SETS IN E? THAT LOCALLY LIE ON FLAT SPHERES

L. D. Loveland

1. Introduction. The e-boundary, d(e, X)), of a subset X of Euclidean 3-space
E3is the set {p|d((p, X) =€}, where d is the usual metric for E? and € is a posi-
tive number. Following earlier discoveries by Brown [1] and Gariepy and Pepe
[6], Ferry [5] proved that e-boundaries of sets in E 3 are 2-manifolds for almost
all e. As a corollary to our main result in [4], Daverman and I showed that
d(e, X) was locally flat at each point where it was known to be a 2-manifold,
thus answering a question raised by Weill [8, p. 248]. This paper addresses the
local flatness of d(e, X') where it is of dimension one.

Let A be a 1-dimensional subset of E? such that A =3(e, X) for some >0
and some subset X of E3. It follows that E>=N(X,e)UA, where N(X,¢)=
{peE? | d(X, p) <e}, because otherwise d(e, X') would separate E3, contradict-
ing the 1-dimensionality of A. In this way one sees, as a corollary to the main
theorem, that 1-manifolds, and 1-dimensional sets in general, locally lie on flat
2-spheres when they are realized as the e-boundary of some set.

A 2-sphere ¥ in E3 is said to be flat, or flatly embedded, in E 3 if there exists a
homeomorphism of E3 onto itself that takes £ onto the unit 2-sphere. A set 4 is
said to locally lie on a flat 2-sphere in E? if, for each p € A, there exist a flat
2-sphere ¥ and a neighborhood U of p in A4 such that UC X.

THEOREM. If A is the e-boundary of a subset X of E 3 for some € >0, and
E3*=AUN(X,¢€), then A must locally lie on a flat 2-sphere in E>.

Some remarks and examples seem appropriate before presenting the proof of
this theorem. Since one can realize a knot as the e-boundary of a set in E? it is
clear that the conclusion cannot be improved by removing “locally”, even when
A is a compact 1-manifold. The hypothesis that E3 = AUN(X, ¢) is also essential
even for the weaker conclusion that A4 locally lie on a 2-sphere. For an example,
let A be obtained by rotating WU YU Z about the x-axis where W is the segment
[(—1,0), (0,1)] in E?, Y={(x,»)|(x—1)’+(y—1)>=1 and x,ye[0,1]}, and
Z=1[(1,0), (2,0)]. Let e=1 and define X={peE?|d(A,p)=1}. Then A=
d(1, X), yet no 2-sphere can contain a neighborhood of (1,0, 0) in A4.

In this example, and whenever A = d(e, X ), it is easily seen that for each ge A
there exists a point x ecl(X) and a ball B of radius ¢, centered at x, such that
ANInt B=O and g € Bd B. Such a ball is said to be fangent to A at q. Daverman
and I [4] proved that a 2-manifold topologically embedded in E> so as to have
such uniform-sized, tangent balls on one side at each of its points would have to
be flatly embedded in E3. As a corollary we proved that a 2-manifold which is
realized as an e-boundary like the rotation of W UY above, must locally lie on a
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flat 2-sphere. An obvious corollary to the theorem in this paper is the analogous
result for 1-dimensional sets.

COROLLARY. If a 1-dimensional set A in E? is the e-boundary of a set X, for
some € >0, then A locally lies on a flat 2-sphere.

Perhaps the results here can be obtained from existing theorems or their
proofs. A subset A of E3 is known to locally lie on a flat 2-sphere when A has
uniform double tangent balls (see Theorem 3.1 of [7]). A set A is said to have
uniform double tangent balls if there is a positive number € such that, for each
q € A, there exist two balls B; and B, each of radius ¢ such that BjN B, ={qg} and
ANInt(B,UB,)) = J. I was not able to show that these e-boundary results are
consequences of existing theorems on double tangent ball embeddings, although
the proofs here often run parallel to those in [7].

A good general reference to embeddings of 2-spheres in E? is the survey article
[2] by Burgess and Cannon. The references [1], [4], [5], and [6] relate to e-bound-
aries, while [3], [4], and [7] give more background on embeddings of sets with
various types of tangent balls. However, this paper is generally self-contained
relative to its proofs and definitions.

2. Proof of the theorem. Let e > 0, let A be the e-boundary of a subset X of E3
such that E3 = AUN(X, ¢), and let p be an arbitrary point of A. The objective,
to show the existence of a flat 2-sphere X in E3 and a neighborhood U of p in 4
such that U C X, is easily achieved if p is an isolated point of A. In the sequel it
will be assumed that p is a limit point of A and that, since d(e, X' ) = d(e, cl(X)),
X is closed. It follows that A is also a closed subset of E>. For each ge A let S,
be the sphere of radius € centered at g, let XN S, be denoted by N, and let &, be
the set of all balls of radius e that have their centers in N,;. Lemma 1 restricts the
centers of tangent balls to A4 at p to the intersection of certain hemispheres of S,.
Its proof is not difficult.

LEMMA 1. If {p;} is a sequence of points of A converging to p such that the
sequence {R;} of rays from p through p; converges to a ray R, then N, lies in the
closed hemisphere of S, opposite R.

Since p is a limit point of 4 one can deduce from Lemma 1 that some hemi-
sphere of S, contains N,. By Lemma 3 below there can be no hemisphere of S,
whose interior contains NN,.

The ray from a point g through another point x is denoted by R(q, x) or by (7)?
If two rays R; and R have the same initial point, 8(R;, R,) is the degree measure
of the smaller angle between R, and R,. Similarly, if By and B, are balls in &,
0(B,;, B,) is defined to be 8(R;, R,), where R; is the ray from g to the center of B;.
Used frequently in the sequel, Lemma 2 appears here primarily because its proof
is similar to that of Lemma 3.

LEMMA 2. If the hypothesis of Lemma 1 is satisfied and H is the hemisphere
of S, opposite R, then lim sup N, C Bd H.
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Proof. Let x elim sup Np;,. By choosing a subsequence if necessary I may
assume {x;} is a sequence of points converging to x such that x; e N, for each i.
For each i, let f; be the point of R; such that 0(R;, R(f;, x;)) =90°; that is, f; is
the foot of x; on R;. Because x € N, it follows from Lemma 1 that x € H. This
makes it clear that { f;} converges to p. Since {R;} converges to R, {R(f;, x;)} con-
verges to R(p, x), and R; is perpendicular to R(f;, x;) for each i, it follows that
0(R, R(p, x))=90°. This means x € Bd H. ]

LEMMA 3. Every closed hemisphere of S, intersects Np,.

Proof. Let H be a closed hemisphere of S,, and let T be the ray beginning at p
such that A is symmetric with respect to 7T and H intersects 7. Since A contains
no open subset of E3 there is a sequence {#;} of points of E>— A converging to p
such that the sequence {E?,-} of rays 7; converges to 7. Because £ 3_AcC N(X,e),
each ¢; lies in a ball B; of radius ¢ whose center x; lies in X and whose interior
misses A. By choosing subsequences if necessary I may assume {x;} converges to
a point x, and it is clear that x € N,. For each i let f; be the foot of x; on the line
through 7;, and note that, since ¢; € B; and p ¢ Int B;, f; belongs to 7;. Because
{T;} converges to T and {x;} converges to x, (7T, R(p,x)) <90°, and it follows
that x e H. O

LEMMA 4. For each q € A there exist balls B and B’ in B, such that (B, B’) =
90°.

Proof. Since g € d(e, X) there exists a ball Be 83,. Let R be the ray from g
through the center of B, and let A be the hemisphere of S, opposite R. By Lem-
ma 3 there is a point-x of N, in H, so let B’ be the ball of &, centered at x. O

To help motivate the two cases now examined to complete the proof, recall
that NV, cannot lie in the interior of the hemisphere of S, (Lemma 3) but that N,
must lie in a hemisphere of S, (Lemma 1). Case 1 includes the situation where
there are two hemispheres H; and H, of S, such that N, C H|(\ H, and Bd H, #
Bd H,. In this situation Bd H, N Bd H; would consist of two points ¢; and ¢, that
are antipodal on §,, and, since the closed set N, does not lie in the interior of a
hemisphere of S,, c¢; and ¢, would lie in N,,. Furthermore each hemisphere H of
S, that contains N, would also contam a closed semicircle c, ¢> with endpoints ¢,
and c; such that N NBd HC &¢. Although Case 1 includes the situation just
described, it is not llmlted to just this. In each of the two mutually exclusive cases
that follow there can exist antipodal points of S, that belong to N,,.

Case 1. This is the case where there exist antipodal points ¢; and ¢, of S, such
that, for every hemisphere H of S, containing N,, N,NBd H lies in a closed
semicircle cl c; of Bd H. As mentloned above, it follows from Lemmas 1 and 3
that {c1, 2} C N,. Let L be the line through {cy, c3, p}, let B, be a ball in &, with
its center at ¢, and choose a point x on L between p and c; such that a ball B in
33, must contain x in its interior whenever 0(B, B;) < 89°. The object is to show
the existence of an open subset U of A containing p such that, for every g e U,
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there is a ball in &, with x in its interior. Once this is proved, B* is identified as
the union of all balls in U {®, | g € U}, so that Bd B* is star-like from x. Then
Bd B* is the desired flat 2-sphere that contains U.

Suppose no such open set exists. Then there must be a sequence {g;} of points
of A converging to p such that, for each i, @, contains no ball with x in its
interior. For each i, let R; be the ray from p through g;, and, for convenience
(choose an appropriate subsequence of {g;} if necessary), assume {R;} converges
to Lo a ray R. By Lemma 1, N, must lie in the hemisphere H of S, opposite R. Let
&6, denote a closed sem1c1rcle of Bd H that contains N,MNBd H By Lemma 2
lim sup Ng; C é.6. Once it is proved that, for suﬂimently large n, &3,, contains
two balls B,, and B}, such that 6(B,, B;)>91°, a contradiction to the existence
of {g;} can be obtained. This is because the centers of B, and B; can be made
so close to &¢, that one of B, and B), say B,, would have the property that
0(B,;, B;) = 89° and hence would have x in its interior.

Fix n and let ¥V and W be two balls in &3,, such that 8(V, W) = 90° (see Lemma
4). If 6(V, W) >91°, the objective is achieved, so suppose 8(V, W) <91°. Let C,
be the circle centered at g, that contains the centers v and w of V and W (respec-
tively), let ¢ and ¢’ be the two points of C, equidistant from v and w with ¢’ on
the minor arc of Dw, and let 7 be the ray from g, through ¢. By Lemma 3 there
must exist a ball B, in 8,, such that 6(B,, #), the measure of the angle at g, sub-
tended by ¢ and the center b,, of B,,, is no larger than 90°. If b, were known to lie
on or near C,, it would follow that either (V, B,) or 8(W, B,;) would be larger
than 180 —6(V, W)/2, which would exceed 134.5°. Then one of V or W could be
chosen as B;, so that 6(B,,, B;;) >91°.

However, {C,]} converges to Bd H because lim sup N,;, C c, c,. This means that
for sufficiently large n, b, lies near enough to C,, that the required balls B, and
B}, can be obtained with x in the interior of one of them.

Case 2. In this case there do not exist antipodal points of S, as in Case 1; that is,
for every pair of antipodal points ¢; and c; of S, there must exist a corresponding
hemlsphere H of S, such that N,CH and N, ﬂBd H fails to lie in a semicircle
cl c;. Let Hbea hemlsphere of S containing Np (Lemma 1), and impose a coor-
dinate system on E* with p the origin, Bd A in the xy-plane, and such that
the positive z-axis fails to intersect H. The immediate objective is to show the
existence of a positive number é and a solid Z, obtained by revolving the disk
£(0, ¥v,2) | (¥ —6)2+2% < 62} about the z-axis, such that ZNA = &. To accom-
plish this the hemisphere A may need changing.

To illustrate the choice of 6 first consider the case where (Bd H) NN, contains
antipodal points ¢; and c;. Let 4, and Aj, be the two open semicircles of Bd H
each having endpoints ¢; and c,. If there are points ¢3 and ¢4 of 4NN, and
A12NN,, respectively, then the union of the four balls of N, with centers ¢, ¢,
c3, and ¢4 would contain the desired solid Z. On the other hand if one of A4,; and
Af,, say Aj,, fails to intersect NV, then, by the stipulations of this case, there
would be a hemisphere H’ of S, such that N, C H’ and both open semicircles of
Bd H’ with endpoints ¢; and ¢, would intersect V,. In this situation A’ could be
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renamed H and § and Z chosen as before. Finally, consider the case where there
are no antipodal pairs of points of N,NBd H. Then every open- semicircle of
Bd H must intersect NV, as I now show. Suppose « is an open semicircle of Bd H
such that « NN, = &, and let ¢; and ¢, be its endpoints with ¢, not belonging to
the closed set N,. Rotate o around Bd H slightly if necessary to obtain a closed
semicircle o’ and a positive number * such that the regular neighborhood N(a’, *)
fails to intersect N,. Now rotate H slightly about the line through the endpoints
of «’, moving the interior of «’ only within N(«’, *), to obtain a hemisphere H’
of S, with NV, in its interior. This contradicts Lemma 3 and proves that each open
semicircle of Bd A must intersect N,. Then to choose é and Z, let ¢, e N,NBd H,
and let oy be the open semicircle of Bd H opposite ¢;. There must exist a point ¢,
in ;N N, and c; is not the antipode of c¢;. Let «;, be the open semicircle of Bd H
opposite the midpoint of the minor arc &,¢,, and let ¢; be a point of 2NN, By
construction, the union of the three balls of &, centered at the three points ¢y, ¢,
and c; must contain a solid Z as desired.

For convenience in writing assume 6 <e¢/2, and, for each ¢, let P, denote the
horizontal plane defined by z =¢ and let M denote the union of all balls of radius
6/2 whose centers lie on the circle {(x, y, 2) |x2+y2= (8/2)% and z =0}. Then
McCcZcUG®,, so MNA=OD. For te[—6/2,6/2] and ¢ # 0, let G, denote the
open circular disk in P, whose center is (0, 0, ¢#) such that G, M =Bd G,. Let
G=U {G;|t#0and —8/2 <t <§/2}; that is, G is the union of two open 3-cells
each shaped like a trumpet. The remainder of the proof in Case 2 is based on a
sequence of nine lemmas whose hypotheses include unstated conditions previ-
ously established.

LEMMA 2.1. There is a positive number u such that if 0<|t|<u, ge G,NA,
and B e G, then the disk PN\ B has radius greater than 6.

Lemma 2.1 follows easily from Lemma 2. However, to see that Lemma 2
applies to H note that there cannot be two hemispheres of S, containing N,
unless they share the same boundary (see the remarks preceding Case 1). Thus
Bd H is unique with respect to being the boundary of every hemisphere of S,
containing /N,.

A disk D is said to be a normal disk at a point g of AN P, if D lies in P,, D has
radius 6, g € Bd D, and there is a ball B in &, such that DCBNP,. Aray R is
called a normal ray at a point g of AN P, if g is the endpoint of R and R contains
the center of a normal disk at q. A line is said to be normal at q if it contains a
normal ray at g. If Dy and D, are two normal disks at g, 8(D;, D,) is the degree
measure of the smaller angle subtended at g by the centers of D; and D,.
Similarly 6(B;NP;, BN P,) measures the smaller angle subtended at g by the
centers of the disks BiN P, and B,NP;, where By, B € G,.

For 0 < |t|<u and g € AN P, let C, be the circle in P, of radius 6 whose center
is g, and let M, be the set of centers of all normal disks at g. Then M, C C,.

LEMMA 2.2. If 0<|t|<u and qe ANP,, then every semicircle of C, inter-
sects M. '
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Proof. Let S be a semicircle of C,4, and let R be the ray in P, opposite S. By
Lemma 3 there is a ball B in B, whose center lies in the hemisphere of S, opposite
R. Since B is tangent at g to the line through ¢ and the endpoints of S, it follows
from Lemma 2.1 that BN P, contains a normal disk whose center liesin S. [

LEMMA 2.3. If 0< |t|<u, ge ANP,, and v=26sin 0.5°, then either

(i) there exist two balls B, and B, in 8, such that 0(B,N\P,, BN P,;) =179°; or

(ii) there exist three balls By, B,, and B3 in 8, whose union contains a circular
disk in P, with radius vy and center q.

Proof. Suppose condition (i) fails for some appropriate choices of 7 and ¢,
and let B; and B, be balls of &, such that 8(D,, D) is as large as possible, where
Dy and D, are normal disks at g lying in BN P, and B,NP,, respectively. By the
supposition, 0(D,, D;) <179°, and by Lemma 2.2, D, # D,. Let ¢; and c; be the
centers of D; and D,, respectively, and let S be the closed semicircle of C, oppo-
site the bisecting ray of %c;qc,. Using Lemma 2.2 and incorporating the maxi-
mality of 8(D,, D,), one can deduce that 120° < 0(D,, D,).

By Lemma 2.2 there is a normal disk D; whose center lies in S, and, since
120° < 0(D,, D;,) < 179° and 6(D,,D,) is maximal, it is clear that the union
of D;, D, and D; contains a circular disk centered at g. To detect its radius
notice that D;N D, contains a segment with g as one endpoint whose length 4 is
26 cos(6(D,, D,)/2) =26sin K/2, where K is the angle subtended at ¢, by the seg-
ment. The length 4 decreases as 6(D;, D,) approaches 179°, so v is a lower bound
for 26 sin K/2. Since 0(D;, D;) <0(D,, D;) for i =1, 2, both DiND;3 and D,N Dy
contain segments of length no less than -, and condition (ii) follows. O

A line L in a plane P, is called a projective line if no line in P, parallel to L,
including L itself, meets AN G, in two points. Not every normal line at q is a prc-
jective line, but Lemma 2.5 states that any line close to what is called a double
normal at g must be a projective line. A double normal W, at q is the union of
two normal rays R and R’ at g such that (R, R’) =179°. For two coplanar lines
L and M, 6(L, M) is the degree measure of the smaller of the two angles made by
LUMorO°if LNM=O. If W, is a double normal RUR’ at x in P, and K is a
line in P;, define §(W,, K) =max(0(L, K), (0(M, K)) where L and M are the two
lines containing R and R’. Finally, if W, is a double normal at y in P, and W, is as
above, define 0(W;, W,) =max(0(W,, L), 6(W,, M)) where L and M are as before.

The immediate goal is to identify a number #, and a corresponding con-
tinuous family {L,|0<|t|<u,} of projective lines. This is completed with
Lemma 2.8. The proof of Lemma 2.9 shows how to rotate the segments
{L,NG,|0<|t| <u,} using a space homeomorphism 4 so that the orthogonal
projection of H{({ANG, |0 < |t| <u,}) into the yz-plane is one-to-one.

Choose a positive number u; such that ¥;<u and, for 0<|¢|<u;, G, has
diameter less than /2. If |¢| <u; and g € AN P,, then it follows from Lemma 2.3
that either G,N A = {q} or there exists a double normal at q.

LEMMA 2.4. There exists us € (0, uy) such that if 0<|t|<u, and P, contains
double normals W, and W), at two distinct points x and y (respectively) of ANG,,
then O(W,, W,) <5°.
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Proof. Choose u, € (0, u;) such that if ¢ is any point of P,, 0<|t|<u,, at a
distance § or more from some point of G,, then G, subtends an angle of measure
less than 3° at c. Let ¢ be given such that |¢| <u,, G;NA contains two distinct
points x and y, and P, contains double normals W, and W, at x and y, respec-
tively. Suppose 6(W,, W,) =5°. Then W, N W, contains at least one point b, for
otherwise 8(W,, W,) could be at most 2°. Suppose d(b, y) = 6. It follows from
the definition of u, that the measure of ¥ ybx is less than 3°; therefore, if R and
S are the rays of W, and W, (respectively) that contain b, then 8(R, S) <3°. But
then 6(W,, W,) <5°, contradicting the first supposition. Therefore d(b, y) <4,
and, by similar argument, d(b, x) < é. For convenience assume d(b, x) <d(b, y),
so that x lies in the disk Y of radius d(b, y) centered at b. Let Dy and D; be
normal disks at y corresponding to the two normal rays at y whose union is W),.
Since d(b, y) < é and b is on a ray of W), it follows that ¥ must be a subset of D,
or D,, say Dy. From Lemma 2.1 there is a ball B, in ®,, such that D, C P,N B, and
P,N B, has radius larger than 6. This means D;N A = {y}, contradicting the facts
that x lies in D; and x # y. |

LEMMA 2.5. If 0< |t| <ua, g€ G/NA, W, is double normal at q in P,, and L
is a line in P, such that 6(W,, L) < 60°, then L is a projective line.

Proof. If g is the only point of G;,N A, then every line in P, is projective. In the
other case it follows from Lemma 2.3 and the choice of u; that there is a double
normal W, at each point x of AN G,. Let L’ be a line in P, parallel to L such that
L’ contains a point x of G,N(A—{q}), and let W, be a double normal at x. By
Lemma 2.4, 0(W,, W,;)<5°, and, from the hypothesis, 6(W,, L’) <5°+60° =
65°. The normals rays at x in W, contain the centers ¢ and ¢’ of two normal disks
D and D’ at x. If N is the normal ray at x through ¢, then, by definition, 8(L’, N) <
0(W,, L) =65°. Therefore the chord L’N D subtends an angle at ¢ of measure
larger than 180° —2(65°) > 5°. Then by the definition of u, in the first line of the
proof of Lemma 2.4 and a similar analysis relative to L'ND’, L'NG, CDUD".
Therefore L'N(ANG,;) ={x}, and L’ is projective. ]

LEMMA 2.6. If 0< |t|<up, ge ANG,, and W and W' are double normalis at
q such that O(W,W'’)=5°, then the disk in P, centered at q and having radius
248 sin 2° intersects A only at q.

Proof. Let R, T, R’, and T’ be rays such that W=RUTand W’'=R’'UT’, and
for convenience assume (W, W’')=60(R,R’). Then 5° <60(R,R’')<90°. Let D
and E be normal disks at g centered on R and 7, respectively, and let D’ and E’
be normal disks at ¢ centered on R’ and T, respectively. Since 8(D, E’) <176°,
6(D’,E)=<176°, and D’and E’ are centered on opposite sides of the line through
R, trigonometry reveals the existence of a disk in DUD’UFEUE’ centered at g
whose radius can be chosen as large as 26 cos(176°/2) =26 sin 2°. O

Let J={q € A | there exist double normals W and W'’ at g such that (W, W') =
5°}. If ge J and |t| <u; it follows from Lemma 2.6 and the choice of u, that
GiNA=1{q}. Let T={t|te[—u,u;] and G,NJ = D}, so that G,NA is a
singleton set whenever ¢z e 7. It follows that if r¢ 7, |¢|<up, and W and W’
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are double normals at a point g of ANG,, then 8(W,W’)<5° Let DN be
[—uy, u2]) N {¢ | there exists a double normal at some point of G,NA}. Then
T C DN.

A family {L,, |we (r,s)} of lines L,, in P, is said to be continuous provided
{L:;} converges to L, whenever {¢;} converges to ¢ in the interval (r, s).

LEMMA 2.7. If |t|<u, and t e (DN—T), then there exist an open interval
(r,s) containing t, a continuous family {L,, |we (r,s)} of projective lines, and
a family (W, |we(r,s)NDN} of double normals such that, whenever we
(r,s)NDN, L, ,UW, CP,, and 6(L,,, W,,) <15°.

Proof. Let g be a point of AN G, such that W, is a double normal at g, and
suppose there exists a sequence {f;} converging to ¢ such that each P, contains a
double normal W; such that (W, p(W;)) =15°, where p denotes the vertical pro-
jection of E* onto P,. Then the limiting set of {W;} in P, contains a double normal
W where (W, W,;) =15°. If W is not a double normal at g, then Lemma 2.4 is
contradicted. On the other hand if W were a double normal at g, then g would
belong to J and ¢ to 7— another contradiction. Since no such sequence {#;} exists
there must be an interval (r,s) containing ¢ and a family {W,, |we (r,s)NDN}
of double normals such that W, C P, and (W, p(W,,)) <15° for each w in
(r,s)NDN. Let N; be a line in P, containing one of the two normal rays whose
union is W,, and define L,, = P,,Np ~!(NN,) for each we (r,s). From Lemma 2.5,
L,, is a projective line for each we (r, s) N DN, and L,, is projective for w¢ DN
since then every horizontal line is projective (see Lemma 2.3). O

Let 77 be the union of all points of [ —u,, u,] that are either endpoints of T or
in point-components of 7, and notice that 7" is closed. It is convenient to also
include —u, and u, in 77, so that each component of [—u,, u,]— T’ is an open
interval.

LEMMA 2.8. For each component V of [—u,,u,]—T', there exists a contin-
uous family {L,, | we V} of projective lines.

Proof. If V CT, define L,, to be the intersection of P,, with the xz-plane P for
all we V. Then L, is projective because G,,MN A is a singleton for each we V.
Otherwise, where VNT = &, define, for each ¢ € V, an open interval (r;,s;) anda
continuous family {L,, | we (r,;, s;)} of projective lines such that # € (r;,s;) C V as
follows. If ¢ ¢ DN, then either G;NA = O or G,NAis a singleton (Lemma 2.3).
Since both A and DN are closed, there must exist an open interval (r,,s,) in
V— DN such that G,,MN A contains at most one point for each w e (r,, s,). In this
case define L, as P,,NP. If t e DN, then t e DN—T and Lemma 2.7 applies to
identify (#;,s;) and corresponding families {L,,} of projective lines and {#,,} of
double normals, where 08(L,,, W,,) <15° for we (r;, s,) NDN.

Since Q ={(r;,s;) |t € V} is an open cover for V, one can mark an increasing
sequence {s;} converging to s such that s; € V for each i and each of the intervals
[si—1,s:] lies in an open interval Q; of Q. The objective, to fit two families of pro-
jective lines together at a point s; where [s;_;, s;] and [s;, s;+1] overlap, is easily
accomplished when s; ¢ DN. This is because in one of Q; and Q;,, say Q;, all
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horizontal directions are projective so that, near Ps,, the family {L,, | we Q;} can
be continuously rotated to match {L,, |we Q;+1} at s;. In the more difficult case
where s; € DN, both Q; and Q;,, were obtained through the use of Lemma 2.7.
This means there are projective lines L and L’ and double normals Wand W7, all
in Ps,;, such that 6(L, W) <15° and (L', W’) <15°. Since s; ¢ T, then (W, W) <
5° if W and W’ are double normals at the same point of Gs;NA. Otherwise,
where W and W'’ are double normals at different points of Gs;MNA, it follows
from Lemma 2.4 that (W, W’) < 5°. Then 8(L,L’) <15°+5°+15° =35°. It fol-
lows from Lemma 2.5 that any line M within 35° of L must also be a projective
line, because M would then lie within 60° of the double normal W. (6(M,W) <
O0(M,L)Y+0(L,W)<35°+15° <60°.) Thus one can rotate L’ through projective
lines to bring it parallel to L. To obtain a continuous family {L,, |we [s;_1,Si+1]}
one does this rotation, together with a translation if necessary, using a small ver-
tical interval containing s;. A continuous family {L, |we (r,s)} of projective
lines is obtained using this procedure at each s;, then by repeating it relative to
the lower endpoint r of V. ]

LEMMA 2.9. There exist a neighborhood U of p in A and a homeomorphism h
of E? onto itself such that the orthogonal projection of h(U) into the yz-plane is
injective. It follows that h(U) lies on a flat 2-sphere in E>.

Proof. Let
U=U {G/N4 | —ux <t <u,},

let V be a component of [—u,,u]—7", and let {L,, |we V} be a continuous
family of projective lines as given by Lemma 2.8. First consider the special case
where 0 is the lower endpoint of V. By translation of L, in P, if necessary, one
may assume that L,, intersects the z-axis for each w € V. The homeomorphism #
takes each plane P,, onto itself, is fixed on the z-axis and outside U {G, |t € V},
and rotates the various concentric circular sections of G, to bring the segments
G,NL, into the xz-plane. More detail follows, but, once 4 is understood, it is
clear that A(U) projects as desired because no line parallel to a segment
h(G,NL,) intersects U at two distinct points.

In the general case let r and s be the two endpoints of V where r <s, and define
AWV)as U{ANG, |r=t=s}. Then A(V)NP, and A(V)N P, are singletons {x}
and {y}, respectively. With no loss in generality, assume x=(0,0,r) and y=
(0, 0, 5). There exist two 3-cells C;(V) and C,(V) such that

AWV)C Ci(V) Cix, yjUlnt Co(V), Ci(V)NP, =[x}, Ci(VYNPs=[y},

and, for each reV, C;(V)NP, is a circular disk in G, with center (0,0, ¢). For
each r eV, let L; be the open diameter of C;(V)N P, that is parallel to the pro-
jective line L,. There is a homeomorphism 4y of E? onto itself that is fixed on
E3 —Int Cy(V) and rotates each C;(V)UP, so that L} is carried into the xz-plane.

The desired space homeomorphism 4 is constructed to agree with Ay on
U {P, |t € V} for each component V of [ —u3, u3]— 7"’ and to be the identity else-
where. The construction of C;(V) insures that a sequence {4y;} of homeomor-
phisms, where {V;} is a sequence of components of [ —u3, #3]— 7’ converging to
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a point 7o in 7, must converge to the identity on P,,. As in the special case the
orthogonal projection of A(U) into the yz-plane is injective because of the
realignment of the projective segments {L;} parallel to the xz-plane. Thus the
proof of Case 2 is completed. L]

2.
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