ON THE LEAST PAIR OF CONSECUTIVE
QUADRATIC NON-RESIDUES

Adolf Hildebrand

1. Introduction. Let p be an odd prime and denote by 7n;(p) the least qua-
dratic non-residue modulo p. It is a well-known consequence of Burgess’ char-
acter sum estimate [1] that

(1) ni(p)=p°*c (p=pole))

holds with 8 =0y:=1/(4Ve) for every e >0. (Here and in the sequel, po(e) de-
notes a sufficiently large constant depending on e, not necessarily the same at
each occurrence.) A long-standing conjecture of Vinogradov asserts that one
may take § =0 in (1), but this seems to be very difficult, and up to date the expo-
nent 6 =0, resulting from Burgess’ estimate has not been improved upon.

One may ask whether a similar bound holds for n,(p), defined as the least
positive integer n for which n and n+1 are both quadratic non-residues modulo
p. It is easy to see that for all sufficiently large primes p such a pair (n, n+1) ex-
ists, so that n,(p) is well-defined. Using Burgess’ estimate, Elliott [2, Lemma 13]
established the bound

) na(p)=p°*tc (p=po(e))

with 8 =1/4, and in a later paper [3] improved the exponent slightly to # =
1/4—e~'%/8. We shall here prove the following.

THEOREM. (2) holds with 6 =0o=1/(4Ve).

Thus, we have the same upper bound for n,(p) as for n;(p). Since (trivially)
n,(p) = ny(p), any further improvement on the exponent in (2) would imply an
improvement in the bound for n;(p) and would therefore seem to be very difficult.

2. A lemma. The proof of the theorem rests on Burgess’ character sum esti-
mate and an argument drawn from the author’s paper [5]. In this paper, a suffi-
cient condition on a set 4 of positive integers was given, which implies that A4
contains infinitely many pairs of consecutive integers. We require here a “finite”
version of this result.

LEMMA. For every e € (0, 1] there exist positive integers No(e) and ko(e) with
the following property: If N = Ny(€e) and A is a set of positive integers satisfying
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@) > lzeﬁ (I<k=<kole),0<l<k-—1)
n=<N k
n=Imodk
neA

and

(i) {g :neA,d|n, dsko(e)}CA,

then A contains a pair of consecutive integers < N.

Proof. Given 0 <e =<1, put r=[2/e]+1 and fix positive integers ;< ;< -+- <
t, satisfying

3) tj—t,'=(t,',tj) (l=i<j=r).

The existence of such integers for every r=2 has been first proved by Heath-
Brown [4]; a simple construction is given in [5]. We shall prove the lemma with

(4) NO(E)z[%:I_l_ls k0(6)=t,
where
= fI t;

Let N= Ny(e) and a set AC N be given, such that hypotheses (i) and (ii) of the
lemma are satisfied with Ny(e) and kq(e) defined by (4). Consider the sets

(5) Bi={n=N:t|n,n—t;e A}, l=<i=<r.

If for some i < j, B;NB;# &, then there exists an integer n < N divisible by ¢
and such that the numbers n—¢; and n—¢; belong to the set A. Since (#;,¢;) | | n,
these two numbers are both divisible by (¢;, ;). By (3) and hypothesis (ii) of the
lemma, it follows that (n—¢;)/(¢;, t;) and (n—1t;)/(t;, t;) are consecutive integers
=< N and both contained in A.

Thus, the conclusion of the lemma holds under the assumption that the sets (5)
are not pairwise disjoint. To complete the proof of the lemma, we shall show by
contradiction that this assumption is always satisfied.

Suppose that the sets (5) are pairwise disjoint. Denoting by | B;| the cardinality
of B;, we then have

r r N
(6) E|B,I= UB,'S E l< —.
i=1 i=1 n=N 4
t|n
On the other hand, by (i) we have, for each i <r,
N
| Bi| = D 1= > l—1=e——1,
nsN-—i; n=N t
n=—t,mod¢ n=—t;mod ¢
- neA neA

and hence, by (4) and the hypothesis N = Ny(¢),
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This yields the desired contradiction to (6).

3. Proof of the theorem. Let € > 0 be given and p be an odd prime, which we
shall later assume to be sufficiently large. For the proof of the theorem, we may
clearly assume

@) 0 < e=<1/100.
Let
Ni=[pUF94),  Ny=[plte].

By Burgess’ estimate [1] we have

n
— )| =<eN

for p= po(€), where (n/p) is the Legendre symbol. Using (8), we shall show that
the hypotheses of the lemma are satisfied for the set A={n=1:(n/p)= —1} and
a suitable N =< N,. The conclusion of the theorem then follows from that of the
lemma.

For x=1let

®)

1
S(x) = 2 R
g=x 4
qge A
where g denotes a generic prime. Obviously,

T 1= 3 3 1=NS(V).

HSNI QSN] nle
neA gqgeA gq|n

On the other hand, (8) implies

T 1= 1—( ))> —Ny(1—¢).
n=N, n<N1

neA

Hence we conclude
® S(N)=11-e).

A standard prime number estimate yields

1 log N, ( 1 )
S(Ny)—S(NV,) < —=lo + 0
)= SV2) N2<§.<_N1 q £ log N> log N,

(1+e)/4 (

=log ———
log p

1 1+4e\F
—+4+0 .
1+¢€ logp

= E—IOg
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In view of (7), it follows that for sufficiently large p
S(Ny)—S(N,) = 1 —3e.
Combining this with (9), we obtain

(10) S(N2) = S(N)— (2 —3e) = 3e.
At this point, it is convenient to assume that
(11) ni(p)>p?

We shall deal with the remaining case, which is much easier, later on. (11) implies
that the set A contains no integer < p¥2, so that S(p“?) = 0. From this and (10)
we conclude that there exists an integer N satisfying p¥/? < N =< N,, for which

JesS(N)<3e+3<3,

where the last inequality follows from (7). We fix such an integer N.
For k<p“? and 0</<k—1 we have

2 1= X 2 1- X 2 1

n=<N g=sN n=N q,q'<N n<N
n=Imodk geA n=/modk q,°e A n=Ilmodk
neA q|n qq’'in

>—S(N)(1—S(N))— > 1— E 1
g=N q,qg'=N

qq’'=N
Ni 4 loglog(N+2)
=75 e(l ) O(N log N
_N <loglog(p+2)
14 k log p

If now k < ko(e) and p is sufficiently large, then the last expression is = e/N/k.
Thus the first hypothesis of the lemma is fulfilled, whenever p is sufficiently large.
The second hypothesis holds for p= ko(e)z/6 because of our assumption (11) and
the multiplicativity of the Legendre symbol. Applying the lemma, we conclude
that for p = pg(e) there exists a pair of consecutive integers < /N belonging to
A, that is, a pair of consecutive quadratic non-residues (modulo p) = N=<N, <
p?ot e as asserted in the theorem.

It remains to deal with the case where (11) is not satisfied. We appeal to an ele-
mentary bound of Hudson [6], namely #n,(p) <= (q,—1)q,, where g, and g, de-
note the smaliest and second smallest primes which are quadratic non-residues
modulo p. If (11) is not satisfied, then g, = n;(p) Spf/z, and to obtain the de-
sired bound for n,(p) it therefore suffices to show that

(12) gr < Njy:=[pPot</?],

Assume, to get a contradiction, that (12) does not hold. Then the set A con-
tains, apart from ¢;, no other prime g < N3. Therefore we have
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1 1

1
SN)= S —=—+ 3 —=-2y4s,
g=N q aq N3<g=N, q 7))
ge A geA

say. As before, we see that for sufficiently large p

(13) Sy

IA
|
A
|
|

m

In view of (9), it follows that

that is, we have
(14) 2=qg,=2/e.

Now, note that an integer n < N, can have at most one prime factor > N; (since
N3 > +/N,); hence n belongs to A4 (i.e., is a quadratic non-residue) if and only if
it has the form

n=qi"qn;, m=0, N3<q=Ny, qeA, (n,q)=1
or
n=q]2”1+ln]9 mZOa (nl: H q):l.
qge A

Using the sieve of Eratosthenes and the bound (14), it is easily seen that the num-
ber of such integers equals

1 N
1=N:.{1— — S —2m+ 1—S —-2m—1} O. 1 )
> 1( 01){ 1 2 4 ( 1) X ai + log N,

n<N,; m=0 m=0

ne A
2 1 N
=N,{Sl(1— )+ }+OE< ! )
q1+1 q+1 log p

By (13), the last expression is

1 2 1 N
=N {{ —— 1— + O,
IKZ E)( q1+1>+q1+1} (logp)
1 2¢€ N, 1 €
=N =— o) <N{(=———
‘Kz e)+q.+1}+ e(,ogp)< '(2 4)

for sufficiently large p. It follows that

E <£>=N1—-2 E lziNl.
NSNI p HSN' 2
ne A

But this contradicts Burgess’ estimate, if p is sufficiently large. Hence (12) holds
for p= po(e€), say, and the proof of the theorem is complete. O
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