A COVERING LEMMA FOR MAXIMAL OPERATORS
WITH UNBOUNDED KERNELS

Steven M. Hudson

I. Introduction. Calderon and Zygmund [1] proved that certain maximal oper-
ators are bounded on L”(R") for p > 1, using the rotation method. It is unknown
whether they take L'(R") into Weak L!'(R"). We prove a positive result for a cer-
tain subclass of these operators. The method is to prove an analog of the usual
covering lemma [4], even though the kernels are unbounded.

More specifically, let g(6) be a positive, integrable, decreasing function on the
interval (0, 1) such that 8g(8) is increasing. For (x;, x,) =x € R?, set

Qx) = g(xa/x;) if 0<x,<x; and |x|=1,
10 otherwise.

For r> 0, let Q,(x) =r"2Q(x/r). Define, for fe L'(R?),

Mg f(x) =sup(Q,*|f])(x)=sup S , U (x =) ()| dy.
r>0 r>0 YR
THEOREM. Mg is weak-type (1,1). That is, there is a constant C such that,
for every fe L'(R?) and every a >0,

C
l{x e R* = Mg f(x)>a}| < — /1]l

There is a similar result on R”, n> 2, if 6g(6) is replaced by 6" !g(8) and
g(x2/x,) is replaced by g(|x—(x,,0,0,...,0)|/x,), for |x| <1. Soria has proved
such a result without restriction on 6g(60), but with a stronger size condition than
g e L' [3]. The idea of the proof is to use a covering lemma. However, the usual
type of covering lemma does not apply because  may be an unbounded func-
tion. We will use the following substitute.

DEFINITION. © € L'(R?) has the selection property with constant C if, given
any positive continuous function r(x) defined on a measurable set D < B;(0), the
unit ball of R?, there is a measurable subset E < D such that

1
M E|= 3|,

) S(E,Q,rYy(y)= SE Q) (x—y)dx=<C for almost every ye R2.

Here, |E| denotes the Lebesgue measure of E.

LEMMA. If Q has the selection property with constant C, then Mg is weak-
type (1,1).
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Proof of Lemma. f and o are given. We may assume there is a continuous
function r(x) such that Mg f(x) = (Q,(x* | f]) (x) for all x e R, Set

D ={xeR?: Mg f(x)>a}.
By dilating, we may assume D < B,(0). By (1) and (2),

2
|D|<2|E|< < S Mg f(x) dx
(84 E

2 2C

It seems unlikely, but possible, that the lemma has a converse.

II. Proof of the Theorem. We will show that 2 has the selection property with
constant C-| g|.1. We may assume | g|.1=1, so that |Q].1<1. Also, we may as-
sume that r(x) > e >0 on D, for some e.

Now, if the function g(#) is replaced by a Dirac mass supported at 0, Mg is
essentially the one-dimensional Hardy-Littlewood maximal operator, which has
the selection property. More specifically, we claim that there is a measurable set
D < D such that |D|=|D|/2, and

<C'<o yeR?

d.
S r (J;cl)

where the integral is over {xe D:x,=y, and y; <x;<r(x)+y;}. The proof of
this claim is nontrivial, but is contained in the following argument for the more
general Mg and so we omit it. Now D plays the role of D; we look for ES D
with |E|=c|D|=c/2|D|. 1t is irrelevant that ¢/2 <1/2 (see condition (1)), be-
cause the argument can be repeated on D, = D\ E to build a larger “E”.

Let £(g) be the side length of the dyadic square g < R%. We want to cover D with
disjoint squares gz and let E =\ {xe DNqy: r(x)>¢(qx)}. The g, are chosen
in stages. At stage / = 0, we have chosen all desired gx such that £(gz)>2""'(so ¢
won’t be chosen if £(g)>1). _

Stage i. (Choosing g, with £(qx) =27"); set

E; = points certain to belong to E, at stage i

= {x € D: 3qy, chosen before stage i, x € g; and r(x) > 2(qx)}
U {xeD:x¢ gk, V chosen g, and r(x)>2""}.

We can’t define E;,; yet, but we will have E; < E; ;.
The square g is chosen into {gx} at stage i if its interior is disjoint from the
chosen squares, if ¢(q) = 2~/ and if one of the following holds:
@ SEN@=|q|™" §4SE:,LQr)(»)dy>3;
(b) |EiNgl/lq|>73;
(c) g touches some gy (their boundaries intersect), where g; has been chosen
prior to stage i, or during stage i for reason (a) or (b).
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(Condition (a) is the crucial one; condition (c) merely insures that adjacent g,
will have comparable sizes.) This completes stage i.

We repeat this for i =0,1, 2, ... and define E=U{~, E;.

Claim 1. The {q;} cover D, a.e.

It is trivial that they cover xe D\ E; r(x)>2""' for some i, so x & E; implies
Xx € some qx. Also, they cover each E;, by Lebesgue’s differentiation theorem and
condition (b).

Claim 2. |E| = c3x |qx| = c| D).

The first claim gives the second inequality. Let k € K, (resp. K, K.) if g, was
chosen by condition (a) (resp. conditions (b), (c)). By simple geometry,

2 lakl=25 X |q«l,
kekK, ke K, UK,

and

kg(a lax| =2 SRZ SE Q(x—y)dxdy=2|E|-|Q|,

by (a). And by (b),
> lax] 52%) lgxNE| <2|E|.
b

ke K,
These prove Claim 2. We must now prove condition (2) of the definition, that
S(E,Q,r)(y)<C on R?.

Choose y. We may assume S(E,Q,r)(y)>1/2. So S(E;,Q,r)(y)>1/2 for
some j (monotone convergence), and by the differentiation theorem, S(E;)(¢) >
1/2 for some dyadic g, yeq, £(q) =27/. By condition (a), g is contained in a
chosen square. Thus y € g, a chosen square.

Let

H={xeE:|x—y|<10-0(qi)}
A={xeE: y,=x,<y,+20(q) and y;+20(qgx) <X}
B=E\(HUA).

Therefore, S(E,Q, r)(y)=S(H,Q,r)(¥)+SA4,Q2, N(W)+SB,Q, r)(y). H is the
region near g, A is the region where g((x>—y,)/(x1—»))) is large, and B is the
large remaining region.

The estimate for H. We claim that if xe H and Q,,(x—y)#0, then r(x)=
£(qx)/2. This is obvious if |x —y|=0(gx)/2. If |x—y| < €(qx)/2, then condition
(c) insures that x € some g; with £(g;) = €(qx)/2. But since x€ E, r(x)=1{(g;),
and the claim is proved. So,

SCH, 2,10 = 0ro(x—p) dx

< CSH Q1. 1) (X —¥) dx = C|2] 1.

The estimate for B. Let gf be the (non-dyadic) square with the same center as
gk, and 0(qr) =30(qx). Let 48(qgx) =2 and set B;=BNE;. Since g decreases,
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S(Bi)(gk)>c-S(B;, R, 1) ().
Also, there is an absolute constant ¢’ and a dyadic square g, such that g touches
gr (as in condition (c)), £(gx)=2""', and
S(B;)(Gx) =c’-S(B;)(gk).
By condition (c), g is not, and is not contained in, a chosen square. Thus
S(B:)(Gx) =<1/2, by (a). We have shown that S(B;, 2, r)(y)=C. The case of xe
B\ B; proceeds as for H; if Q,(,(x—y) #0, then
2-0(qr) < |x—y| =r(x) <27 =48(qy).
Therefore,
S(B\Bi,Q,r)(y)=c-S(B\B;,Q,40(qr))(¥)=C.

The estimate for A. For x = (x1, x3) € A, let w(x) = (y1+2£(qx), x2) be its pro-
jection onto the left edge of A. The hypothesis that -g(f) is increasing implies
cy(w(x)—y)

2-0(gr)r(x)

Qr(x) (y) =
And, since A< D,

fxeA=x,=x"and r(x)>x;—y;} r(x)

for each x’, y, <x'< y,+2¢(qy). Thus,

S(A4,Q, ()=

C Ya+20(qy)
= aon+200a0, x)—y) ax’

20(qx)
=Clgl,=C.

Y2

This completes the proof of (2), and of the theorem. O

III. Remarks. 1. This theorem is a slight improvement on the observation of
R. Fefferman and F. Soria, that Mg is weak-type (1.1) when g is decreasing and in
Llog L (see [3]). The latter result follows from the lemma of Stein and N. Weiss
about summing weak-type operators [5]. Any decreasing # in Llog L can be
majorized by a g, as in the theorem. Any decreasing 4 in L' can be majorized by
a g such that 8'*¢g(0) increases, for any preassigned e > 0. We have no reason to
believe the theorem is false without these restrictions on g.

2. We can hope that the selection property will aid the study of other maximal
operators, for example, those with lower-dimensional kernels. M. Christ has
shown that the theorem of this paper can be proved without it, however.

IV. Sketch of M. Christ’s proof. The motivation and notation may be found
in Stein [4]. Given o >0, Calderon-Zygmund decompose f = g’'+ 2 by, where
lg’lz~<ea (so that g’ may be discarded), and where § by =0 and supp by S gx.
Define A, B, and H as before, using the lower left corner of g; for y. Let g% be a
dilation of g, about its center so that Uy Hy S Q = Uy gk. Since |Q| =c| f|r1 /e,
we may discard the Hy. Since | by =0, one can show that
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llsuPOIQr(x_‘y)bk(y) dy ||y = Clbl -
r>

Summing over k, |{Mq(Z e, bx)(x) > a}| = C|f]1/a. A similar result for xe A,
proves the theorem; since 0g(0) increases,

C 1007 (x)
S ak(xl—t,xz)dt

J 20— e dy = - |

where |ag| 1< c|bk|Lr1. Now, sum over k and note that the right-hand side is in
Weak L' by the Hardy-Littlewood theorem on R'.
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