ON THE DIAGONALIZATION OF A CERTAIN CLASS
OF OPERATORS

A. Hinkkanen

1. Introduction and results. We consider infinite dimensional matrices of
bounded linear operators acting on a complex separable Hilbert space 3C. The
space JC is assumed to have a suitable orthonormal basis, with respect to which
the matrix elements are defined. We shall also perform formal operations on the
matrix elements to form new matrices, which do not necessarily correspond to
bounded operators without extra assumptions. Unless it is clear enough from the
context, we will indicate if a matrix is related to an operator or if it should be
understood only as a formal array of complex numbers.

First we give some definitions. Let H = (k;;), i,j=1,2,..., be an infinite-
dimensional matrix of an operator. We are concerned about finding, under suit-
able assumptions, an invertible matrix U such that UHU ! is diagonal. We look
for U in the form U =exp A. If H is hermitian, then A4 will be antihermitian and
U unitary.

We write H* for the adjoint of H, that is, H;; = &;;. We define the matrix H” by

HP— hij, =],
Y 0, i#],
and set HX=H—HP. If B is a matrix and b;; # b;; for i # j, we define H/B as
the formal matrix whose entries are given by

H h;j
H/B);=(7) =—24 %
=0, i=J.

We note that H/B does not depend on BX or on H?.
The commutator of the matrices A and B is [A, B] = AB— BA, provided that
the products AB and BA are well defined. We have

(1.1) {H/B,BP1= —HX.
The Hilbert-Schmidt norm |H |, of H is given by
|H3= 3 |hyl*
i,j=1
and the operator norm |H| by
|H | =sup{|Hx| | |x]=1].

Here |x|*>= 372 |x;|? for x e 3C.
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We prove the following theorems.

THEOREM 1. Assume that for all i, j,

(1.2) 12 +1,j+1] = oA
and
(1.3) |7 |2 < |hiihjj | s2G7) ™2 (P #7)

hold for some p (0 < p <1) and some s,

(1.4) 0<s=<(0.03)(1—p).

Then the sequence A,, of matrices defined by Ay =0,

(1.5) Ay 1=A,+(enHe “n)y/HP, n=0,

converges in the Hilbert-Schmidt norm to a matrix A such that with U =exp A,
the matrix UHU ™! is diagonal.

THEOREM 2. Assume that (1.2) holds for some p, 0< p <1, and that

(1.6) |1 < |hishjj| s (=) ™% (i %))
holds for some positive s with
(1.7) s =< (1—p)/200.

Then A, given by (1.5) converges in the operator norm to a matrix A such that
e“He " is diagonal.

Let us compare our results to those in Kato’s book [4, pp. 74-84, 371-373].
There it is considered what happens to a single, possibly multiple, eigenvalue in a
perturbation of the matrix. One gets an expansion for the new eigenvalue and
eigenvector in terms of the initial matrix and the perturbation parameter, say b,
and finitely many such series can be made to converge simultaneously in b under
suitable circumstances. In our case, we could take H P to be the initial matrix and
HX = bV the perturbation, where V is the matrix of a suitable bounded operator
acting on the Hilbert space, to obtain expansions for finitely many eigenvalues
for |b| < by. What we have done in Theorems 1 and 2 is to make strong assump-
tions about the elements of HX and to require the eigenvalues of H?” to be simple
and well separated. As we shall see after stating Theorem 3, conditions of that
kind are not unreasonable in practice. Then we have obtained an expansion for
the whole matrix A such that with U= exp A the matrix UHU ~! is diagonal, and
the expansion converges to A in some norm in a space of matrices (or operators).
This also gives an expansion for UHU ~! (cf. the end of Section 2).

The results of R. Turner that generalize earlier results of K. Friedrichs in
[3, Theorem 2, p. 2453] (see also [7]) are somewhat analogous to our Theorems 1
and 2. It follows from (1.2) and (1.3) that ||H/HD||2< co. In [3], a condition is
considered which, under the assumption (1.2), means that |H/H?P|, is small
enough. Then it is shown that there exists an operator U such that UHU ' is
diagonal in the same basis as is H”. The purpose in [3] is to prove in this way
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that H is a spectral operator of scalar type, which is also a consequence of our
Theorems 1 and 2, while our main purpose is to construct an explicit diagonaliza-
tion. One may further note that in Theorem 2 we have assumptions guaranteeing
that |H/HP| is finite, while |H/HP|, may be infinite.

We will also consider a problem in function theory. Let G be a bounded simply
connected domain in the plane, and let B2(G) denote the Hilbert space of all
L?(G)-functions (with respect to the area measure) which are analytic in G (that
is, the Bergman space of G). Assume that z;€ G and A; > 0 are such that the z;
are distinct, z; > we G, |z;—w| <r for a suitable r >0, and ¥ A; < c. For func-
tions ¢, ¥ in BZ(G) we define

(1.8) [¢,¥]= _EIQS(Z;W(Z.-)Af-

1=
Let (¢;) be a suitable orthonormal basis of B%(G), to be specified in Section 4.
Then the matrix H given by

(1.9) Hyin =[P Dnl

is hermitian, and |H|; < . There exists a unitary matrix (and operator) U such
that the matrix UHU* is diagonal. We define

(1.10) V=3 U, ¢,
J
so that () also is an orthonormal basis for BZ(G).

THEOREM 3. Suppose that fe B*(G). Under the above assumptions, we have

_ i [‘pluf]
(1.11) f(Z)_k{;l [V, ¥il

We note that the right-hand side of (1.11) depends on the values of f at z;, but
not elsewhere.

In Theorem 3 we consider the problem of determining f(z) for z € G, if f(z;)
is known for a sequence z; converging to an inner point of G. In principle, the
Jf(z;) determine f uniquely. We have reduced the problem to the diagonalization
of a hermitian matrix H that can be diagonalized by the general theory of com-
pletely continuous operators and that satisfies (1.2) for some p (0<p <1) but
neither (1.3) nor (1.6). Hence we cannot obtain an explicit solution to this prob-
lem by Theorem 1 or 2.

We may note that H satisfies |h;;|* < h;;h;; (cf. (4.1)), which is a much weak-
ened form of (1.6). Since the proofs of Theorems 1 and 2 do not take into account
possible cancellations in the expansion for A, there might be a chance that by
more accurate estimates one could substantially weaken the conditions for H in
Theorem 2, making them applicable to the situation of Theorem 3.

In Section 2 we describe the formal series resulting from (1.5), and in Section 3
we prove Theorems 1 and 2. In Section 4 we prove Theorem 3.

vi(z), z€G.

2, The series of Theorem 1. The definition (1.5) can be motivated as follows.
Given H, our aim is to find a matrix A such that
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2.1 (e He MK =0.
Using the expansion [2, p. 49],
1 1 1
(2.2) e'He ™= - H+—7[A, Hl+ o7 [A4, [A, H]l+ -

we can write (2.1) in the form

—[A, HP1=(e"He "X —[A, H"]
2.3) 1 K
=(H+[A,H’<1+5,—[A, LA, H1]+ ) ,

noting that [4, H?]P =0. We form an iterative sequence by Ay =0 and
—[Apy1, HP]1 = (e“nHe~4n)X —[A4,, H?], n=0.
But by (1.1) this has the solution

Apy1=(emHe "ny/HP + A,
@2.4) 1
= <H+ [A”’ HK]+ 5‘_ [An’ [An’ H]] + .- ')/HD,

which is (1.5). The point of using (2.3) and (2.4) is that in Theorems 1 and 2, H?
is in a certain sense large if compared to H X, and neither term H?” nor [A,,, H?]
appears on the right-hand side of (2.4).

In this section we do not deal with questions of convergence, and all the series
should be considered as formal. It follows by induction from (2.4) that, as a
formal series, A, is the sum of all terms of the following kind. We define terms of
level m =1 so that the only term of level 1 is H/H P, and if m = 2 then a term T of
level m is obtained as follows. Take any k=1 and any terms C;, C,, ..., C; of
level =m —1, at least one C; being of level m1 —1. Then set

1
=7€—T[Cls [CZs '--s[CksH]"']/HD’

where H is replaced by HX if k=1. Then A, is the sum of all terms of level <n.
In particular, if m > n, then A,, contains all the terms in A4,,. This fact, which is
perhaps not an obvious consequence of (2.4), will be used in Section 3.

Let us form all the terms of all levels m =1 as above, except that for each term
the last division by H? is omitted. Let C be the sum of these terms, so that 4 =
C/HP. This implies that eHe " —[A, HP] = C as a formal series, because of
the way C is obtained. Hence by (1.1),

(e"He MK =14, HP1+C¥X=(Cc/HP,HP1+ CKX = —-CK+C¥ =0,

as required. In fact, e He “4=CP.

3. Proof of Theorems 1 and 2.

Proof of Theorem 1. The assumptions (1.2) and (1.3) serve mainly two pur-
poses: they guarantee that |H/H?”|, < oo, and that the upper bound in (1.3) is
convenient for matrix multiplication. First we prove a lemma.
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LEMMA 1. Assume that

| 2ij? < ki hyj| s°sPG) 72 i,

2417 =< | i ) s°s3() 2,

where s satisfies (1.4) and s, and s, are positive. Then for Q=[P/H D T1, we have
(3.2) \q:j1* < | hii hjj| s*r?sts (i) 2,

where r =0.1.

3.1)

We may assume that s;=s5,=1. We estimate ((P/HD)T),-k. We note that
|hii—hjj| = || hii] — | Aj;|| and obtain

(G)).=

pu Jjk

—h;
J#t u JJ
<3 Y IhllhAkl Szlhjji_ " v lhiihkkl Szlhj.il. i
i kit |hylA—=py TS ikjE Rl (1—p7 )
- '\/ Ihiihkk| S S'J'l’2 - '\/ |hiihkk| Sr
= ik(l—p) 6 2ik ’
since sw2/(6(1— p)) < r/2 by (1.4). Similarly, we also have
(T(P/HP))ix| < Thii hex| sr2ik) ™!,
so that (3.2) follows.

3.1. Now we turn to the proof of Theorem 1. With r =0.1, we define
fE)y=1+r7N(Ee*-1)—x
=rx+(rx)%/2! + - +rx/20 +r3x3/30 4 -
Further we define f;(r) =0 and
Jue1(N)y=f(A+fo(r)), n=1.
We can write A, = P,/H?, where PP =0. Now (2.4) gives

K
n+1—<H+_[An,HK]+_[An: [An,H]]-I-—[A,,, [An, [An,H]]]+> .

Writing H = HX + H? we write each term, starting with the second-order term,
as the sum of two terms; for example,
(A, [Ap, H11=[Ap, [Ay, HX 114+ [Ay, [4,, HP]].
By (1.1) we have
[A,, HP1=[P,/HP,H 1= —Pf = —P,.

Using this and substituting P,,/HD for each remaining A4,,, we obtain

1
Ppyy=H"+1Py/H?, H 1 + - [Py /H, [Py /H, H 11" + - +

(3.3)
- P /H, P~ Sr L /H, (P, /H, P11 -
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Alternatively, we can derive (3.3) from (1.5), (2.2) and (1.1). Then the term P,
given by (1.5) is cancelled by the term — P,, arising from (2.2) and (1.1).
We make the induction assumption

3.4) |(P)ik| = Thithix| s+ f,(r)) (iKY, ik,
which is true for n=1. Applying Lemma 1 to (3.3) we obtain for i # k,

|(Pus1)in] = N Thii k| sGk) T (A +r(1+ f£,(r))

1 1
+ o PSP o (L fu())

+-—§l'—r2(1+fn(r))3+ ce)

=/ [hii hx| (k) A+ fA+ £,(r)))

= Thii huei | sGR)Y T (14 £ 11(r)).

This proves (3.4) for all n=1.

Write g(x)=_f(1+x)—x. Then g”(x) >0 for x>0 and g(0) =_f(1) > 0. We have
g'(x)<0 for 0 =x<x;and g’(x) >0 for x > x;, where x; = r! log[2/(r+1)]—1.
Since g(x;) <0, g has one zero between 0 and x;, say Xxg, and g(x) >0 for 0 <
X <Xg.

Write A(x) =f(1+x). Then A’(x) >0 for x=0, so that 4 is strictly increasing
and maps [0, xp) onto [ f(1), Xp), since f(1+ xo) = Xxo. We have fi(r) =0€[0, xy),
and if f,(r)e€[0,xo) then f,1(r) =/ (1+/,(r))>f.(r), and f,1(r)€[0, xo).
Thus the sequence f,(r) is increasing and bounded from above. Hence f,(r) has
a limit, which, in fact, equals xy = 0.203. In any case, for every € > 0 there is an n,
such that, for m,n=n,,

(3.5) | fin(r) = fu(r)| <e.

3.2. Next we want to show that for every e >0 there exists n, such that if
m, n=n, then, for all i, j,

(3.6) |(Am—An)ij| =i hj| sGj|hi—hjj]) " e.
But this follows from A4, =P,,/H D and (3.5), when we take into account that the

estimates obtained in the previous subsection are for the terms of level at most n
separately. Thus we actually have derived the upper bound

|(Pm_Pn)ij] = Ihiihjjl S(ij)—](1+f,,,(r)——l—f,,(r)).

If, for example, m > n, then the series for P,, (or f,,(r)) contains all the terms of
P, (or f,,(r)), so that the remaining terms in f,,(r) form an upper bound for the
remaining terms in P,,. This is because for all terms C in P, there is a term ¢, in

Jm(r) such that, for i = j, |Ci;| <~ [hiih;j| s(ij) ' ¢..

Since
ij

|his— hjj|iJ
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(A,) is a Cauchy sequence in the Hilbert-Schmidt norm, converging to a Hilbert-
Schmidt operator A.

3.3 From (3.6) we deduce that
G.7 (A=A ij| =~Thiihj;] s(j|hii—hy;|) e
for n=n,. Since |A, +1—A,]>— 0 we have, by (1.5),
|(e“*nHe~4r)/H?P|, — 0.
We want to prove
(3.8) |(e*nHe~"n)/HP —(e“He™)/HP|, -0,

since this then implies |(eHe ~4)/HP”|,=0, or (e*He )X =0.
To prove (3.8), write

E,=e"nHe ~An_e4He 4
1
=[An_AsH]+—2_"([An; [An, HI1-[A, [4, H]D)+ .-

To estimate each difference
(A, [Ay, .. [A,, HT 1= [A A, .., [A,H]...]

we rewrite it as a sum of differences changing each time one A4, to A. Thus, for
example,

(A, [An, H11—[A,[A, H11=[A,, [Ap, H]1—[A,, [A, H]]
+[An, [A, H]1—-[A, [A4, H]]
=[A,, [A,—A,H]]+[A,—A,[A, H]].
Then we use (3.7) together with
1A ij| =~ ki hy;| s+ x0) (i — ) 7

i #j, 14+x0=1.203, which is a consequence of (3.4) and the discussion thereafter.
The same estimate holds for A. By writing A, =P,/H?, A=P/H?, PP=
PP =0, and applying Lemma 1 we thus obtain, for n=n,,

[(En)ij| = e |hii ;] s(ij)~!

o k o k
A3 S Aax) T I 3 T A xe) T
k=1 k! k=2 k!
The expression in brackets equals
rer(l+x0)+1+er(l+xo)__1EM‘

Hence |E,/HP|, = eMN, which proves (3.8).
Theorem 1 is proved. ]

REMARK. Since eigenvectors are determined only up to a non-zero complex
coefficient, one must use some normalization to get unique eigenvectors. In
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Theorem 1, such a condition is (A/H?)? =0 for any A. (Note that to solve
—[B, HP]=AX for B, we can choose B” arbitrarily. For simplicity, we have
taken B? =0.)

3.4 Proof of Theorem 2. We make use of the following result of Schur.

LEMMA 2 [6, p. 6]. If we have

2 |p,'jISM1 fOf all J

i=1

and

_§l \pis| <Ms  for all i,
then "
(3.9) |P|* < M; M,.

The following lemma can be proved in the same way as Lemma 1, by using
also the fact that

k—1
S (=N =k) I=L7x%3+4L A +log(L—1)] <L 2(x%/3+12/5),

=i+l
where L=k—i=2.
LEMMA 3. Assume that
3.10) |pij|* < |hiihjj|s* (=) ~%, i),
. |t:;12 < |hiihj;| s* min(l, (i—7)™*),
where s satisfies (1.7). Then for Q=[P/H?,T], we have
(3.11) |qij|* < |hishjj|s*r? min(1, (i —j) ™),
where r =0.1.

It is this lemma that determines the condition (1.7).

Now the proof of Theorem 2 can proceed in the same way as that of Theorem 1
after Lemma 1. The only difference is that the finiteness of the Hilbert-Schmidt
norm of H/H?®, or any matrix P/HD where P satisfies (3.1), is replaced by the
finiteness of the operator norm of any matrix P/H D where P satisfies (3.10).

Namely, if (3.10) holds, then

i . . 1172 . 11/2
> Dij <3 S '1'2 h;; + 3 S .l.zh“
=1 | hii—hjj| j<il—p (i—J) | hj j>il—p (J—0)" | hii
G
2
__sem
3(1—p)

for all i/, and
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spw?
T 3(1—p)

o Pij
2
i=1| hii—hj;

izj

for all j. Thus Lemma 2 implies |P/H?”|<oo. This concludes the proof of
Theorem 2. al

3.5. AN EXAMPLE. Since we can have #4;; =0 for i >n or j > n, Theorems 1
and 2 can be applied also to finite-dimensional matrices. We take n =2 and set

a C 0 a
Hz(u g)’ A=(b o)'

0 a\ cosh \/ab AJa/b sinh \/ab
exp( ) B (\/b/a sinh «/ab cosh \/ab ’

a straightforward calculation shows that (UHU )X =0 (U =exp 4) implies

Since

(3.12) a=+/C/D 3 arctan2+/CD /(a—8),
(3.13) b=+/D/C % arctan2~/CD /(a—B).

Note that </a/b sinh \/ab and ~/b/a sinh \/ab are well-defined by the power
series, and that the same applies to @ and b given by (3.12-3.13) provided that

2]CD|1/2< |ae—B|.

The inspection of formula (2.4) gives the same result up to the coefficients in
the series (3.12-3.13), which are difficult to calculate because of the complicated
structure of (2.4).

We observe that if three of the «, 3, C, D are fixed and the fourth varies, the a
and b are analytic functions of the fourth. If |C|*+ |D|*>0, then H can be
made diagonal if and only if

(3.14) («—B)*+4CD #0.
Thus the values of the fourth variable that do not satisfy (3.14) for the fixed three
parameters are exactly the essential singularities of @ and b.

4. Proof of Theorem 3. We denote by B?(G) the Hilbert space of analytic
functions in G for which

I73={_ 1/?dA <.

Here dA is the area measure. The inner product is

e)=|_Jeda.

We remark that we do not associate any Hilbert space with the scalar product (1.8).
If £ maps G conformally onto the unit disk D, and if F(w)=0, then the
functions
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0;(z) = (j/m)?F(z) " 'F'(z), j=1,

are a complete orthonormal system in BZ(G) [1, p. 12].

Assume that 2|F’(w)|=M >0, and that R<1/Y2. We can find r, 0<r<1,
such that {|z—w|=<r}CG and that |F'(z)|<M and |F(z)|<R for |z—w|=r.
We can assume that |z;—w| =<r for i = 1, since this can be achieved by removing
a finite number of points z;.

Clearly the matrix A given by (1.9) is hermitian. Moreover, we have

@.1) |nn® < B Fn
by Schwarz’s inequality, and

n+1
™

hnsine1= % |F"(zi) |2 | F(zi) | Ak

n —
<2R? g - |F"(zi) | | F(zi) |2 DAy

=2R?h,,.
Therefore i

2
S | bmn? = ( > h11(2R2)m_1> =h{i(1—2R?*) < oo,
m

mn
since 2R? < 1.

Now it follows from [5, p. 16] that there exists a unitary matrix U such that
UHU* is diagonal. Then the functions Y, = X; @#;;¢; form a complete ortho-
normal system in B2(G).

Next we calculate [, ;] for k#1/. By [1, p. 23] there is a constant C such
that |g(z)| = C|g|2, g € B*(G), for |z—w|=r. We have

J o M oo
[‘)[’ka lrl/l] =|: 2 akj¢j+ 2 ﬁkj¢js E L_‘Im(;bm"' E ﬁhn(ﬁmil-
Jj=1 JS=J+1 m=1 m=M+1
If |gi(z)|<Y; for |[z—w|=r, i=1,2, then |[g,8]|=Y1Y> X A;. Since, for

|z—w|=r,

2 oo
=C? 2 Iukj|2—>0
j=J

§ Uij;(2)
i=J

as J — oo, we obtain
[k, ¥il= 2 ujjmity =0, k#l,

Jjm
by the definition of U.
We can write

“2) /@)= 3 ai@), 2€G,

with X |avk|2 < oo [1, p. 7]. It remains to determine the a;. We have
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['Hbma f] =am [‘abma l//.m] + li‘//m, ki{( ai lnbk:|

for any K > m. We note that since |¢,,|> =1> 0, the function y,, cannot vanish

at every z;, so that [¢¥,,, ¥,,]>0.
2 o 2
$C4( 2 ]ak|2><2 A,‘) -0
k=K

We have
as K — o, Therefore a,, = [V, f1/[¥ms Y], so that (4.2) now implies (1.11).
Theorem 3 is proved. ]

l:‘»bm ’ § ag ¢k]
k=K
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