SECONDARY INVARIANTS OF TRANSVERSELY
HOMOGENEOUS FOLIATIONS

James-L. Heitsch

1. Introduction. Let N be a smooth manifold and G a group of diffeomor-
phisms of N. A transverse (G, N) foliation F on a smooth manifold M consists
of an open cover {U,},e4 Of M together with submersions ¢, : U, — N such that
for each pair U, Ug with U, N Uz # O, there is an element g,z of G with g,gepg=
¢o. If the dimension of N is g, then F is a smooth codimension g foliation on M
and there is a well-defined map ar: H*(WO,) - H*(M) giving the characteristic
classes of the foliation. Let SL,; act on S7 as the space of directed lines in R7*".
In this note we prove the following.

THEOREM. Let F be a transverse (SL 441, S?) foliation on M and suppose that
m (M) is finitely generated. Let v be an element of H*(WOy). Then the set of
values that ar(7y) can take on is a finite subset of H*(M).

This theorem is a generalization of the same result for transverse (PSL,, S')
foliations and the Godbillon-Vey invariant A ,c;€e H*(WO,) due to Brooks-
Goldman. The proof appears in [3] which was the inspiration for this paper.

2. Characteristic classes for foliations. The material in this section is fairly
standard so we shall recall it only briefly. For more details see [1], [2], and [11].
The differential graded algebra WO, is

quzRq[Cla cees Cq]®A(h1,h3s cees has 1)

where the degree ¢; =2, degree h; =2i—1, and 2s+1=¢q or g—1. R;[cy, ..., c4]
is the polynomial algebra truncated above degree 2q and A(ky, ..., has41) is the
exterior algebra on the 4;’s. The DGA W is

Wq=Rq[C1, cory Cq]®A(h], ceny hq)

In both cases the differential is given by setting d(c;) =0, d(h;) = ¢; and extending
as a derivation.

Let F be a codimension g foliation on M and let 7 C TM be its tangent bundle,
where TM is the tangent bundle of M. The normal bundle of F is v = TM/7 and
we write p: TM — v for the projection. A basic connection 8% on v is one whose
covariant derivative V satisfies Vy p(Y) = p([X, Y]) for all Xe 7.

Denote the space of differential forms on M by A*(M). Let 6’ be a Riemannian
connection on ». The map ar: WO, - A*(M) is given as follows: Let Q° be the
curvature of 82 and Q' the curvature of the connection 6/ =¢0%+(1—¢)0" inter-
polating between 62 and 6”. Then
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ar(c) = ¢ (2°),
ap(h;) = S:) i(8/81)c; (') dt.

The ¢;’s on the right are the Chern monomials on the Lie algebra g/,R. If the
normal bundle v is trivial we define ar: W, - A*(M) as above but we now take
Q' =10°+(1—1¢)07, where 6 is a flat connectlon on py. The induced maps in
cohomology are independent of all choices.

Bases for H*(WO,) and H*(W,), due to J. Vey [5], are given as follows.

H*(WOq)- Czjl...Czjl 2j1+-°~+2j,sq
hil"’hikcjl"'cjl N<ip<<ee-
SIS ja=---
ii=<all odd j

i1+|J|=i1+j1+---+j,_>_q+l;

H*(Wq)Z hil"'hikcjl"'cjl h<ip<::-

=i
h=J
h+|J|=g+1.
We shall write A;c; for h;, ... hi, cj,...cj, and hyc;(F) for ap(h;cy). The classes
afp(c2j, ... €2j,) are the Pontrjagin classes pj,... pj,(») of v. If f:M;—>M is a

smooth map transverse to F, then it induces a codimension g foliation f*F on M,
and the following diagram commutes.

o
\

oS F T H*(My).

H*(M)

H*(WO,) It

Finally note that the injection i;: WO, — W, induces a map
iz: H*(WO,) — H*(W,).

In general, i} is not injective. Indeed, it is not difficult to show that the kernel of
iy is generated by the c2j; ... c2j, together with the classes h, cy, where, if jgis the
least even j in J, then i; >J0 and i)+ |J|—jo>q (e.g., hics e H*(WO,)). If visa
trivial bundle then the diagram

H*(W,) o,

‘g H*(M)

H*Wwo,) °F
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commutes. Thus the classes in ker ij are obstructions to » being a trivial bundle.
As far as the author knows, there are no examples known where a class ag(#;cy),
hrcyeKer i}, is non-zero.

3. Reduction to the case of flat SL,; bundles. Let F'be a transverse (SLg4.1, S7)
foliation on M with associated cover {U,}, submersions {¢,}, and diffeomor-
phisms {g,s}. Consider the disjoint union U = U U, x S9. We identify two points
(11, x1) € Uy X S? and (u3, x3) € Ugx 89, provided u; =u, and x; = gqp(xz). It is
easy to check that with these identifications, U becomes a flat SL,; bundle over
M with fiber S9. We denote this bundle by SM. Let F; be the natural flat folia-
tion on SM. Note that on U, X S9, F; is just the foliation obtained from the point
foliation on S? by the projection.

On U, define a cross section o,: U, — SM by o,(u) = (u, ¢.(11)); as o) =
gap°g(u), these local cross sections are compatible and so define a global cross
section o of SM which is transverse to F;. In particular o*(F;) = F, so we have the
commutative diagram

ap _H*(SM)
H*(WO,) \ 1 o*
O HAM).

The foliation F; depends only on the flat structure on SM which in turn de-
pends only on the holonomy homomorphism A:m;(M)— SL,, associated to
the flat bundle SM. Thus the classes ar(v) = c*ar,(y) depend only on 4 and the
cross section o.

4. The Pontrjagin classes. Denote by M the simply connected covering space
of M. Then SM =M %,S?. The normal bundle v, of F; may be identified with
the tangent bundle along the fiber of SM. Consider now the bundle RM =
M x,(R7*'\ {0}) where SL,,; acts on R?*'\ {0} naturally.

The natural projection IT1: RM — SM (along radial lines) induces an isomor-
phism IT*: H*(SM) - H*(RM). The tangent bundle along the fiber of RM is a
flat SL,,; bundle so all of its Pontrjagin classes are zero. It is easy to see that
this bundle is equivalent to the bundle IT*»;@1 where 1 is a trivial R bundle over
RM (1 =tangent bundle along the fiber of IT). We have immediately that all the
Pontrjagin classes of »; are zero. As » =o*r;, we have that all the Pontrjagin
classes of » are zero, that is, ag(c2j;... c25,) =0 for all ¢z, ... c25,€ H*(WO,).

5. «af is independent of ¢. We now need only consider the classes ar(h;c)) =
hyc;(F). Denote integration over the fiber of SM by {.

LEMMA. For all hyc;e H*(WOy), {h;c;(F;s)=0.

Proof. Theorem 4.2 of [8] combined with Theorem 2.3 of [9] states that
{ hyc;(Fs) is a multiple of the Euler class of SM. As SM admits a section, the
Euler class of SM is zero.

The Euler class and all the Pontrjagin classes of the bundle SM are zero. By
the Serre spectral sequence, the map I1*: H*(M) — H*(SM) induced by the pro-
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jection IT: SM — M is injective, and H*(SM) is isomorphic to H*(M)YRX H*(S?).
An element n € H*(SM) is in the image of IT* if and only if {» = 0. Thus A, ¢, (F;)
is in the image of IT*. But

o*(hycy(Fs)) = hic (F)
= o*11*(hyc;(F))

and o* is one-to-one on IT*(H*(M)). Thus

hyc;(Fy) =11*(hr ey (F)),
and for any section oo of SM,

hic;(F)=a5(hicy(Fy)).
Therefore h;c;(F) depends only on the holonomy 4 of SM and not on the par-
ticular section o.

6. End of the proof. We now show that 4, c;(F') depends only on the homotopy
class of h:II; M — SL, . This completes the proof of the Theorem since Sullivan
[13] has observed that there are only finitely many homotopy classes of homo-
morphisms of a finitely generated group to SL, ;.

Denote by P the flat SL,; bundle Il,: M x, SL, 41— M. There is a natural map
IT,: P — SM induced from the map SL,,; — S given by sending g to g(1,0, ..., 0).
Denote by Fj, the foliation on P induced from Fg by II;. The normal bundle
v, of F), is trivial (see below). Consider the following commutative diagram.

HY(W,) ——2+ H*(P)~—
| ni
iq *Fp . H*(SM) 1.
% l I
H*(WO,) —————~ H*(M) —

By the Serre spectral sequence, IIj is injective. Also,
Mo hrcy(F) =TI{ 11 Ay c; (F)
=II{h;c;(F)
=h;c;(Fp).

Thus to show that A;c;(F) depends only on the homotopy class of 4, we need
only show this for h;c;(Fy).

The foliation Fo on M X SL,,; induced from F, may be described as follows.
Let SL(1, g) be the subgroup of SL,, of matrices fixing (1,0, ..., 0), that is, of
the form
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Fp is induced from the foliation of SL,,; by the left cosets of SL(1, g). Thus
Fp has trivial normal bundle. Let A4,,..., 4, be vector fields on M x SL ;4 tan-
gent to SL,,; and which come from the following left invariant vector fields on
SL,4+1. A; corresponds to the matrix A;es/,;; whose only non-zero entry is
(Ap)i+1,1=1. The A4, ..., A, provide a framing of the normal bundle v, of Fy and
this framing descends to a framing of »,, which is thus trivial. To compute the
map ar,: W; - A*(P), we may work with ¥j on M x SL,+; provided we use ob-
jects which descend to P.

Let 67 be the flat connection on »q defined by requiring A, ... , A4 to bea flat
framing. Let 82 be the basic connection on v, whose covariant derivative satisfies

ViAd; =0 XeTM
VxAi=p[X,4;]] XeTSLgs

(recall p: T(M X SL,41) — vo is the projection). It is easily seen that both 6/ and
0 descend to well-defined connections.on »,, 8/ to a flat connection and 6° to a
basic connection. The connection matrix of 8% computed with respect to the
framing A, ..., A, consists entirely of one-forms on M X SL 441 which are the
pullbacks of left invariant one-forms on SL,, ;. In particular it is a straight-
forward computation to show that the /, j entry of this matrix is w; 1, j+1 —S}wl,l
where the w; ; are the Maurier Cartan forms on SL,, ;. The connection matrix of
0/ with respect to the framing A, ... , A4 is the zero matrix.

Denote the algebra of left invariant forms on SL,,; by A*(s/;41). The projec-
tion ¢:M XSL,41—SL,+; induces ¢*: H*(sly4,) > H*(M XSL,+;) and so
also op: H*(slg1) » H*(P). If we use 6/ and 6% above to construct oar, and oFp
we see immediately that ar,(H*(W,)) C op(H*(slg41))-

Note that the constructions above are purely formal. Thus given h;c; e H*(W,)
there is a y;;e€ H*(sl,;+1) such that for any bundle P, arp(h;c5) =0p(¥1)).

As this is true universally, we may determine y;; by computing ¢p and «f, for
a flat bundle P where ¢p is injective. This is done in [12] where it is shown that
app(hrcy)=0if ij+|J|>g+1and

ci;cs(1d)
cq+1(1d)
if i1+ |J|=qg+1. Here h;c;=hi,... hi,cj,...cj,, |I|=k, cijc;(Id) and cg4(1d)

are the Chern monomials applied to the g +1-by-q + 1 identity matrix, H*(s/g41) =

A(y2, ..., Yg+1), and yp =i, ... yi,.
Define a: H*(W,) — H*(sl; 1) by

an(hlc.l)Z('_‘l)m' cop (V1 Vg+1)

alh;jcy))=0 if 11+|J|>q+1
Ci]CJ(Id)
Car1(1d)

Then for any flat SL, . principal P we have

a(hre)) = (=Dl YiYes1 if L+ |J|=g+1.

%,
QF, = ppea.
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Suppose that Fy and F; are two transverse (SL, ., S7) foliations on M whose
associated holonomy maps, ho and #;, are homotopic. Let A, :I1;(M) —SL 4,
t€[0,1] be a homotopy of Ay to A;,. For each ¢, the flat principal bundle 3, =
M xp, SL ;41 is bundle isomorphic to Py by an isomorphism y, which may be
chosen to be continuous in #. Consider the diagram

S"pr

H*slg41) - HYP)—Y_+ H*(P,)

I—I* /1—1*
o t aFl\ t 0

H*(Wy) ~—— H*(WO,) H*(M).

a'FO

Theorem 2 of [3] implies that if 8,: A*(sl;41) = A*(Py) is a family of differential
graded algebra maps, then the induced maps By : H*(sl,+1) = H*(Pp) are inde-
pendent of ¢#. Thus the maps l,b;k°(ppt are independent of r and we have

Moeay, = Yielljear,
S
=Yoo pp,eoeiy
=H3°O(FO.
As IIj is an injection, ap, = o, and the Theorem is proven. O

It has been pointed out by Haefliger [7] that Theorem 2 of [3] is a special case
of an older and more general theorem, to wit:

THEOREM. Let T" be the pseudogroup generated by a semisimple Lie group G
acting on a homogeneous space G/H. Then the continuous cohomology of BT is
rigid. :

Haefliger’s proof goes as follows. Let K be a maximal compact subgroup of
the closed subgroup H. Let F be a foliation on a manifold M transversely homo-
geneous of type G/H where dim G/H = n. More generally let ' be a I" struc-
ture where I" is the pseudogroup generated by G acting on G/H, that is, I' =
G/H x G° (G®= G with the discrete topology). Then there is a commutative
diagram

H*(M; R) ~— H*(g, K)

H*(WO,) = H%(ap, On),
which can be interpreted as coming from the diagram

M BT

\ /

BT,.
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Now BT’ =EG‘5><GaG/H and has continuous cohomology H?*(g,K) by the
theorem of Van Est. Suppose F; is a smooth family of I'" structures, and denote
by C*(I, H*(M;R)) the smooth families of cohomology classes on M para-
metrized by 7=[0,1]. The family F, induces the commutative diagram

C>(I, H*(M;R)) d/dt 1o H*(M; R)
>H*<g,K;R) ar, H*(g,K;g')< |
H*(ap, Oy; R) var - H*(an, Opsap),

where the top horizontal arrow is the value of the derivative d/d¢ at 0, and the
maps “var” are as defined in [4]. The g module g’ is the dual of g with the adjoint
representation.

If G is semisimple and V is a ¢ module, then H*(g; V') = H*(g; V'?) for V finite
dimensional [10]. This implies that the inclusion H*(g,K; V%) — H*(g,K;V)
is also an isomorphism. To see this, apply one of the spectral sequence com-
parison theorems to the Koszul-Hochschild-Serre spectral sequence related
to the reductive Lie subalgebra k, using that both H*(g; V%) —» H*(g; V) and
H*(K; V% —- H*K;V) are isomorphisms. Setting V=g’ as V9=0, we have
always H*(g,K;g’) =0, and the theorem.

7. A remark and a conjecture. It would be very interesting to have explicit
bounds for the A;c,;(F). In one special case we can give such a bound. Suppose
E — M is a flat SL,, bundle with fiber S7, and assume dimension M =g+1.
Denote by Fg the natural flat foliation on E (Ff is then a transverse (SLg4(, S9)
foliation). Denote by [E£] and [M] the homology classes determined by £ and
M. If hic;e H* Y (WO,) we have, by [9].

hics(FR BN = || $eics(Fr)

_ g cicy(1d)

X(E
m Cgri(id) X )I

Ci C_](Id)

=|——-x(E)[M]].

cor1(1d) x(E)[ }’

Thus for g+1 odd we have h;c;(Fg)[E] =0, so h;c;(Fg)=0. For g+1 even, the
Theorem of Milnor-Sullivan (as improved by Smillie; see [6]) gives

1
|X(E)[M]|SE}7$T||M"’

where |M| is Gromov’s simplicial volume of M. Thus for the situation described
above,

1
2q+l

C,'CJ(Id)
Cqr1(1d)

|hic)(Fg)[E]| <

]-nMu.
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Note that if one such 4;c;(Fg) =0 then x(£) =0 and all such 4;c;(Fg) =0 (and
vice versa).

In [3] a bound is given for hjc; e H>(WO,) for certain transverse (PSL,, S')
foliations. This bound suggests the following. Suppose g+1 is even and M is a
q +1dimensional manifold whose tangent bundle is SL ;. flat. Let F; be the nat-
ural transverse (SL,4;, S7) foliation on the unit tangent bundle T'M of M. Let
E and Ff be as above and suppose F'is any transverse (SL,, S) foliation on E.

CONJECTURE. For h;c;e H**\(WO,),
\hic/(F)LE]| |hic,(Fg) [E]| < |hic;(Fy) [T'M]|>.
If we set F'=Fg and apply the results of [9], we obtain:
COROLLARY TO THE CONJECTURE:
IX(E)IM]| = |x(TM)[M]] = |x(M)].
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