RATIONAL POINTS OF INFINITE ORDER
ON ELLIPTIC CURVES

Franc¢ois Ramaroson

Let N be a prime number of the form N= u?+64, where ueZ, and let / be a
prime greater than 3, congruent to 3 mod 4 which is a quadratic residue mod M.
Denote by K the imaginary quadratic field Q(~/ —17 ).

According to Setzer [13], there are (up to isomorphism) two elliptic curves
defined over Q having a rational point of order two and with conductor N:

E:y?=x3+ux*—16x and E’:y’>=x3-2ux?+Nx
where u is chosen, so that u=1 (mod 4). E and E’ are isogenous over Q. In fact,
E’'= E/C, where C is the subgroup of E generated by the rational point of qrder

two.
A global minimal model for E is:

u—1
Y +xy=x3+ (———4 )xz—x.

Direct calculations from this model give:
(1) The minimal discriminant is /N;
(2) The j-invariant is (N—16)3/N.

PROPOSITION 0.1.

(1) rank(E(Q))=rank(E(Q))=0;

(2) LI(E, Q);=LI(E’, Q)>=0.

Proof. This proposition follows directly from Mazur [9] (Corollary 9.10,
p. 257), as E and E’ have prime conductors. 1

PROPOSITION 0.2. E(Q)=Z/2Z = E’'(Q).

Proof. We work it out for E.

By Proposition 0.1, E(Q) is a torsion group. Suppose E(Q) has a point M of
order p # 2, with p prime. Since E has good reduction at 2, we have an injection
E(Q7)p = E (F32)p,, where E is the reduced curve mod 2 and F, the residue field
with 2 elements.

After we reduce the global minimal model

u—1
y2+xy=x3+(T)x2—x
modulo 2, we get:

yi+xy=x3+x%2—x if u#1 (mod8),
Yi+xy=x—x if u=1 (mod 8).
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Direct calculations now show that
#(E(F;))=4 if u=1 (mod8),
=2 if u##1 (mod 8).

In any case E(F,) does not contain a subgroup of order p # 2, contradiction.
Therefore, E(Q) contains only 2-torsion points. However, it is easy to see that,
of all the 2-torsion points on E, two of them are rational over Q(«/N ); there-
fore, E(Q)=Z/2Z.

E’ is 2-isogenous to E; hence, we also have E'(Q) = Z/2Z. |

We will study the arithmetic of £ over K = Q(~/ —/ ). The Tate-Shafarevich
conjecture predicts that rank E'(K) is positive. Using the Birch-Heegner method,
we will observe that if E is a Weil curve, then a point of infinite order exists on
E(K).

1. The arithmetic of FE over K.

(1.1) PRELIMINARIES ([5], [7]). (In this section E denotes any elliptic curve
over Q).

All fields we deal with are extensions of Q. For any number field X and any
place v of k, k, will denote the completion of k£ at v. For any field k£ and any
Gal(k/k)-module A, the Galois cohomology groups H*(Gal(k/k), A) are de-
noted H*(k, A).

Now let £ be a number field and v a place of k.

The short exact sequence

0 - E(k), > E(k) > E(k) -+ 0
induces the following exact sequence in cohomology:
0 - E(k)/2E(k) - H (k,E;) - H'(k,E), —» 0.
Similarly, we have the exact sequence
0 — E(k,)/2E(ky) > H'(ky, E2) — H'(ky, E)2 — 0.

The inclusion k& C k, gives rise to restriction maps and we have a commutative
diagram:
0 - E(k)/2E(k) 2 H'(k,E;) = H'(k,E;) -0
lav iﬂu wL'Yv
0 — E(ky,)/2E(k,) % H'(ky, E2) ™% H'(k,, E); — O.

The local Selmer group, S(k,) is the image of A, and is isomorphic to
E(ky)/2E(ky).
The global Selmer group is:

S(k)=1{se H'(k, E;) | B,(8) € S(k,) for all v}.
Let LLI(k), the Tate-Shafarevich group, be the kernel of
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H'(k,E) > T1 H'(k,, E).

Then we have the following fundamental exact sequence:
0 — E(k)/2E(k) 2 S(k) = 1u(k), — O.

(1.2) NORMS ([7]). Let K be a quadratic extension of @, and let ¢ denote the
generator of Gal(k/Q). We define the norm on global points as:

N: E(K) - E(Q),
P—> P+ P°,

On local points, for a quadratic extension K,,/Q, where v lies over p we define
the norm N,: E(K,) - E(Q,). We also have the norm on the global Selmer group
N:S(XK) — S(Q) and on the local Selmer groups

Np: S(K,) — S(Qp)

1

These norms come from co-restrictions in cohomology. The local cokernels
E(Qp)/Np(E(K,)) and S(Q,)/N,(S(K,)) are finite dimensional vector spaces
over F; they have the same dimension, i,. This dimension is the local norm
index at p. We make the convention that i, =0 if p splits in K.

Let ® denote the subgroup of S(Q) defined by

P ={8eS(Q)|B,(8) e N,(S(K,)) for all p, v lying over p].

® is the group of all elements in the global Selmer group S(Q) which are every-
where local norms. ® clearly contains the group of global norms N(S(X)). In [7],
Kramer proved that ®/N(S(K)) is always of even dimension over F;.

(1.3) COMPUTATIONS OF LOCAL INDICES. From now on E is the Neumann-
Setzer curve and K = Q(~/ —/ ) as in the introduction.

PROPOSITION (1.3.1). Defining the local norm index as before, we have:
Q) i,=0if p=N, |,

2) in=0,
Q3) =2,
@) io=1.

Proof. We apply [7].

(1) It is known ([9, Corollary 4.4, p. 204]) that if p is a good prime and is un-
ramified in K then i, = 0; this is the case when p# N, /.

(2) Since (I/N)= +1, N splits in K; hence inx=0.

(3) At /, E has good reduction but / ramifies in K; since (—//N) = +1, we have
that (N, —/) = +1 (Norm residue symbol). Hence /; is even and i; =0 or 2. More-
over, the reduced curve has a non-trivial rational point; hence i; = 2.

(4) At infinity, i, =1 since the discriminant of the minimal model is positive.

]
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(1.4) THE GROUP ®/N(S(K)). We first observe that, from the known facts
about E stated in the introduction and the exact sequence
0 — E(Q)/2E(Q) — S(Q) —» LI(Q), — O,
we have S(Q)=E(Q)=Z/2Z.

LEMMA (1.4.1). Let E be given as y> =x>+ ux?—16x and Py= (0, 0), the non-
trivial rational point. Then if P is a point such that 2P = Py, then P is one of the

following four points: (4i, +4/—u—8i), (—4i, +4/—u+8i).
Proof. This is a standard calculation and is left to the reader. O

LEMMA (1.4.2). Let 8 be the non-zero element in S(Q); then (3;(8)#0 in
S(Qy), where B3, is as in (1.1). )

Proof. Since /=3 (mod 4), Lemma (1.4.1) implies that Py¢ 2E(Q;). Now
consider the following commutative diagram:

Q — E(Q)/2E(Q) 2 S(Q)
1o 18

0 — E(Q1)/2E(Q)) 2> S(Q)).

8 is the image of Py under \; moreover, since «; is induced by inclusion, the image
of Pg under «; is not zero. \; is in fact an isomorphism, hence 3;(8) # 0. O

LEMMA (1.4.3). Let v be the place of K lying over l. Then
N,(S(Ky)) =0.

Proof. By [4, p. 717], we have #(S(Qy;)) =#(E(Q))2), where #(X) denotes the
cardinality of the finite set X. It is easy to see that all the points of order two are
rational over Q(~/N ), and since (N//) = (//N) = +1 we see that all these points
are rational over Q,. Therefore E(Q;),=Z/2Z X Z/2Z; moreover, it is clear
that the non-zero elements in S(Q,) are of order 2, hence S(Q,)=Z/2Z X Z/2Z
and dim(S(Q,)) =2 as an F,-vector space. On the other hand, by Proposition
(1.3.1), i{;=2, but i;=dim(S(Q;)/N,;(S(K,)) where v lies over /. Therefore
N,(S(K,)) =0. 0

PROPOSITION (1.4.1). The group ® defined in (1.1) is trivial, hence ®/N(S(K))
is also trivial.

Proof. Just recall that ® is a subgroup of S(Q) and the rest is clear from there,
using the lemmas. , O

(1.5). THE RANK OF E(K).
THEOREM (1.5.1). rank(E£(K)) =1—dim LI(K),.
Proof. In [7, p. 130], we have the formula
rank (E(K))=Xi,+dim ®+dim N(S(K))—2 dim E(Q), —dim Li(K),.

From the computations done so far we obtain the claimed formula for the rank.
O
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REMARK. Now we observe from the formula for the rank that the Tate-
Shafarevich conjecture says that 11lI1(K), must be trivial and the rank must be
one.

2. Existence of points of infinite order. In the rest of this note —under the
assumption that E is a Weil curve—we show that a point of infinite order must
exist on E(K) and, indeed, the rank is one and LLI(K); =0

(2.1) SOME BASIC FACTS. Assume that £ is a Weil curve. Hence we have a
surjective morphism of finite degree defined over Q: Xo(N) — E, where X(N)
is the modular curve which is a smooth projective model for Q(j(z), j(Nz)) over
Q. Recall that />3, /=3 (mod 4), (//N)=1and K= Q(~/—! ); the conditions
on / imply that (—//4N)=1.

The following is a result of Kurchanov.

THEOREM (2.1.1) (Kurchanov). With | and N as above, let L be the Hilbert
class field of K. Then there exists a Z;-extension L™ of L:

L=LocL,Cc---c U L,=L"
n=0

such that for each n =0, there exists a point M e E(L™) and M ¢ E(L,).
Proof. See [8, p. 322].

(2.2) A SPECIAL QUARTIC CURVE AND HEEGNER’S LEMMA. Consider the
quartic curve y?=X*+uX2—16. We have a rational map defined over Q:

V:C—E
(x, ) > (x%, xp).

We make the following observations:

(i) C(Q)affine is empty.

(ii) Take the model y? = x3+ ux?—16x for E, P, the non-trivial rational point.
Let F be a number field and M e E(F'), with 2M # Py. The point 2M = M has
coordinates of the form (a2, b) and is rational over F. It is clear then that the
point R=(a, b/a) is in C(F) and y(R)=M".

Let C" denote the twist of C by K its equation can be written as —/y? =
x*+ux?—16. C and C" are isomorphic over K or any field containing X.

In order to obtain points on E which are rational over certain extensions of K,
we shall first obtain points on C™") and then on C, carrying these points over to
E by mean of ¢. For this purpose, we have the following special case of a lemma
due to Heegner.

LEMMA (2.2.1) (Heegner). Let f be a quartic polynomial with rational coef-
ficients whose leading coefficient is not a square, and let M and L be number
ﬁelds such that M is an extension of L of odd degree not equal to 3. Suppose that
y2= f(x) is solvable in M; then it is solvable in L.

Proof. See [2] or [6, p. 29].
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(2.3). THE MORDELL-WEIL GROUP OF E OVER THE HILBERT CLASS
FIELD OF K.

PROPOSITION (2.3.1). Let p be an odd prime and E, the group of points of
order p on E(Q). Then Gal(Q(E,)/Q) = GL(F)).

Proof. Suppose that Gal(Q(E,)/Q) £ GL,(F,). Recall that j = (N— 1)3/N and
observe that p does not divide ordx(j) = —1. By Serre [11: Proposition 21, p. 306,
especially “Remarque” on p. 307], either:

(i) FE has a Q-rational point of order p, or

(i) E is p-isogenous over Q to a curve E which has a Q-rational point of

order p.
Proposition 0.2 together with the following lemma give a contradiction.

LEMMA 2.3.2. E is not p-isogenous over Q to a curve E which has a Q-rational
point of order p.

Proof of Lemma 2.3.2. If E has a rational point of order 2 then E must be E’
(see first page for the definition of E’), but E'(Q)=Z/2Z.

If E has no rational point of order 2, let P denote the non-trivial rational point
of order 2 on E(Q) and f the p-isogeny f: E — E. One has f(P)=0,so PeKker f
and 2 must divide #(Ker f) = p, but p is odd. O

Next we want to describe the torsion part of the Mordell-Weil group of E over
the Hilbert class field of K; more generally we prove the following.

THEOREM (2.3.3). Let F/Q be a finite, Galois extension in which N is unrami-
fied. Then E(F)iors =E(Q),=2Z/2Z.

Proof. Assume the contrary and let e be a point in E(F)ors, not in £(Q),, of
(exact) order m = 3. We separate two cases: m is a power 2 and m is not a power
of 2.

First case: m =2". We may assume n = 2; then the point e, = 2"~ !e is a point of
order 2 in E(F)ors. Since N is unramified in Fand 2" is the exact order of e, e; must
be the non-trivial rational point of order 2. Let us denote by e, the point 27~ ?¢;
then e; = 2e,. Now we consider the model y? =x2+ ux?—16x with e; = (0, 0); we
see that e, has to be one of the four points: (4i, +4i\/u—8i ); (—4i, +4i/u+8i)
where i=+/—1. Since e, is in E(F)rs, We have that one of the two fields:
Q(i,\Ju—8i ) and Q(i,\Ju+8i), is contained in F. But N ramifies in both of
these fields and hence, a fortiori, in F; contradiction.

Second case: m =2"my; ny#1, my odd. Without loss of generality we may
assume that » =0 and m; = p, an odd prime. We then have pe =0; put L = Q(e)
and M = Q(E)).

LEMMA (2.3.4). p#=N.

Proof of Lemma (2.3.4). If p=N, consider the following diagram of fields
extension:
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F Q(EN)

N does not ramify in L/Q, because otherwise it would ramify in . However
some prime must ramify in L/Q because it is a non-trivial extension: say a prime
q ramifies in L/Q, hence, a fortiori, q ramifies in Q(EN)/Q. But g # N, therefore
E has good reduction at g; by Serre-Tate [12], Q(Ex)/Q is unramified at g;
contradiction. O

It is well-known that E,, is a 2-dimensional vector space over F,. Inside E(F)os
we have the following.

LEMMA (2.3.5). If e’ is another point of order p rational over F then e’ = ke
where k e F,,; clearly k is unique.

Proof of Lemma (2.3.5). Suppose that there exists a point e; in E(F)ors, Of
order p and linearly independent of e over F,. Then the whole of E, is contained
in E(F)ors, hence Q(E)) is contained in F. But by Lemma (2.3.4) and Proposi-
tion (2.3.2), N ramifies in Q(E,) and hence in F, which is against our hypothesis.

]

LEMMA (2.3.6). L/Q is Galois, cyclic of degree dividing p—1.

Proof. By hypothesis, F/Q is Galois. Moreover, E is defined over Q, hence all
the conjugates of e are still in E(F) s and are of order p; Lemma (2.3.5) now
implies that L = Q(e) is Galois over Q. Now consider the map:

k:Gal(L/Q) = Fj
o = k(o),

where k(o) is defined, through Lemma (2.3.5), by the equation e’ = k(o)e. The
map k is clearly a homomorphism (multiplicative) and is injective since L/Q is
Galois. Hence Gal(L/Q) is isomorphic to a subgroup of the multiplicative group
of the finite field F,; therefore it is cyclic and its order divides p—1. ]

Next, choose e; € £, such that E,=F,e®F,e;. Let G =Gal(M/L); the action
of G on E, gives rise to a faithful representation:

p:G— GL,(Fp,) = Gal(M/Q).
With the choice of a basis made above we have:

1 a(o)

if o€ G, p(o)=( a(o), b(o) are in F,.

On the other hand we have the exact sequence:

0—>Fre—E, > pu,—0
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where p, is the group of pth root of unity and = is defined by:
w(x)=(e, Xx),

where (e, ¢) is the Weil pairing. In fact « is a G-homomorphism and = (e;) is a
primitive pth root of unity, say w(e;) = ¢. It is well-known that L({) C M.

LEMMA (2.3.7). In the notation above, we have: either
M=L(§) or [M:L($)]=p.

Proof. Let H=Gal(M/L(¢)) which is a subgroup of G. If 1€ H we have
w(ef) =w(en)’? =1(e1)" = w(er);

hence b(7) =1. Therefore p(H) CACGL2(F,), where

=4 Dyeend

Since the cardinality of A is p and p is injective we must have either p(H) = {1}
or p(H)=A; hence either M =L({) or [M:L({)]=p. ]

To finish the proof of the second case of (2.3.3) we look at the following fields
extension:

M= Q(E))
|
L($)=0Q(e,$)
I -
L=0Q(e)
I
0.
By Proposition (2.3.1), [M: O] =p(p*—1)(p—1) and by Lemma (2.3.6), [L: Q]
divides (p—1). Now Lemma (2.3.7) clearly gives a contradiction. O

COROLLARY (2.3.8). Let L be the Hilbert class field of K, then:
E(L)tors =E(Q)2 =~ Z/ZZ.

Proof. L/Q is finite Galois, this is well-known; moreover, L/Q is unramified
at N because L/K is unramified anyway and N splits completely in K/Q (recall
that (//N)= +1). O

Next we sharpen another result of Kurchanov, in the case of the Neumann-
Setzer curve.

THEOREM (2.3.9). L being the Hilbert class field of K, rank(E(L))>0.

Proof. Suppose the contrary —that is, E(L) is finite. By Corollary (2.3.8),
E(LY=E(Q)=Z/2Z. Now theorem (2.1.1) implies that there exists an integer ng
such that E(L,,) # E(Q). Let M e E(Ly,) and M ¢ E(Q), as observed in (2.2), M
gives rise to a point R in C(L,,). Because of the isomorphism C = C over Ly,
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there exists a point P in C(_')(L,, )—say P=(a,b), a,b in L,,—and we have
—Ib?=a*+ua’*—16. But [Lny: L]=1"0is odd and not equal to 3; by Heegner S
lemma, there exists a point P’=(c,d) in C'~ ”(L), that is, —ld%®=c*+uc?-16.
Again by the isomorphism C= C‘~ —/) _this time over L — there exists a point T in
C(L) (which is not at infinity). Now T’=¢/(7T) is a point on E(L). If we use the
model y?=x>+ux?—16x for E, then T’=0 or T’ = (0, 0).

On the one hand, 7’ cannot be 0 since T is affine; on the other hand, if 7’ =
(0, 0) then 7T would be one of (0, +4i). But / is not in L because the class number
of K is odd; contradiction. Hence rank (£(L)) > 0. ]

(2.4). POINTS OF INFINITE ORDER ON E(K). (Recall that the class number
of K is odd.)

THEOREM (2.4.1). Suppose that the class number of K is not equal to 3; then
E(K) has a point of infinite order.

Proof. By Theorem (2.3.9), E(L) has a point of infinite order, which givesrise
to a point on C(L). Now we apply Heegner’s lemma, because [L: K] is odd
(/=3 (mod 4)) and not equal to 3, to obtain a point on c- )(K). The image of
the latter point under the maps C~ NK)=C(K) % E (K) gives a point on E(K)
which is not in £(Q) and hence of infinite order. O

3. Conclusions. We now give the main theorem of this note.

THEOREM (3.1.1). Assume that the Neumann-Setzer curve E of conductor
N=u?+64 is a Weil curve. Let | be a prime such that | =3 (mod 4); denote
K=0/-1).

(1) If (I/N)=+1, >3 and the class number of K is not equal to 3, ihen

rank(E(K))=1and L1(K), =0

(2) If (I//N)= —1 then rank(E(K)) =0 and L1(K), =0. In this case E(K) =

E(Q).

Proof. Part (1) is a combination of Theorem (1.5.1) and Theorem (2.4.1).
For part (2), we compute local indices; this gives: in=0, i;=1, ix=1, i, =0if
pP#N,l, . The groups ® =N(S(K))=0as /=3 (mod 4), hence the formula for
the rank gives:

rank E(K)+dim LI(K), =0
hence part (2). O

We observe that if we decompose E(K) into “plus” and “minus” eigenspaces,
then the points of infinite order are in the “minus” part, and we have the following.

THEOREM (3.1.2). With conditions as in Theorem (3.1.1),

(1) if (I/N)=+1, I >3 and the class number of K is not equal to 3, then the
curve ED: y? = x3—lux?—161*x has a Mordell-Weil group of rank one
over Q;

@) if U/Ny=—-1, EC(Q)=Z/2Z. O

REMARK. Parts (1) of Theorem (3.1.1) and Theorem (3.1.2) should hold with-
out the assumptions that /> 3 or that the class number of K not be equal to 3.
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4. Examples. For N=73,89,113 (u= —3,5, —7), respectively) the corre-
sponding Neumann-Setzer curves are known to be Weil curves (see [16]). More
specifically let us take N=113, u= —7, [ =7; then (7/113) =1, and the class num-
ber of Q(~/—7) is one. If we write E as y2=x>—7x?>—16x, then E(Q(-=T7))
has rank one and so does E‘~7)(Q). The point P = (4,4~/—7 ) is a point of infi-

nite order on E(Q(\ —7)).

We finally remark that there are very special cases in which it is easy to obtain
points of infinite order. Let N be a prime of the form p?+ 64, where p itself is a
prime congruent to 3 modulo 4 (e.g., N =73, 113); if we write the curve as y?=
x3 +px2—16x, then in E(Q(x/—p)) the points (4, +4+/—p) are of infinite
order and so are the points (+4p, +4p?) on EP)(Q).
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