorized by a g such that $\theta^{1+\epsilon}g(\theta)$ increases, for any preassigned $\epsilon > 0$. We have no reason to believe the theorem is false without these restrictions on g.
- 2. We can hope that the selection property will aid the study of other maximal operators, for example, those with lower-dimensional kernels. M. Christ has shown that the theorem of this paper can be proved without it, however.
- IV. Sketch of M. Christ's proof. The motivation and notation may be found in Stein [4]. Given $\alpha > 0$, Calderon-Zygmund decompose $f = g' + \sum_k b_k$, where $\|g'\|_{L^{\infty}} \le \alpha$ (so that g' may be discarded), and where $\int b_k = 0$ and supp $b_k \subseteq q_k$. Define A, B, and B as before, using the lower left corner of Q_k for Q_k . Let Q_k be a dilation of Q_k about its center so that $\bigcup_k H_k \subseteq Q = \bigcup_k Q_k^*$. Since $|Q| \le c \|f\|_{L^1}/\alpha$, we may discard the Q_k is one can show that

$$\|\sup_{r>0} |\Omega_r(x-y)b_k(y) dy| \|L^{1}(B_k) \leq C \|b_k\|_{L^1}.$$

Summing over k, $|\{M_{\Omega}(\sum_{x \in B_k} b_k)(x) > \alpha\}| \le C||f||_1/\alpha$. A similar result for $x \in A_k$ proves the theorem; since $\theta g(\theta)$ increases,

$$\int \Omega_{r(x)}(x-y) \cdot |b_k(y)| \, dy \le \frac{c}{r(x)} \int_0^{100r(x)} a_k(x_1-t,x_2) \, dt$$

where $||a_k||_{L^1} \le c ||b_k||_{L^1}$. Now, sum over k and note that the right-hand side is in Weak L^1 by the Hardy-Littlewood theorem on \mathbb{R}^1 .

REFERENCES

- 1. A. P. Calderon and A. Zygmund, *On singular integrals*, Amer. J. Math. 78 (1956), 289-309.
- 2. M. Christ, personal communication.
- 3. F. Soria, Characterizations of classes of functions generated by blocks and associated Hardy spaces, Indiana Math. J. 34 (1985), 463-493.
- 4. E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970.
- 5. E. Stein and N. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35-54.

Department of Mathematics University of California Los Angeles, CA 90024