ON THE FREQUENCY OF MULTIPLE VALUES OF A MEROMORPHIC FUNCTION OF SMALL ORDER

Daniel F. Shea

For George Piranian on the occasion of his alleged retirement

Introduction. We start from Nevanlinna's fundamental inequality

(1)
$$\sum_{j=1}^{q} m(r, a_j) \le \{2 + o(1)\} T(r, F) - N_1(r) \quad (r \to \infty, r \notin \mathcal{E})$$

and ask for estimates of

(2)
$$N_1(r) = N_1(r; F) = N(r, 0; F') + 2N(r, \infty; F) - N(r, \infty; F').$$

Here F is meromorphic and non-rational in \mathbb{C} , the a_j are distinct values in $\mathbb{C} \cup \{\infty\}$, and $\mathbb{E} = \mathbb{E}(F) \subset (0, \infty)$ has finite measure. The standard notations and results of value distribution theory used here are explained in the classic texts ([10], [13]). As usual we denote by

$$\delta(a, F) = \liminf_{r \to \infty} \frac{m(r, a)}{T(r, F)}$$

the Nevanlinna deficiency of a for F.

We consider

(3)
$$\Phi_1(F) = \inf_{A \in \mathcal{L}} \limsup_{\substack{r \to \infty \\ r \in A}} \frac{N_1(r)}{T(r, F)},$$

where \mathcal{L} is the collection of sets $A \subset (0, \infty)$ of density one (cf. [9, p. 205]), rather than the usual index of total ramification $\Phi(F) = \lim \inf N_1(r)/T(r, F)$, and prove the following

THEOREM 1. If F has lower order $\mu < \frac{1}{2}$, then

$$\Phi_1(F) \ge \cos \pi \mu.$$

As a direct consequence of (4), and the simple inequality $T(r, F')/T(r, F) \le 2 + o(1)$ $(r \to \infty, r \notin \mathcal{E})$, we have the following

COROLLARY. If F has only simple poles, then

(5)
$$\delta(0, F') \le 1 - \frac{1}{2} \cos \pi \mu \quad (0 \le \mu < \frac{1}{2}).$$

It is not difficult to achieve $\delta(0, F') = 1$ for F of any order $\mu \ge 0$, by allowing F to have poles of arbitrarily high multiplicity.

Our estimates (4) and (5) are unlikely to be sharp: the simple examples $F_{\mu}(z) = 1/g(z; \mu)$, where g is a Lindelöf function [13, p. 225], have

Received July 31, 1984. Revision received October 26, 1984. Michigan Math. J. 32 (1985).

$$\Phi_{1}(F_{\mu}) = \begin{cases} 1 & \text{for } 0 \le \mu < \frac{1}{2} \\ \sin \pi \mu & \text{for } \frac{1}{2} < \mu < 1 \end{cases}$$

and are probably extremal for these questions. (Examples in [4] suggest the corresponding conjecture for $\mu > 1$.)

Theorem 1 confirms a conjecture of Eremenko [1, p. 3] and others, for F having $\mu < \frac{1}{2}$. We can restate this conjecture as follows: $\Phi_1(F) = 0$ implies

(6)
$$2\mu$$
 is an integer ≥ 2 , or $\mu = \infty$.

By (1),

(7)
$$\sum \delta(a, F) + \Phi_1(F) \le 2.$$

Drasin [3] has recently succeeded in proving that $\sum \delta(a, F) = 2$ implies (6); but his methods do not seem to apply to Eremenko's problem.

Our conjecture $\Phi_1(F) \ge \Phi_1(F_\mu)$, for F having lower order $\mu < 1$, is consistent with (7) and Edrei's solution [7] of the deficiency problem for these F.

Our method gives some information on a closely related problem concerning the Wronskian

(8)
$$W = W(f, g) = fg' - f'g$$

of two linearly independent entire functions f, g. In case f, g are solutions ($\neq 0$) of

(9)
$$y'' + z^m y = 0 \quad (m = \text{integer} \ge 0),$$

then f and g each have order $\lambda = 1 + m/2$, while W = constant. The problem is to show that W(f, g) has growth as large as that of f and g, except when f, g both have the same half-integral (or infinite) order $\lambda \ge 1$.

We prove the following

THEOREM 2. Let f, g be linearly independent entire functions of orders λ_1, λ respectively, with $\lambda_1 \leq \lambda < \frac{1}{2}$ and g transcendental. Then there exists a sequence $t_k \to \infty$ such that

(10a)
$$N(t_k, 0; W) \ge t_k^{\lambda - o(1)}$$
 and

(10b)
$$N(t_k, 0; W) \ge (\cos \pi \lambda - o(1)) \max\{T(t_k, f), T(t_k, g)\}.$$

In particular, W has order λ . Clunie had already shown (10a) (1963, unpublished) in case $\lambda < \frac{1}{3}$. His proof involved integrating $(f/g)' = W(g, f)/g^2$ on circles |z| = r where $L(r, g) = \inf_{\theta} |g(re^{i\theta})|$ dominates $M(r, g)^{1/2}$. Such r exist, by the classical $\cos \pi \lambda$ theorem, if $\lambda < \frac{1}{3}$. We refine his method by proving a variant of the $\cos \pi \lambda$ theorem more suited to our problem; see Theorem 3 below.

Finally, we recall that the solutions of equation (9) are also closely related to the problem considered in Theorem 1: quotients F = f/g of such solutions have no multiple points at all; that is, $N_1(r; F) \equiv 0$ (cf. [12]).

1. Proof of Theorem 1. To avoid obscuring the argument we first carry out the proof when $F = f_1/f_2$ where the f_j are entire functions of genus 0 without common zeros; a standard approximation argument, to be outlined at the end of this section, will complete our discussion.

Choose $a \in \mathbb{C} - \{F(z) : F'(z) = 0\}, a \neq F(0)$, to satisfy

$$(1.1) N(r,a;F) \sim T(r,F) (r \to \infty)$$

(cf. [13, p. 276]), and put

(1.2)
$$G = \frac{1}{F - a} = \frac{f_2}{f_1 - af_2} = \frac{f}{g}, \quad g(0) = 1.$$

Then f, g have no common zeros, G has only simple poles, and

$$(1.3) N_1(r;F) = N_1(r;G) = N(r,0;G') = N(r,0;W),$$

where $W = W(f_1, f_2) = W(g, f)$ is defined in (8). Since

(1.4)
$$T(r,F) \sim T(r,G) \sim N(r,\infty;G) = N(r,0;g)$$

it is enough to study

(1.5)
$$N(r, 0; W)/N(r, 0; g) \sim N_1(r; F)/T(r, F) \quad (r \to \infty).$$

Let $\{x_k\}$ be a sequence of strong peaks ([11], [8]) of order μ for N(r, 0; g). Then, by [8], there are $r_k \sim x_k$ and $\eta_k \to 0$ such that, simultaneously,

(1.6)
$$\log L(r_k, g)/T(r_k, g) > \pi \mu \cot \pi \mu - \eta_k$$

(1.7)
$$\log L(r_k, g)/\log M(r_k, g) > \cos \pi \mu - \eta_k$$

(1.8)
$$T(r_k, g) > T(t, g) (r_k/t)^{\mu} (1 - \eta_k)$$

(1.9)
$$\pi \mu \csc \pi \mu N(r_k, 0; g) > \log M(t, g) (r_k/t)^{\mu} (1 - \eta_k)$$

for all t in

(1.10)
$$I_k = [\eta_k r_k, r_k/\eta_k].$$

Inequality (1.7) measures the distortion by g of circles $\{|z| = r_k\}$. We require an analogue of (1.7) for certain level curves $\{|g(z)| = R_k\}$.

THEOREM 3. Let g be entire, of lower order $\mu < \frac{1}{2}$. Then there exist r_k , η_k as in (1.6)–(1.10), as well as $R_k \to \infty$ and Jordan curves γ_k about the origin, such that

$$(1.11) |g(z)| \equiv R_k for all z \in \gamma_k,$$

where

(1.12)
$$\gamma_k \subset \{z: r_k > |z| > c_k r_k\}, \quad c_k \to (\cos \pi \mu)^{1/\mu},$$

(1.13) length
$$(\gamma_k) = O(r_k T(r_k, g)^{1/2}),$$

and

(1.14)
$$R_k = L(r_k, g)^{1+o(1)} \quad (k \to \infty).$$

We interpret $(\cos \pi \mu)^{1/\mu} = 1$ when $\mu = 0$.

To prove Theorem 3, put $A_k = \log L(r_k, g)$, choose any

(1.15)
$$\delta_k \in (A_k^{-2/3}, A_k^{-1/3}),$$

and put

$$\alpha_k = \exp A_k (1 - A_k^{-1/3}), \quad \beta_k = \exp A_k (1 - A_k^{-2/3}),$$

$$D_k = \{z : |z| \le r_k, \log|g(z)| > (1 - \delta_k)A_k\}.$$

Since $\delta_k > 0$, D_k contains $\{|z| = r_k\}$. By the maximum principle, D_k is connected. By (1.6) and (1.9) there exist $\xi_k \to 0$ such that

$$\log M(t,g) < (\cos \pi \mu - \xi_k)^{-1} A_k (t/r_k)^{\mu}$$
 for $t \in I_k$;

see (1.10). Thus, if we define $\{c_k\}$ by $(\cos \pi \mu - \xi_k)^{-1} c_k^{\mu} = 1 - A_k^{-1/3}$, then

$$\log M(c_k r_k, g) < \log \alpha_k$$

so that

$$D_k \subset \{z : c_k r_k < |z| \le r_k\}.$$

(If $\mu = 0$, we argue as above with μ replaced by a sequence μ_k decreasing slowly to zero.)

Let O_k be the component of $C - \bar{D}_k$ which contains $\{|z| < c_k r_k\}$. It is not difficult to see that the boundary γ_k of O_k is a Jordan curve (cf. [15, p. 123]), with (1.11) satisfied for $R_k = \exp A_k (1 - \delta_k)$.

By Weitsman's estimate of Ahlfors' length-area inequality ([15, p. 120], cf. [14]), there exist δ_k in (1.15) such that the length $l(\gamma_k)$ of γ_k satisfies

$$l(\gamma_k) \le 2\pi r_k T(er_k, g)^{1/2} (1 - \alpha_k/\beta_k)^{-1/2}$$
.

Thus (1.13) follows from (1.8).

To prove Theorem 1, we choose r_k , γ_k as above and fix $z_k \in \gamma_k$. Integrating $G' = (f/g)' = W/g^2$ along γ_k , we have

$$G(z) - G(z_k) = \int_{z_k}^{z} \frac{W(\zeta)}{g(\zeta)^2} d\zeta \quad (z, \zeta \in \gamma_k).$$

Thus, by (1.11),

$$|g(z_k)f(z) - f(z_k)g(z)| \le R_k^2 \int_{\gamma_k} \frac{|W(\zeta)|}{R_k^2} |d\zeta|$$

$$\le M(r_k, W) l(\gamma_k)$$

for all $z \in \gamma_k = \text{bdry}(O_k)$, and the inequality persists for all $z \in O_k \supset \{|z| \le c_k r_k\}$. Now, by (1.4) and (1.12), g has a zero $a_1 \in O_k$ for all large k, and $f(a_1) \ne 0$ by (1.2). Thus (1.16) together with (1.13) and (1.14) imply

$$\log L(r_k, g) \le \log M(r_k, W) \{1 + o(1)\} \quad (k \to \infty)$$

and, by (1.6),

(1.17)
$$\lim_{k \to \infty} \inf \log M(r_k, W) / T(r_k, g) \ge \pi \mu \cot \pi \mu.$$

Now let $A \in \mathcal{L}$ be a given set of linear density one: $\int_0^r \chi(t) dt = o(r)$, where χ is the characteristic function of $(0, \infty) - A$, and put

(1.18)
$$C = \limsup_{\substack{r \to \infty \\ r \in A}} \frac{N(r, 0; W)}{T(r, g)}.$$

By a standard inequality ([8], [11]),

$$(1-o(1))\log M(r_{k}, W) \leq r_{k} \int_{I_{k}} \frac{N(t, 0; W)}{(t+r_{k})^{2}} dt$$

$$\leq (C+o(1))r_{k} \int_{I_{k}\cap A} \frac{T(t, g)}{(t+r_{k})^{2}} dt + r_{k} \int_{I_{k}-A} \frac{T(t, W)}{(t+r_{k})^{2}} dt$$

$$\leq (C+o(1))T(r_{k}, g) \int_{0}^{\infty} \left(\frac{t}{r_{k}}\right)^{\mu} \frac{r_{k} dt}{(t+r_{k})^{2}}$$

$$+3T(r_{k}, g) \int_{0}^{\infty} \left(\frac{t}{r_{k}}\right)^{\mu} \frac{r_{k} \chi(t)}{(t+r_{k})^{2}} dt$$

$$= (\pi \mu \csc \pi \mu)(C+o(1))T(r_{k}, g) \quad (k \to \infty),$$

where I_k was defined in (1.10). Here we have used (1.18), (1.4), and (1.8) with the usual lemma on m(r, g'/g) (see [10, p. 36]) to estimate

$$T(t, W) = m(t, g^2G(g'/g - f'/f))$$

$$\leq 2T(t, g) + m(t, G) + 4\log T(2t, g) + 4\log T(2t, gG) + O(\log t)$$

$$\leq \{2 + o(1)\}T(r_k, g)(t/r_k)^{\mu} \quad (t \in I_k).$$

Using (1.17)–(1.19) we deduce $C \ge \cos \pi \mu$. This with (1.5) implies (4), since $A \in \mathcal{L}$ was arbitrary, and the proof of Theorem 1 is complete when F has genus zero.

In the general case, we put G = 1/(F-a) where a satisfies (1.1) and is not a multiple value of F. Thus G has only simple poles $\{z_n\}$, and

$$N_1(r; F) = N_1(r; G) = N(r, 0; G'), \qquad T(r, F) \sim T(r, G) \sim N(r, \infty; G).$$

Now let $\{x_k\}$ be a sequence of Pólya peaks of order μ for $N(r, \infty; G)$, so that

$$N(t, \infty; G) \leq N(x_k, \infty; G) (t/x_k)^{\mu} (1 + \alpha_k)$$

when $t \in [\alpha_k x_k, x_k/\alpha_k]$, for some α_k decreasing to zero. Put

$$g_k(z) = \prod_{|z_n| \le x_k/2\alpha_k} (1 - z/z_n)$$

so that $N(r,0;g_k) = N(r,\infty;G)$ for $0 < r \le x_k/2\alpha_k$. Notice that the proof of Theorem 1b in [8] (together with the comments at the start of Section 2 there) yields $r_k \sim x_k$ and $\eta_k \ge \alpha_k$, $\eta_k \to 0$ such that

$$\log L(r_k, g_k)/N(r_k, 0; g_k) > \pi \mu \cot \pi \mu - \eta_k,$$

$$\pi \mu \csc \pi \mu N(r_k, 0; g_k) > \log M(t, g_k) (r_k/t)^{\mu} (1 - \eta_k),$$

$$N(r_k, 0; g_k) > T(t, g_k) (r_k/t)^{\mu} (1 - \eta_k)$$

for t in intervals I_k having the form (1.10).

Further, the proof of Theorem 3 given above yields, just as before, $R_k \to \infty$ and Jordan curves γ_k about 0, such that (1.11)–(1.14) all hold with g replaced by g_k . We now put $f_k = Gg_k$ and $W_k = W(g_k, f_k)$, so that

$$G' = W_k/g_k^2$$
, $N(r, 0; G') = N(r, 0; W_k)$ $(0 < r < \infty)$.

Thus we can apply the arguments used for the genus zero case of Theorem 1 already considered, with f, g, W replaced by f_k, g_k, W_k , to see that Theorem 1 holds as stated.

2. Proof of Theorem 2. We show how to modify the previous arguments to prove (10). Given f, g as in Theorem 2, define

$$T_2(r) = \max\{T(r, f), T(r, g)\}.$$

By a lemma of Pólya [10, p. 103], there exist $x_k \to \infty$ and $\epsilon_k \to 0$ so that

(2.1)
$$T_2(t)/T_2(x_k) \leq \begin{cases} (t/x_k)^{\lambda - \epsilon_k} & (1 \leq t \leq x_k), \\ (t/x_k)^{\lambda + \epsilon_k} & (t > x_k). \end{cases}$$

Choose a subsequence $K = \{k_j\}$ so that $T_2(x_k) = T(x_k, g)$ $(k \in K)$, say. By (2.1a), g has order λ on $\{x_k\}$, $k \in K$. Then define F = f/g where it is not forbidden that f, g have some common zeros. By [6] and [8],

$$(2.2) N(x_k, 0; g) \sim T(x_k, g) (k \to \infty, k \in K)$$

so that $\{x_k\}$ is a sequence of strong peaks of N(r, 0; g). Thus by [8] and Theorem 3 there exist $r_k \sim x_k$ so that (1.6)–(1.14) all hold (with μ replaced by λ). By increasing the η_k in (1.6)–(1.14), if necessary, we can assume that the ϵ_k in (2.1) satisfy $\eta_k^{\epsilon_k} \to 1$.

The argument of Section 1 now gives (1.16) as before, when $k \in K$. Since (1.16) holds for z inside γ_k , and $\gamma_k \to \infty$ ($k \in K$), we can argue as before to obtain

(2.3)
$$\liminf_{\substack{k \to \infty \\ k \in K}} \log M(r_k, W) / T(r_k, g) \ge \pi \lambda \cot \pi \lambda$$

provided g has a zero $a_1 \in \mathbb{C}$ that is not a zero of f. Otherwise, f/g may still have a pole at some point a_1 : in that case $F = f_1/g_1$, where $f(z) = (z - a_1)^m f_1(z)$, $g(z) = (z - a_1)^m g_1(z)$ with $f_1(a_1) \neq 0$, $g_1(a_1) = 0$. Since f_1 , g_1 , $W(f_1, g_1)$ differ from f, g, W(f, g) by polynomial factors only, we can apply the previous argument to f_1 , g_1 to get (2.3) again. Finally, if F = f/g is an entire function, then $W(f, g) = -g^2 F'$, where $F' \not\equiv 0$ since f, g are linearly independent. Thus N(r, 0; W) = 2N(r, 0; g) + N(r, 0; F') and, by (2.2),

$$\liminf_{\substack{k \to \infty \\ k \in K}} N(r_k, 0; W) / T(r_k, g) \ge 2,$$

so that (2.3) holds in any case.

Now recall the intervals I_k in (1.10), and define $t_k \in I_k$ by

$$\max_{r \in I_k} N(r, 0; W)/r^{\lambda} = N(t_k, 0; W)/t_k^{\lambda}.$$

Using the first inequality in (1.19) again, we now deduce

(2.4)
$$(1-o(1))\log M(r_k, W) \leq N(t_k, 0; W) \int_{I_k} \left(\frac{t}{t_k}\right)^{\lambda} \frac{r_k dt}{(t+r_k)^2} \leq N(t_k, 0; W) (r_k/t_k)^{\lambda} \pi \lambda \csc \pi \lambda.$$

Since $t_k \in I_k$ we can use (1.8) with (2.3) to see that

$$(1+o(1))\log M(r_k,W) \ge \pi\lambda \cot \pi\lambda T(t_k,g)(r_k/t_k)^{\lambda}$$

when $k \to \infty$ in K. This with (2.4) proves the second inequality in (10). Further, for $k \in K$, (2.3) and (2.4) imply

$$N(t_k, 0; W) \ge C_1 T(r_k, g) (t_k/r_k)^{\lambda}$$

with $C_1 = (\cos \pi \lambda)/2$, while (2.1) implies

$$T(r_k, g) \sim T(x_k, g) = T_2(x_k) > c_2 r_k^{\lambda - \epsilon_k},$$

so that

$$N(t_k, 0; W) > 2ct_k^{\lambda - \epsilon_k} (t_k/r_k)^{\epsilon_k} > ct_k^{\lambda - \epsilon_k}$$

for $k \ge k_0$, $k \in K$, since $t_k/r_k \ge \eta_k$.

This proves (10) in case the subsequence K exists; if not, then $T_2(x_k) = T(x_k, f)$ for all large k, and we can argue exactly as above with 1/F = g/f.

REFERENCES

- 1. K. F. Barth, D. A. Brannan, and W. K. Hayman, *Research problems in complex analysis*, Syracuse University Technical Report M-8, 1984.
- 2. J. Clunie, *The derivative of a meromorphic function*, Proc. Amer. Math. Soc. 7 (1956), 227–229.
- 3. D. Drasin, *Proof of a conjecture of F. Nevanlinna concerning functions which have deficiency sum two*, to appear.
- 4. D. Drasin and A. Weitsman, *Meromorphic functions with large sums of deficiencies*, Adv. in Math. 15 (1975), 93–126.
- 5. A. Edrei, *The deficiencies of meromorphic functions of finite lower order*, Duke Math. J. 31 (1964), 1-21.
- 6. ——, Sums of deficiencies of meromorphic functions, J. Analyse Math. 14 (1965), 79–107.
- 7. ——, Solution of the deficiency problem for functions of small lower order, Proc. London Math. Soc. (3) 26 (1973), 435–445.
- 8. A. E. Eremenko, D. F. Shea, and M. L. Sodin, *Minimum modulus theorems for entire functions at Pólya peaks*, preprint.
- 9. A. A. Gol'dberg and I. V. Ostrovskii, *The distribution of values of meromorphic functions* (Russian), "Nauka", Moscow, 1970.
- 10. W. K. Hayman, *Meromorphic functions*, Clarendon Press, Oxford, 1964.
- 11. J. Miles and D. F. Shea, On the growth of meromorphic functions having at least one deficient value, Duke Math. J. 43 (1976), 171–186.
- 12. F. Nevanlinna, *Bermerkungen zur Theorie der ganzen Funktionen endlicher Ord-nung*, Soc. Sci. Fenn. Comment. Phys.-Math., 2 Nr. 4 (1923), 1-7.

- 13. R. Nevanlinna, Analytic functions, Springer, New York, 1970.
- 14. G. Piranian and A. Weitsman, *Level sets of infinite length*, Comment. Math. Helv. 53 (1978), 161–164.
- 15. A. Weitsman, Meromorphic functions with maximal deficiency sum and a conjecture of F. Nevanlinna, Acta Math. 123 (1969), 115–139.

Department of Mathematics University of Wisconsin Madison, Wisconsin 53706