APPROXIMATE FIBRATIONS ON
TOPOLOGICAL MANIFOLDS

C. Bruce Hughes

1. Introduction. The main results of this paper deal with parameterized fam-
ilies of approximate fibrations. Approximate fibrations were introduced by
Coram and Duvall in [4] as a generalization of both Hurewicz fibrations and cell-
like maps. These maps have been studied by many authors, not only because of
their intrinsic interest, but also because they arise naturally in certain problems
concerning topological manifolds. Our main results are applied herein to study
the relationship of approximate fibrations to bundles and fibrations, the local
connectivity of spaces of bundles and fibrations, and the homotopy relation in
the space of controlled homotopy topological structures on a fibration.

Let £ and B be locally compact separable metric ANRs, let p: £— B be a
proper map (i.e., inverse images of compacta are compact), let o be an open
cover of B, and let C be a subset of B. We say that p is an «-fibration over C pro-
vided that given any X and maps F: Xx[0,1]—- C and f: X —E for which
F(x,0)=pf(x), then there exists a map F: X x[0,1] - E such that F(x,0)=
f(x) and pF is a-close to F. If C = B, then p is called an «-fibration. And if p is
an «-fibration for every open cover « of B, then p is an approximate fibration. If
€ >0, then ¢ also denotes the open cover of B by balls of diameter e. Thus, we
also speak of e-fibrations.

In this paper a fiber preserving (f.p.) map is a map which preserves the obvious
fibers over an n-simplex A. Specifically, if p: X > A, 6: Y- A, and f: X ->Y are
maps, then fis f.p. if o.f= p. Usually the maps p and o will be understood to be
some natural projections and will not be explicitly mentioned. If p: EXA—->BXA
is a f.p. map, then f is an approximate fibration if and only if f;: E— B is an
approximate fibration for each 7 in A. This can be derived from [5].

A manifold will be understood to mean a topological manifold which pos-
sesses a handlebody decomposition. It is now known that this includes all topo-
logical manifolds except nonsmoothable 4-manifolds (see [19]).

Our first main result is a parameterized version of a theorem of Chapman [2,
Theorem 1]. It enables one to detect which parameterized families of maps can
be deformed to a close-by parameterized family of approximate fibrations.

DEFORMATION THEOREM. Let B be a polyhedron, let m=S5, let A be an
n-simplex, and let a be an open cover of B. There exists an open cover (3 of B so
that if M is an m-manifold without boundary and f: M XA—-BXAisaf.p. map
such that f;: M — B is a 3-fibration for each t in A and an approximate fibration
for each t in 8A, then there is a f.p. approximate fibration f: M X A — B X A such
that f, is a-close to f, for each t in A and f| M X 3A = f| M X dA.
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The proof of this theorem is outlined in Sections 2-5 with the reader being
referred to [2] and [11] for many details.

The following corollary of the Deformation Theorem appears in Section 5. In
this paper spaces of maps are always given the compact-open topology.

COROLLARY 1. If M is a closed m-manifold (m =5) and B is a compact poly-
hedron, then both the space of approximate fibrations and the space of cell-like
maps from M to B are locally n-connected for each n=0.

As will be pointed out in Section 5, both the Deformation Theorem and Corol-
lary 1 remain true if B is replaced by a compact manifold (which has a handle-
body decomposition by our convention). Haver has proved a theorem which
implies that the space of cell-like maps from a closed m-manifold (= 5) onto
itself is weakly locally contractible [10].

Our second main result is a parameterized approximation theorem for ap-
proxirlnate fibrations. It has previously been proved by Ferry in the special case
B=S"[8].

APPROXIMATION THEOREM. Let M and B be closed manifolds with
dimM =5. Let A be an n-simplex with 0 in dA andlet p: M XA —->BXAbeaf.p.
approximate fibration. For every e¢>0 there exists a f.p. homeomorphism
H:MxA—MxA such that Hy=id and pH is e-close to pyXid,.

The proof of this theorem is given in Sections 6 and 7. The key step is a handle
lemma which is proved by means of a torus trick in Section 6.

Our first application of the Approximation Theorem concerns the local homo-
topy connectivity of certain subspaces of the space of approximate fibrations.

COROLLARY 2. Let M and B be closed manifolds with dim M = 5. Then both
the space of bundle projections and the space of Hurewicz fibrations from M to
B are locally n-connected for each n=0.

As far as the author knows this is the first result concerning the local con-
nectivity of spaces of bundles or fibrations between topological manifolds.
Actually our techniques apply to many more subspaces of the space of approx-
imate fibrations than those mentioned above (see Section 7). Whether any of
these spaces of maps are locally contractible remains an open question.

Our next application concerns the general question: when can an approximate
fibration be arbitrarily closely approximated by bundle projections? This ques-
tion has received the attention of several authors (e.g. Chapman [2], Chapman
and Ferry [3], Goad [9], Husch [14], Quinn [17], [18]). The Deformation and
Approximation Theorems imply the following result (see Section 7).

COROLLARY 3. Let M and B be closed manifolds with dim M = 5. An approx-
imate fibration p: M — B can be approximated arbitrarily closely by bundle pro-
Jections if and only if p is homotopic via approximate fibrations to a bundle
projection.

This should be compared with Husch’s theorem [14] which says an approxi-
mate fibration p: M — S' (where M is a closed manifold, dim M =6) can be
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approximated arbitrarily closely by bundle projections if and only if p is homo-
topic to a bundle projection. However, the examples of Chapman and Ferry [3]
show Husch’s theorem is false for approximate fibrations p: M — S2.

As a further application of our theorems to the relationship between approx-
imate fibrations and bundles, we prove the following result in Section 7.

COROLLARY 4. Let M and B be closed manifolds with dim M = 5. The inclu-
sion of the space of bundle projections from M to B into the space of approxi-
mate fibrations from M to B induces an isomorphism on homotopy groups and a
monomorphism on path components.

Our final application concerns controlled homotopy topological structures. To
explain this further, let p: E — B be a Hurewicz fibration between closed mani-
folds (dim £ =5). In Section 8 a semi-simplicial complex S(p: E — B) is defined
whose vertices are represented by maps f: M — E where M is a closed manifold,
dim M =dim E, and fis a p ~'(¢)-equivalence for every e > 0. (Another such map
f': M’ — E represents the same vertex if there is a homeomorphism 4#: M —- M’
such that f'4 = f.) Here is a special case of the result in Section 8.

COROLLARY 5. Let f:M—E and f':M'— E represent two vertices in
S(p:E — B). Then those vertices lie in the same path component of S(p: E — B)
if and only if for every e > 0 there exists a homeomorphism h: M — M’ such that
f'h is p~Ye)-homotopic to f.

The theorems and proofs in this paper are heavily influenced by the author’s
Hilbert cube manifold results in [11] and [12]. Here are some of the differences
and similarities between those papers and the present one. The proof in [11] of
the Hilbert cube manifold version of the Deformation Theorem is based on a
parameterized engulfing result which is proved by using a parameterized lifting
property of parameterized approximate fibrations. In this paper, a parameterized
engulfing result is again the basis for the Deformation Theorem. However, we
have found a way to derive this parameterized engulfing result from a (non-
parameterized) engulfing result of Chapman [2] by using a method found in the
Kirby-Siebenmann book [15, Essay II]. This is carried out in Section 2. The rest
of the proof of the Deformation Theorem follows [11] closely. This is outlined in
Sections 3-5.

The Approximation Theorem contains a major improvement over the cor-
responding Hilbert cube manifold result in [12]. In [12] it was necessary to addi-
tionally hypothesize that po: M — B was a bundle projection. Using that assump-
tion and some infinite-dimensional magic, the (weak) Approximation Theorem
was proved by means of a handle lemma for 0-handles. In Section 6 of this paper
we prove the corresponding handle lemma for arbitrary handles. This is the main
new idea of the present paper.

Most of our notation is standard. Euclidean m-space is denoted by R” and
is given the box metric d(x, y)=max{|x;—y;|} where x=(x,...,x,) and y=
(D1 -+-»Ym). For r>0 we use B/" to denote the (square) ball of radius r in R”
centered at the origin. Finally, S' denotes the unit circle in R?.
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2. Engulfing. This section contains the engulfing results needed for the proof
of the main result. Only the proof of Proposition 2.2 is presented. It is the para-
meterized version of a result due to Chapman presented as Lemma 2.1 below.

Throughout this section Z will denote a compact polyhedron and B will denote
an ANR which contains Z X R as an open subset. Projection onto Z is denoted by
D1, projection onto R by p,. Let A be the standard n-simplex for some fixed n=0
and let C be a (possibly empty) closed subset of dA.

Here is Chapman’s lemma {2, Lemma 3.4].

LEMMA 2.1. For every m=5 and € >0 there exists a 6> 0 so that if M is an
m-manifold, oM = O, and f: M — ZXR is a é6-fibration over Zx[—3, 3], then
there is a homeomorphism h: M — M such that

() fUZx(~0,1])Chf " (ZX(=,0)),

(ii) there is an isotopy hy:id =h, 0<s<1, which is a (p, f) ~'(e)-homotopy

and is supported on f~(Zx[—-2,2]).

We are now ready for our key engulfing result.

Data for Proposition 2.2. Let a:A—>[—1,1] and 3: A—[0,1] be maps such
that o(z) <B(¢) for all ¢ in A and o ~'(—1)=C. Let

MNa)={(z,x,t) e ZXR XA |x<a(t)}.

PROPOSITION 2.2. Forevery m=5 and e > 0 there exists a 5 > 0 so that if M is
an m-manifold, OM = O, and f: MXA—-BXAisaf.p. map such that f,: M — B
is a 8-fibration over ZX[—2,2] for each t in A, then there is a f.p. homeomor-
phism h: M X A - M X A such that

(i) ST (T()) Chf T(Zx(—e0,0)xA),

(ii) there is a f.p. isotopy hs:id =h, 0<s =<1, which is a (p,f) ' (e)-homo-

topy over ZX R X A and is supported on

Wz, x,t)eZXRXA| -1<x<p(t), t¢ C}.

Proof. Choose maps o = o, @1, 01, Gz, Qs oeey Qpy Oy, 0y =HB:A—[—1,1] such
that ag(2) <& (f)<o(t) <)< - <au(t)<oauy(t) for each ¢ in A and
o, (1) <0 for each ¢ in C. Choose a partition —1=x_;<xo<x;< --- <Xx,=0such
that sup{a,(¢) |t€ C}<Xxy. Foreachi, O<i<n,let r;=inf{é&;  1(f)—;(t) |t € A}
(where &,41= p41).

Once these choices have been made and € > 0 is given, choose §; >0 for0<i<n
by Lemma 2.1 so that the following statement is true: if M is an m-manifold,
M=, f:M—-ZxR is a §;-fibration over Zx[—2,2], and b is any number
with x; < b <1—r;, then there is a homeomorphism /4: M — M such that

() f7U(ZX (=00, b)) ChfHZX(~,x})),

(ii) there is an isotopy A,:id = h, 0<s=<1, whichis a (p, f) "' (¢/n+1)-homo-

topy and is supported on f~1(Z x [%(x,-_l-l—x,-), b+r]).

It is important to realize that §; is independent of b in the statement above. To
see that this is possible one needs to examine Chapman’s proof of Lemma 2.1.
Of course, §; does depend on r;.
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Let =min{6; |0 <i=<n} and let f: M XA — BXA be given as in the hypoth-
esis. By our choices, for each ¢ in A and 0 <i<n there is a homeomorphism
h"%: M — M such that

() SNZx(=e0,0i ()] [1}) Ch" fTHZ X (=00, x;) X [1}]),

(ii) there is an isotopy

hivi:id=h", 0=<s=<]1,

which is a (p1.f) "' (e/n+1)-homotopy over ZxR and is supported on
FHZ x5 (xi- 1+X:), &1 ()1 (1))
For ¢ in C we take h"'=id and A} =id.

Given any map o: A—[0,1], fin A, and 0<i<n, define A" : Mx A >MxA
for 0=s=<1by hli(y, u) = (ho(u)s(y) u). Then the f.p. homeomorphism A"/ =
A" will be called a fundamental homeomorphism associated to a,t, and i, and
will simply be denoted by / (and the isotopy by 4,) when ¢ and 7 are understood.
If ¢ ¢ C then we will always assume that ¢(C) =0.

ASSERTION 2.2.1. For each t in A there exists an open neighborhood V, of t in
A such that if 0<i<nand o: A—[0,1] is a map with 6 ~'((0,1])C V,, then the
fundamental homeomorphism h (and the corresponding isotopy h,) associated
to o, t, and i has the following properties:
()
F Hzx,u)e ZXRXA | x< (1), o(u) =1} Chf N(Zx (=, x;) x 071(1)),

(i) Ay is a (p1f) " "(e/n+1)-homotopy over ZXRX A and is supported on
S Hzx,u)eZXRXA | xi_ 1 <x <o (1)}

The proof of this assertion is left as an exercise in continuity. One first con-
structs a ¥; which depends on / and then takes a finite intersection.

This assertion gives us an open cover V= {V, |t € A} of A. For ¢ ¢ C require fur-
ther that ;N C = . Now write A = U/ ¢ D; where each D; is closed and the finite
union U D;; of disjoint closed sets refining V. (This comes from a standard handle
decomposition of A by small handles.) For each D;j choose V;; 1n V containing D;;.

Choose maps o;;: A —[0,1] such that o;; = = D; and oij 1o, 1]) CVij. Do
this in such a way that ¢;;(C) =0if D;;NC = and g;; 1((o0, 1DNoig 1o, 1) =
if j#=k.

Using the assertion construct for each 0<i<n a f.p. homeomorphism
h': M x A — MxA such that

() U@ XD [ x<a(t), te DYCh TN Z X (—w,x;) X A),

(ii) there is a f.p. isotopy

hi:id=hi, 0=<s=1,

which is a (p; f) ! (¢/n+1)-homotopy over Zx R X A and is supported on
S M@z X, t) | Xicisx <o (t), 6 C}. Set h=h%h'o-..ch™ and hy=
hOohlo...op.
Then 4 and A, satisfy the conclusions of the proposition. That f~(I'(«)) C
hf ~N(Z x (—o0,0)x A) follows from the fact that
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f‘l{(z,x,t)lxsai(t),te U Dk}ch"o---oh"f“‘<2><<—oo,0)xA)
k=1

forO<i<n. O

The next theorem can be derived from Proposition 2.2 by a stacking pro-
cedure. See [11, Theorem 4.3] or [2, Lemma 3.5] for a proof.

Data for Theorem 2.3. Let ©: RXA - R X A be a f.p. homeomorphism with
the following properties:
(i) © |RXxC is the identity;
(i) x=p1O(x,t) for each xin R and 7 in A;
(iii) © is supported on [—1,1] X A.
Let ©': BX A — B X A denote the f.p. homeomorphism which extends id ; x © via
the identity.

THEOREM 2.3. For every m=35 and ¢ > 0 there exists a 6 >0 so that if M is an
m-manifold, oM = O, and f: M XA — BXAisaf.p. map such that f,: M — B is
a 6-fibration over Zx[—2,2] for each t in A, then there is a f.p. homeomor-
phism 0: M x A — M X A such that

(i) f0 is e-close to 0'f,

(ii) thereisaf.p. isotopy 0;:id =0, 0 <s <1, which is a (p, f) "' (¢)-homotopy

over ZxRx A and is supported on f~Y(Z x[—1,1]1x (A\C)).

3. Wrapping up. In this section we state without proof a result on wrapping
up families of -fibrations around S'. This result can be derived from Theorem
2.3 and we refer the reader to [11, Section 5] for a proof.

For notation let Z denote a compact polyhedron and let B denote an ANR
which contains Z X R as an open subset. Let A be a fixed n-simplex. Finally, let
e: R — S! be the covering map defined by e(x) = exp(wix/4) (thus e has period 8).

THEOREM 3.1. For every m=5 and e¢ > 0 there exists a 6 > 0 so that if M is an
m-manifold, oM = O, and f: MXA—-BXAisa f.p. map such that f,: M — B is
a 6-fibration over Zx[—3, 3] for each t in A, then there is a closed m-manifold
M, af.p. map f: MxA—ZxS'xA such that f;: M—+Z><S' is an e-fibration for
each t in A, and a f.p. open embedding y: f~ " (Zx(—1,1)xA)>MxA for
which the following diagram commutes:

MxA Sy ZxS'xA
vt tidxexid
[~ (ZX( -1, I)XA) ZX(—1,1)xA

4. Handle lemmas. In this section we state without proof two handle lemmas
needed for the main results of the next section. The first handle lemma (Proposi-
tion 4.1) can be derived from the results of the previous sections. The second
handle lemma (Proposition 4.2) can be derived from straightforward generaliza-
tions of those results. The reader is referred to [11, Section 6] and [2, Section 5]
for more details.
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For notation B will denote an ANR, A will be a fixed n-simplex, and C will be a
(possibly empty) closed subset of dA which is collared in A.

PROPOSITION 4.1. Suppose p>0 and R” - B is an open embedding. For
every m=5 and e >0 there exists a 6 >0 so that if n>0, M is an m-manifold,
OM =0, and f:MXA—-BXAisaf.p. map such that f,: M — B is a é-fibration
for each tin A and an approximate fibration for each t in C, then there is a f.p.
map f: M XA — BXA such that f;: M — B is a p-fibration overB foreach tin A
and such that f is f.p. e-homotopic to frel [(M XA\ f~ (B xA)]U[Mx Cl.

For more notation, X will be a compact polyhedron and é(X) will be its open
cone. That is, é(X)=XX][0, +o)/~ where ~ denotes the equivalence rela-
tion generated by (x,0)~ (x’, 0) for all x,x’ in X. For any r=0 let ¢,(X)=
Xx[0,r]/~ and é(X)=XXx[0,r)/~.

PROPOSITION 4.2. Suppose p=0 and ¢(X) X R” - B is an open embedding.
For every m=35 and e > 0 there exists a 6 > 0 such that for every u > 0 there exists
a v >0 so that the following statement is true: if M is an m-manifold, oM = O,
and [:MXA—->BXA is a f.p. map such that f,: M — B is a 6-fibration over
c3(X) X Bf and a v-fibration over [c3(X)\¢,3(X)1 X Bf for each t in A and an
approxzmate fibration for each t in C, then there is a f.p. map f: MxA - BxA
such that f;: M - B is a p-fibration over c (X )X Bf Jor each t in A and such that
fis f.p. e-homotopic to f rel [(M XA\ f~ (c2/3 (X)><B3 XA)JU[MXC].

5. The Deformation Theorem. In this section we state our main result on
deforming a parameterized family of e-fibrations to a parameterized family of
approximate fibrations (Theorem 5.1). It will follow from this that the space of
approximate fibrations from a closed m-manifold (m=15) to a compact poly-
hedron is uniformly locally n-connected for every n=0.

THEOREM 5.1. Let B be a polyhedron, m=35, A an n-simplex, and C a closed
subset of aD which is collared in A. For every open cover o of B there exists an
open cover 3 of B so that if M is an m-manifold, oM = O, and f: M XA —-+BXA
is a f.p. map such that f,: M — B is a 3-fibration for each t in A and an approx-
imate fibration for each t in C, then there is a f.p. map f: M XA — BXA such
that f: M — B is an approximate fibration a-close to f, for each t in A and f, = f,
for each t in C.

The reader is referred to [2, Section 6] to see how to derive Theorem 5.1 from
the handle lemmas of Section 4. One should notice that Theorem 5.1 remains
true if it is assumed that C only has a radial neighborhood in A instead of a collar
(for example, if C is a point). In addition, Theorem 5.1 remains true if B is
assumed to be a manifold with a handle decomposition.

If X is a space and n =0 is an integer, then X is said to be locally n-connected
if for each x in X and each open subset U of X containing x, there exists an open
subset ¥ of X containing x such that V'C U and if A is an (n+1)-simplex then
any map f: 9A — V extends to amap f: A — U.
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The following corollary follows immediately from Theorem 5.1. For a proof
see [11, Section 7].

COROLLARY 5.2. If M is a closed m-manifold (m=5) and B is a compact
polyhedron, then the space of approximate fibrations from M to B endowed with
the compact-open topology is locally n-connected for each n=0.

A metric space X is said to be uniformly locally n-connected if for every e >0
there exists a 6 > 0 such that every map f: A — X, where A is an (n+1)-simplex,
with the diameter of f(dA) less than & extends to a map f: A —» X with the diameter
of f(A) less than e. If in the statement of Corollary 5.2 we fix a metric for B,
then the proof shows that the space of approximate fibrations from M to B en-
dowed with the uniform topology is uniformly locally #-connected for each n = 0.

If the proof of Theorem 5.1 is examined, it will be seen that we can replace B
by R” with the standard metric and replace the open covers by positive numbers
so that the statement remains true. Then the proof of Corollary 5.2 shows that
the space of approximate fibrations from an m-manifold M (M =, m=5) to
R” endowed with the uniform topology (induced by the standard metric on R”)
is uniformly locally n-connected for each n=0.

As mentioned in [11, Section 7] a theorem of Ferry [7] can be combined with
Corollary 5.1 to show that spaces of approximate fibrations with a specified fiber
are locally n-connected. We conclude with one example of this.

COROLLARY 5.3. If M is a closed m-manifold (m=5) and B is a compact
polyhedron, then the space of cell-like maps from M to B endowed with the com-
pact-open topology is locally n-connected for each n=0.

6. Another handle lemma. This section contains the key ingredients for the
proof of the Approximation Theorem in Section 7. In this section A will denote
the standard n-simplex in R” so that O (the origin) is in dA. Let N; and N, denote
two convex neighborhoods of 0 in A such that Ny Cint N,. Lemma 6.1 treats
handles of highest index while Theorem 6.2 treats handles of lower index.

LEMMA 6.1. Let B be an ANR which contains R' as an open subset and let
m=5 be given. For every ¢ >0 there exists a 6 >0 so that if M is an m-
manifold, oM =, p:MXA—->BXA is a f.p. approximate fibration, and
[TMXA->MXAisaf.p. map such thatflMxNz—ld (poxid) f is 6-close to
p, and fis a komeomorphtsm over (p0><1d)_ ((R! \Bl )X A), then f is homo-
topic to a map fvia a f.p. (poxid)~'(e)-homotopy rel

(M x{0)Uf(poxid) ™ ((B\B})x A)
such that f is a homeomorphism over (poxid) "'(R' x A).

Proof. Let g denote the map po Xid. The first step of the proof is to show that
fis f.p. homotopic to a map k rel (M xN;)U(gf)™! ((B\31 s) X A) where kis a
homeomorphism over ¢ ~'(R’ x A). To this end use the isotopy extension theorem
([6], [20]) to produce a f.p. homeomorphism H:MXA—->MXA so that
H|MxNy=id and H | g\ (Bj\B{s)xA)=f| 7.
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Define k by setting k | (gf) "' (BixA)=H"'| and k | (gf) ™" ((B\B, s)XA)=
f|. The homotopy k;: f=k comes from observmg that Sk g (B sxA)—
g ' (Bi sx A) is f.p. homotopic to the identity rel ¢ ~'(B{ s x N;)Uq ~"(dBi s x A).

The next step is to use engulfing to turn &k into a map with the desired control.
This type of modification has been used by Chapman [2, p. 47]. Let r>0 be
small and let §: R’ > R’ be a radially defined homeomorphism supported on
Bi g\ B! such that 8(Bj,) = Bi ;. Extend @ to all of B via the identity. Use § to
define a f.p. homeomorphism 6: B X A — B X A by setting 6, = for ¢ in A\ N, and
for ¢ in N;, phase # out so that 6, =id.

By engulfing (Section 2) there are f.p. homeomorphisms I, A MxXA->MxA
such that I' |[M X {0} =id=A |[M x{0},T is supported on p~ (B 9\Bz,)><A)
and A is supported on g Y((Bio\Bj,)xA), and pT is close to §p and gA™!
close to 8 ~'g. Then set f=A~'kT. It can be seen that ¢f is close to gf.

In order to get the desired homotopy from f to f, first recall that there are
controlled f.p. isotopies I';:id =TI" and A;:id = A coming from Section 2. Then
A;fT is a controlled f.p. homotopy from fto A~'fT'. Finally, A~'k,T" is a con-
trolled f.p. homotopy from A~ fT to f. O

For notation in the next theorem, let B be an ANR which contains R” as an
open subset. Write R? =R?”~/x R’ for some fixed i, 0<i< p. Thus, we are
thinking of R” as a handle in B of index i (with the i = p case discussed in Lemma
6.2). Finally, let m =5 be given.

THEOREM 6.2. For every e > 0 there exists a 6 > 0 so that if M is an m-manifold,
M=, p: MXA—BXAisalf.p. approximate fibration, and f: M XA > M X A
is a f.p. map such that f| M X N, =id, (ppxid)fis é-close to p, and fis a homeo-
morphism over (py >< id)""(R? ™ x (R’ \Bl yX A), then f is homotopic to a map f
via a f.p. (poxid)~'(e)-homotopy rel

(M X (01U f ™ (poxid) " (B\(B ™' x B})x A)
such that f is a homeomorphism over (pyxid) ™! (BY xA).

Proof. The proof is a torus trick and is divided into three parts: wrapping up,
unwrapping, and final improvements. We often assume that i > 0; the i =0 case
is similar but easier (it is the case treated in [12]).

I. Wrapping up. Let g denote the map pox id and let e: R > S' be the covering
map of period 16 defined by e(x) = exp(7rlx/8) (this is different from the map e
of Section 3). For any j, 7/ =S'x --- x §! (j times) and e’-—ex -xe:R/ 5TV,

As in [6, Section 8] regard R X T P=!as an open subset of B so that the com-
position idxe?"': B =[—6,61x B ' - [—6,6]xT"~'C Rx T~ C BY is the
inclusion. Our first step is to produce the following commuting diagram (with
explanations given below):

MxA », TP X A
ve texid
pH(—6,6)xTP 'xA) ZH (—6,6)x TP 'xA
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Let 8: R — R be a homeomorphism supported on [—7.5,7.5] such that 8(x) =
x+14 for —7.2<x=<—6.8. Let 6;,:id =6, 0 <s <1, be the obvious isotopy with
the same support as 0. Let C; D C, D -+ D Cy, be a decreasing sequence of com-
pact subsets of 77! such that C;,, Cint C; for each j,

Ci=e?\(BP~='x (BI\B})),

and each C; contains e” ' (B2 =/~ x (Bi{\B}s)).

Let p: T" 110,11 be a map such that p~'(0)=7T"" 1\C6 and p~ (1) =C;.
Define T,:RxTP !5 RxT?7!, 0<s=<1, by T s(X, ¥) = (0sp()(x), ¥). Write
Y =%,. Extend X (and X) to all of B via the identity.

By engulfing (Section 2) there is a homeomorphism Q: M — M which is sup-
ported on pg ([ —7.5,7.5]1% Cs) and has the property that poQ is close to X p, (as
close as we want). Since f is a homeomorphism over ¢ ' (Rx C;x A), we can
define a f.p. homeomorphism A: M X A — M X A by first setting

Alp~([-8,8]xCsxA)=f""(@xid)f|

and then extending via the identity to all of M X A. Note that pA is close to
(X xid)p, the closeness depending on 6.

By engulfing there is a f.p. homeomorphism I': M XA —M XA supported
on p W([-7.5,7. 5]><(T” I\Cs)x A) such that pT is as close as we want to
(0 xid)(Z xid)~!p. Then pI'A is close to (6 x id)p, the closeness depending on 8.

Now let Y=TAp (=0, =7]XT? 'x AN\p (=00, —7)xT?"'xA) and
let Y, be the slice of Y over 0; that is,

Yo=TAp (=0, =71 x T?~'x {0})\ p "' ((— 00, =7) X T"~ ' x {0}).

Let ~ be the equivalence relation on Y generated by y ~T'A(y) for each y in
p {{—=7}x TP~ 1x A). The obvious map Y/~ — A can be seen to be a submersion
with closed manifold fibers, so Y/~ can be identified with M x A where M =
Yo/~ , a closed m-manifold. (This is the same wrapping up construction dis-
cussed in Section 3; see [11, Section 5] for more details.) There is also a f.p. map
P:MxA— TP x A such that each p, is a §-fibration (where § is small if & is) and
there is a f.p. open embedding ¥: p ~!((—6, 6) X T”~!x A) - M x A which makes
the diagram mentioned at the beginning of the proof commute. We can assume
that p lMXNz—ﬁ()Xid

We now see how to wrap up the map f; this is somethmg that was not done in
Section 3. We first define an auxiliary map f Y—q (RxT? 'xA). Define
subsets E_and E, of Yby E_=p 1 ({—7}xT? " 'xA) and E, =T'A(E_). The
map f is to have the following two properties:

G) f=r| YrelE UYoU(p H R X CoxA)NYYUp~'((—6,6)x TP ' xA) via

a f.p. ¢ ~'(8’)-homotopy where the size of 6’> 0 depends on the size of §.

(i) FIE;=(TA|MX{0})xids)efo(TA)™"|E,.

Before defining f we need to assert the existence of certain isotopies. First,
along with the existence of Q, engulfing gives us an isotopy Q,:idy,=Q, 0<s=<1,
with the same support as  such that py€Q; is close to X py. Then we can define a
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f.p. isotopy As:idyxa=A, 0<s=<I1, by setting A, |p '([—8,8]XC3xA)=
(9, xid,)f| and then extending to all of M XA via the identity. Finally,
engulfing gives us a f.p. isotopy I's:idyxa =1, 0 <s <1, with the same support
as I" such that pT is close to (6, xid)(Z,xid) 'p. Note that pI'sAg is close to
(6, xid)p.

Use these isotopies to define a f.p. homotopy

g E_UE,UYoU(p T (RXCyxA)NY)Up ' ((=6,6)x T~ x A)
g (RxTP'xA)

by setting g; | E; = ((TsAs | M X {0})Xidp)efo(TsA;) ™" |E, and setting g,=f
elsewhere. Then gg; is a small homotopy and gg extends to all of Y via f. By the
estimated homotopy extension theorem, (i.e., the usual homotopy extension
theorem with an estimate on control as developed by Chapman and Ferry), g
extends to the map f with the desired properties.

Since qf is close to p|Y, we can assume that the image of f lies in
[(TA|) N (Yo)UYoU(TA|)(Yy)1 X A. The quotient map n: YoX A —>MXA ex-
tends to 7:[(TA|) " (Yo)UYoU(TA[)(Yp)]XA—MXxA in the obvious way.
Now 7 f factors through the appropriate equivalence classes to define a map
FiMXxXA—-MXA.

Here is a summary of the important properties of f. First (PoXid)/: M XA —
T? x A is 5-close to p. Also f|M x N,=id (actually our f was only constructed
so that f| M x {0} =id, but is not hard to modify the arguments above to achieve
this extra condition; we will not give the details here). The following diagram
commutes:

MxA L, MxA
‘I’IT T‘T’()IXid
P ((=5,5)xTP7'x A) Lh ¢71((=6,6)x TP~ x A)

Finally, fis a homeomorphism over (5o xid) ~'(S'x Cjox A). Achieving this
last condition is what makes this wrapping up construction more delicate than
the construction of [12, Section 2].

Before proceeding to the next step of the proof we will produce a homeomor-
phism /#: M x A - M — A. This homeomorphism will be the key to the construc-
tion of the map f in the next two parts of the proof. Simply use the isotopy
extension theorem ([6], [20]) to find a f.p. homeomorphism A: M XA - M XA
such that 4| M x N, =id and h= f over (Boxid) ~"(S'x C;; x A).

We will need a f.p. homotopy

as: f=h, 0<s<]l,

rel (M><N2)Uf (p0><1d)_ (S! X Cip X A). To this end let a M——>[0 1] be a
map such that ¢ 1(0) = g5 '(S' X (T?~"\Cy1)) and ¢ ' (1) = py '(S' X C3). Define
a homotopy r: M XA — MXAby ry(x, t)=(x,(1—s)t+0(x)st) (rsisnot f.p.!1).
Finally, define o (x, t) = (psr fh "'rsh(x, t), t) where py; denotes projection to M.
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11. Unwrapping. In this part of the proof we unwrap everything by pulling-bkack
via e’: R? —» T”. For notation we let C; denote (e?™! |Bé"")—1 (Cj), so that C, =
BP "1 (B \é{) and each C‘j contains B{’"i_l X (B! \é{_5). Also let § = po xid.

Let F be a f.p. é"-homotopy from p to G f rel M X N,, where &’ is small if § is.
Form the pull-back diagram:

MxAx[0,1] £ R?x A
! | ePxid
MxAx[0,11 -5 T7x A

Then F is a f. p. 6- homotopy from p to (p0><1d)fwherep MxA->RPXAs
the pull-back of p and f: M x A — M X A is the pull-back off Let ¢ = (poxid);
this is the pull-back of . Note that f|M><N2—1d and f is a homeomorphism
over § TR X CioX A).

The homotopy a: f=h pulls back to a f. p homotopy &: f=h rel MxN,
where 4 is a homeomorphism and /4 = f over g~ (Rx G x A). Moreover, géisa
f.p. bounded homotopy.

IIl. Final Improvements. In this part of the proof we deform f to a map |
which is a homeomorphism over §~! (Bf xA). First choose K >35 large (de-
pendmg on the size of the homotopy qa) Then choose J>K so large that
(Gh) ™! ((RP\B}U)XA) is disjoint from (§f) "' (BEx A).

Let u: M x A [0,1] be a map such that u-‘(O)—(qf)- (BfxA)and u~ )=
(Gh) "((RP\B?) x A). Deﬁnef M x A — M — A by setting f(x, 1) = Qugx, (X, 1)

If K is large enough, f fover ‘_‘(BS X A). For some large L > J, f h over
G ((RP\BP)x A). Moreover, f|MxN,=id and £|(af) " (Rx CaxA) =f].

Let 4: R” —» R” be a radially defined homeomorphism which takes Bf to BY
and leaves B? fixed. Use ¥ to define a f.p. homeomorphism v: R”xXA - R” x A
by setting vy, =4 for ¢ in A\N,, and then phase ¥ out for ¢ in N\, so that

v |R? x Ny =id. Note that each (y§f), is a é-fibration provided K is large
enough

The next step is to use a shuffle trick to produce f* from f Let Z:R”XA—
R”x A be a f.p. homeomorphism such that £ |R” x Ny=id, T only affects the
first R-coordinate of any point, X is supported on [—12,12]x B~ ~Ix Bi;x A,
and T(Bf~ xBlGX(A\Nz))C(R”\(B ‘x B 5)><A) By engulfing there are
f.p. “covermg” homeomorphisms I', A: M XA —-MXA for T so that 7qu‘ is
close to Zygf and ygA is close to Lyg. The homeomorphisms I', A can be
chosen to be supported on

('yqf)_ ([—12,12]1x B5™ " 'x B{gx A) and (y§) ' ([—12, 121 x By "' x B{ g x A),

respectively. Moreover we can assume I' [ M X Ny =id = A | M X N,.
Let f*=A" fF It can be seen that g f* is close to qf Moreover, thereis a f.p.
homotopy from f to f* which is small when projected to R” X A by ¢q. This
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homotopy comes from isotopies of the identity to I" and A, and can be taken to
be rel (MxN)U(@GS) " (Rx Cpax A).

By our choice of notation we can identify p”'(Bspr) with ﬁ_](foA).
Using this identification, the map f*, and the homotopy f=f*, it is easy to
define f. O

7. The Approximation Theorem and its corollaries. This section contains the
proofs of the Approximation Theorem (7.1) and Corollaries 2, 3, and 4 of the
introduction.

THEOREM 7.1. Let M and B be closed manifolds with dimM =5, let A be a
simplex with 0 in A, and let p: M XA — BXA be a f.p. approximate fibration.
For every e >0 there exists a f.p. homeomorphism H: M X A —- M X A such that
Hy=id and pH is e-close to pyXid,.

Proof. First notice that there is a f.p. approximate fibration p’: M XA > B XA
close to p so that for some small neighborhood N of 0 in A, p’'| MXN=
boXidy. In fact, p’ and N can be chosen so that p’ is f.p. homotopic to
poXid rel M xN. Using the f.p. approximate homotopy lifting property [11,
Section 2], there is a f.p. map f:M XA — M XA such that f|MxN=id and
(poxid)fis close to p’ (and therefore close to p). Using the results of Section 6
working through a handle decomposition of B, we can deform fto a f.p. homeo-
morphism f for which (poxid) fis close to (poxid)fand fy=id. Then H=f"
is the desired homeomorphism. [

Let M and B denote closed manifolds with dim M = 5. Our next result is con-
cerned with showing that certain spaces of maps from M onto B are locally
n-connected. We now isolate the conditions that such a space must satisfy in
order for our proof to show that it is locally n-connected. Let I" be a space of
maps from M onto B (endowed with the compact-open topology) such that

(1) every map in I' is an approximate fibration, and

(2) f pisin I" and h: M — M is a homeomorphism which is isotopic to the

identity, then phisin I'.

The following is a partial list of possibilities for I':

(1) the space of bundle projections,

(2) the closure of the space of bundle projections,

(3) the space of Hurewicz fibrations,

(4) the closure of the space of Hurewicz fibrations,

(5) the space of Serre fibrations,

(6) the closure of the space of Serre fibrations.

See [5] for a proof that Serre fibrations are approximate fibrations.

Corollary 2 follows from the next result.

COROLLARY 7.2. T' is locally n-connected for each n = 0.

Proof. This follows almost immediately from Corollary 5.2 and Theorem 7.1.
See [12, p. 171] for more details. 4
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One consequence of this result is that two close bundle projections py, p;: M — B
can be connected by a small path of bundle projections. One might ask whether
that path could be chosen to induce a bundle projection p: M x[0,1]— B x[0,1]
which restricts to p; over B x {i} for i =0, 1. If this were the case, then py and p,
would have homeomorphic fibers. We now give an example to show that this
need not be the case.

Let f:58°—>X be a map such that X is not homeomorphic to S° but
fxid: 83x 8! - X x 8! can be approximated arbitrarily closely by homeomor-
phisms. For example, X could be the one-point compactification of Bing’s
dogbone space [1, Section 8]. For any n=1, let #: S*x 7" — X X T" be a homeo-
morphism close to fxid. Let py: S* X T — T" be h followed by projection. Then
DPo is a bundle projection with fiber X which is close to the trivial fiber bundle
projection py: S3x T" — T" with fiber S3.

For our next result let M and B continue to denote closed manifolds with
dimM =35 and let I" be as above. Let AF denote the space of all approximate
fibrations from M onto B. Corollary 4 follows immediately from the next result.

COROLLARY 7.3. The inclusion map i:T" - AF induces an isomorphism
iy, (I') » 7 (AF) for k>0 and a monomorphism for k =0.

Proof. The proof of Corollary 7.2 shows that i, : 7;(I') - 74 (AF) is a mono-
morphism for all k= 0. It remains to show that it is an epimorphism for £ > 0.
We will illustrate this for kK =1, the general case being similar. So given a loop of
approximate fibrations based at a map py: M — B in I', we will show that there is
a nearby loop of maps in I" based at py. The given loop is represented by a f.p.
approximate fibration p: M x[0,1] > BXx[0, 1] such that po=p,. By Theorem
7.1 there is a f.p. homeomorphism H: M x[0,1] > M x[0,1] such that Hy=id
and pH is close to pg Xid. Thus each p; is close to pg H,‘l. By Corollary 7.2 there
is a small path g in T connecting po H;™! to p;. The paths (poxid)H ~' and q fit
together to form the desired loop in I' based at py. O

Corollary 3 of the introduction follows immediately from the following result.
We continue to use M, B, and I" as above.

COROLLARY 7.4. An approximate fibration p: M — B can be approximated
arbitrarily closely by maps in T' if and only if p is homotopic via approximate
fibrations to a map in T'.

Proof. If p can be approximated arbitrarily closely by maps in I', then it follows
from Corollary 5.2 that p is homotopic via approximate fibrations toa map inI".

On the other hand, if p is homotopic via approximate fibrations toa map in I',
then there is a f.p. approximate fibration g: M x[0,1] - B x [0, 1] such that go=p
and g, is in I'. By Theorem 7.1 there is a f.p. homeomorphism H: M x[0,1] -
M %[0, 1] such that Hy=id and gH is close to goXxid. In particular, g, H,; is a
map in I" close to gg=p. ]

Finally, we state an embellishment of Theorem 7.1 which will be needed in the
next section. The proof will not be given since it is only an obvious modification
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of the proof of Theorem 7.1. For notation, M and B will continue to denote
closed manifolds with dimM =5, A will be a simplex, and 7 will denote the
interval [0, 1]. Also, f.p. will mean f.p. over AX /7 (or dAX1[I).

PROPOSITION 7.5. Let p: M X AXI—BXAXI be a f.p. approximate fibration
and let G:MX0AXI->MX0AXI be a f.p. homeomorphism such that pG =
(p|Mx38AXx{0})xid;and G | M x 3A x {0} =id. Then for every e >0 there exists
a f.p. homeomorphism H: M X AXIT—MXxAXI such that H| M X AX{0}=id,
H|MXx3AXI=G,and pH is e-close to (p | M X A x {0}) Xid;. O

8. Controlled homotopy topological structures. Let p: E — B be an Hurewicz
fibration where FE and B are closed manifolds with dim £ = m = 5. Define a semi-
simplicial complex $(p: E — B), called “the space of controlled homotopy topo-
logical structures on p: E — B”, as follows. An n-simplex of 8(p: E — B) is an
equivalence class represented by a map f: M — E XA where M is an (m+ n)-
manifold, A is the standard n-simplex, p=(proj)ef: M — A is a bundle with
closed manifold fiber, and fis a f.p. (pxid)"(e)-equivalence for every € > 0.
This latter condition can be rephrased by saying fis a f.p. map such that f is a
homotopy equivalence and (p Xid) f: M — B X A is an approximate fibration (see
[13, Lemma 2.1]). Another such map g: N — E X A is equivalent to f if there is a
f.p. homeomorphism #: M — N such that gh = f.

For the remainder of this section we will simply use S to denote S(p: E — B)
because the fibration is understood. It is easy to see that 8 satisfies the Kan con-
dition, so its homotopy groups are well-defined (see [16]). The “base” vertex is
represented by the identity on E.

There are two special cases which might be enlightening. First, if B = {point}
then 78 is a “structure set” which is an object of study in surgery theory ([15,
p. 265], [22, p. 102]). On the other hand, if B=FE and p =id, then all vertices are
represented by cell-like maps so Siebenmann’s Approximation Theorem [21]
shows that 7,8 =0.

In the following result, # =0 and A is the standard n-simplex.

THEOREM 8.1. Let f: M —> EXA and f': M’ — E X A represent n-simplices in 8
which determine elements [ f] and [ f'] of «,8, respectively. Then [ f1=[f'] in
wnS if and only if for every ¢ >0 there exists a f.p. homeomorphism h: M — M’
such that f'h| p ' (0A) = f | p~(d4) and f'h is f.p. (p xid) ' (e)-homotopic to f
rel p~1(3A). (Here p: M — A is the bundle projection (proj)ef).

Proof. Suppose first that [ f] =[f’]in 7,S. Then thereisabundle 5: M - A X1
with closed m-manifold fibers and a f.p. map f: M — E X A X I representing an
(n+1)-simplex of 8 such that f|5 (A X {0}) is equivalent to f, f|p (A% {1})
is equivalent to f”, and f| 5~ 1(8; AXT) is equivalent to the base n-simplex of 8
forO0<i=n.

It follows that there is a f.p. homeomorphism j: EX dA X I — 5~ 18A x I) such
that fj =id. Since j is trivial there is a f.p. homeomorphism /: EXA XTI — M.
Set g =(pxid)fh: ExAxI— BxAxI and note that g is a family of approx-
imate fibrations parameterized by A X 1.
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Let hp=h|EX AX{0} and j,=j | E X 3A X {0}. Consider the f.p. homeomor-
phism G: EXdAX I — E X dA X I defined by

G=h""ejo(jo xid;)o(fgxid;) |EX A XI.

By Proposition 7.5 there exists a f.p. homeomorphism H:EXAXI—
ExAXI such that H|ExXAX{0}=id, H|EXdAXI=G, and gH is close to
(g | EXAX{0})xid,.

By the choice of f there exist f.p. homeomorphisms a: M — 5~ (A% {0}) and
B:M'— p~(Ax{1}) such that fa=f and fB8=f". Define h: M — M’ to be the
composition ‘

~—1 .
M3 5 (A% {0})) 2% ExAx[0] X% ExAx{l]
- -1
AL Exaxily i p-lax1)) £ M.
The homotopy from f to f’h is given at time ¢ by the composition

L ,
M3 57 (A% {0]) 2% ExAx{0} % ExAx(t)
H pxaxi) i 7Y axi)) Lh ExAx{t]=ExA.

Conversely, suppose we are given a f.p. homeomorphism /#: M — M’ as in the
hypothesis. Using the homotopy from f to f’h, we can define a f.p. map
F:MxI—-ExAxI such that F|Mx{0}=f, FIMx{1}=f"h, F|p ' (8A)xI=
f|xid;, and F is (pxid)~!(e)-close to fxid;.

Consider the f.p. map (pXid)F: M xI— Bx A xI. Each level of this map is
an ¢’-fibration (where ¢’ > 0 is small if € is) and (p X id)F is an approximate fibra-
tion when restricted to (o ' (dA) X I)U (M % {0,1}). By Theorem 5.1 (pxid)Fis
f.p. homotopic rel (p~'(dA) xI)U(M x{0,1}) to a f.p. approximate fibration
G. Since p Xid is a fibration, this homotopy can be lifted to show that F is f.p.
homotopic rel (p ~1(dA) x IYU(M x {0, 1}) to a map F such that (pxid)F=G. It
is easy to see that F provides an (n+1)-simplex in § showing [ f]=[f’k]. Since
[f'1=I[f"h] we are done. ]
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