ON THE FREQUENCY OF MULTIPLE VALUES OF A
MEROMORPHIC FUNCTION OF SMALL ORDER

Daniel F. Shea

For George Piranian on the occasion of his alleged retirement

Introduction. We start from Nevanlinna’s fundamental inequality

) S mir, ;) = (2+ 0 T(r, F)=Ni(r) (r— o, r¢ &)
Jj=1

and ask for estimates of

2 Ni(r)=N(r; F)=N(r,0; F')+2N(r, ©; F)—N(r, «o; F’).

Here F is meromorphic and non-rational in C, the ¢; are distinct values in
CU{e}, and &= &(F) C (0, o) has finite measure. The standard notations and
results of value distribution theory used here are explained in the classic texts
([10], [13]). As usual we denote by

. . .m(r,a)
o(a, F)=
(a, F)y=hminf 2 "0

the Nevanlinna deficiency of a for F.
We consider

et Ni(r)
3 ®(F)= Inf limsup —————,
red

where £ is the collection of sets A C (0, o) of density one (cf. [9, p. 205]), rather
than the usual index of total ramification ®(F) =liminf N;(r)/T(r, F), and prove
the following

THEOREM 1. If F has lower order u < % , then
4) ®(F) =cos wu.

As a direct consequence of (4), and the simple inequality 7(r, F’)/T(r,F) <
24o0(1) (r— o, r¢ &), we have the following

COROLLARY. If F has only simple poles, then
() 8(0, F'y<l—3Scosmp (0=u<3).

It is not difficult to achieve 6(0, F’) =1 for F of any order p =0, by allowing F
to have poles of arbitrarily high multiplicity.

Our estimates (4) and (5) are unlikely to be sharp: the simple examples F,(z) =
1/g(z; 1), where g is a Lindeldf function 13, p. 225], have
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1 for 0<p<3
Qi (F)=9 . 1 m=2
sinmp  for 3 <pu<1

and are probably extremal for these questions. (Examples in [4] suggest the cor-
responding conjecture for p>1.)

Theorem 1 confirms a conjecture of Eremenko [1, p. 3] and others, for F
having pu < % We can restate this conjecture as follows: ®(F) =0 implies

6) 2p is an integer =2, or pu=co.
By (1),
@) Y 6(a, F)+ ®(F)<2.

Drasin [3] has recently succeeded in proving that ¥ é(a, F) =2 implies (6); but
his methods do not seem to apply to Eremenko’s problem.

Our conjecture ®,(F) = ®(F,), for F having lower order p <1, is consistent
with (7) and Edrei’s solution [7] of the deficiency problem for these F.

Our method gives some information on a closely related problem concerning
the Wronskian

(8) W=w(f,g)=/g-S'¢g
of two linearly independent entire functions f, g. In case f, g are solutions (# 0) of
) y'+z"y=0 (m=integer =0),

then fand g each have order A =1+ m/2, while W = constant. The problem is to
show that W(f, g) has growth as large as that of fand g, except when f, g both
have the same half-integral (or infinite) order A >1.

We prove the following

THEOREM 2. Let f, g be linearly independent entire functions of orders Ay,
respectively, with \{ <\ <% and g transcendental. Then there exists a sequence
ty — o such that

(10a) N, 0; Wy=t2~°D  and
(10b) N(ty, 0; W) = (cos mh—o(1)) max{T (¢, f), T(tk, &)}

In particular, W has order A\. Clunie had already shown (10a) (1963, unpub-
lished) in case A< % . His proof involved integrating (f/g)’= W(g, f)/g* on
circles |z| = r where L(r, g) = inf,|g(re'’)| dominates M(r, g)2. Such r exist, by
the classical cos w\ theorem, if A < % We refine his method by proving a variant
of the cos w\ theorem more suited to our problem; see Theorem 3 below.

Finally, we recall that the solutions of equation (9) are also closely related to
the problem considered in Theorem 1: quotients F = f/g of such solutions have
no multiple points at all; that is, Ni(r; F) =0 (cf. [12]).

1. Proof of Theorem 1. To avoid obscuring the argument we first carry out the
proof when F=fi/f, where the f; are entire functions of genus 0 without
common zeros; a standard approximation argument, to be outlined at the end of
this section, will complete our discussion.
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Choose ae C—{F(z): F'(z) =0}, a# F(0), to satisfy
(1.1) N(r,a; F)~T(r,F) (r— o)
(cf. [13, p. 276]), and put

= I = fZ =£
F—a fi—af, g’

Then f, g have no common zeros, G has only simple poles, and

(1.2) G

g(0)=1.

(1.3) Ni(r; F)=Ni(r; G)=N(r,0; G')=N(r,0; W),
where W= W(f,, ;) =W(g, f) is defined in (8). Since
(1.4) T(r,F)~T(r,G)~ N(r,©; G)=N(r,0; g)

it is enough to study
(1.5) N(r,0; W)/N(r,0;8) ~ Ni(r; F)/T(r, F) (r— o).

Let {x,} be a sequence of strong peaks ([11], [8]) of order u for N(r,0; g).
Then, by [8], there are r;, ~ x; and 5 — 0 such that, simultaneously,

(1.6) log L(ry, g)/T(ry, 8) > mpcot wp—y

(1.7) log L(r, g)/log M(ry, g) > cos mpu—ny
(1.8) T(ry, 8)>T(8, &) (re /D" (1— 1)

(1.9 wpesewuN(ry, 05 g) >log M(¢, g) (r /)" (1—14)
for all ¢ in

(1.10) L=kl re/mxl.

Inequality (1.7) measures the distortion by g of circles {|z| =ry}. We require
an analogue of (1.7) for certain level curves {|g(z)| = Ry}.

THEOREM 3. Let g be entire, of lower order p < % Then there exist ry, n as in
(1.6)-(1.10), as well as R;, — o and Jordan curves -y, about the origin, such that

(1.11) |g(z)| =Ry for all z€ -y,

where

(1.12) veClzire>|z|>cere),  cx— (cos p)/¥,
(1.13) length (v¢) = O(r T(ry, &)%),

and

(1.14) Ry=L(r, 8)' o0 (k- ).

We interpret (cos 7r,u,)'/" =1 when p=0.
To prove Theorem 3, put A, =log L(r, g), choose any

(1.15) Sre (A7 Y3, A7),
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and put
ap=exp Ar(1=A;'), Br=exp A(1-A; ),
Dy ={z:|z| =ry, log|g(z)| > (1—8;) A}
Since 6, >0, D, contains {|z|=r;}. By the maximum principle, Dy is con-
nected. By (1.6) and (1.9) there exist &, — 0 such that
log M(¢,g) <(cos mu—&,) ‘A (t/r)* for tely;
see (1.10). Thus, if we define {c;} by (cos mp— &) ~'cf =1—A; "3, then
log M(cyry, g8) <log oy,
so that
D, Clz:icr<|z|=rl.

(If n=0, we argue as above with u replaced by a sequence p; decreasing slowly
to zero.)

Let O, be the component of C— Dy which contains {|z| < cgr}. It is not diffi-
cult to see that the boundary v, of Oy is a Jordan curve (cf. [15, p. 123]), with
(1.11) satisfied for Ry =exp A, (1—46;).

By Weitsman’s estimate of Ahlfors’ length-area inequality ([15, p. 120], cf.
[14]), there exist 6, in (1.15) such that the length /(+y;) of vy, satisfies

I(ye) <2mri Tery, 8)Y2(1— oy /Br) V2.

Thus (1.13) follows from (1.8).
To prove Theorem 1, we choose r;, v, as above and fix z; € ;. Integrating
G'=(f/g)’' = W/g? along v, we have

. W({)
G@)-Gy=|" —T53ds (@ Fen).
Thus, by (1.11),
4
|&(z) S(2) — f(z4) 8(2)] SR;‘?‘E ITgﬂldfl

(1.16) k
= M(ri, W)l(vi)

for all z € v, =bdry(Oy), and the inequality persists for all ze€ Oy D {|z| < ¢, 1y ).
Now, by (1.4) and (1.12), g has a zero a, € O, for all large k, and f(a;) #0 by
(1.2). Thus (1.16) together with (1.13) and (1.14) imply

log L(ry, g) <log M(ry, W){l+o0(1)} (k— )
and, by (1.6),
(1.17) lim inflog M(ry, W)/T(ry, g) = wp cot wp.

k—
Now let A€ £ be a given set of linear density one: 56 x(t) dt = o(r), where x
is the characteristic function of (0, «©)— A, and put
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: N(r,0; W)
(1.18) C=limsup ————.
r—» o T ]
= (r,8)
By a standard inequality ([8], [11]),
N(,0;, W)
(-0t log M(re, W)= || =05
T(t,8) 1(t, W)
=(CHolNr SlkﬂA (t+ry)? « Slk_A (t+14)°
wo / t\F dt
(1.19) =(C+o(1))T(r, 8) SO (r—k> _(t:’i_rk)a_
o ¢\ rex(r)
o] (&) ¢

=(wpcscmp)(C+0(1))T(r, g) (k- ),
where I, was defined in (1.10). Here we have used (1.18), (1.4), and (1.8) with the
usual lemma on m(r, g’/g) (see [10, p. 36]) to estimate
T(t, W)=m(t,g*G(g"/g—f"/f))
<=2T(t, g)+m(t,G)+4logT(2t,g)+4logT(2¢,gG)+ O(log 1)
={2+0()}T(r, g)(t/r)*  (tely).

Using (1.17)-(1.19) we deduce C=cos wu. This with (1.5) implies (4), since
A e £ was arbitrary, and the proof of Theorem 1 is complete when F has genus
Zero.

In the general case, we put G =1/(F—a) where a satisfies (1.1) and is not a
multiple value of F. Thus G has only simple poles {z,}, and

N|(r; F)=N|(r; G)=N(r,0; G"), I(r, Fy~T(r,G) ~ N(r, ©; G).
Now let {x;} be a sequence of Pdlya peaks of order p for N(r, «; G), so that
N(t, ©; G) = N(xy, 005 G) (t/xx ) (1+ o)

when ¢ € [agxg, Xi/ax], for some oy decreasing to zero. Put

g(z)= Il (-z/z,)

|2nl = x4 /20
so that N(r,0; gx) =N(r,©; G) for 0<r=<ux;/2a;. Notice that the proof of
Theorem 1b in [8] (together with the comments at the start of Section 2 there)
yields r; ~ x; and 74 = o, 75— 0 such that

log L(ry, gk)/N(rk, 05 gx) > mp cot mp— 1y,
Tp CSCTuN(rg, 0; gx) >log M(t, gi) (re /1) (1 — i),
N(ri, 05 8x) > T(¢, k) (re/8)* (1 —nx)
for ¢ in intervals I; having the form (1.10).
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Further, the proof of Theorem 3 given above yields, just as before, Ry — o and
Jordan curves vy, about 0, such that (1.11)-(1.14) all hold with g replaced by g4.
We now put f;, = Gg, and W, = W(gg, fi), so that

G'=Wi/gk,  N(r,0;G)=N(r,0; W) (0<r<e).

Thus we can apply the arguments used for the genus zero case of Theorem 1
already considered, with f, g, W replaced by f;, g+, Wk, to see that Theorem 1
holds as stated.

2. Proof of Theorem 2. We show how to modify the previous arguments to
prove (10). Given f, g as in Theorem 2, define

TZ(r) =maX{T(rsf)) T(r, g)}
By a lemma of Pdlya [10, p. 103], there exist x; — o and ¢; — 0 so that
(t/xi) ™% (Ist=xp),
(t/xi) k(> xp).

Choose a subsequence K = {k;} so that T,(xy) = T(xx, &) (k€ K), say. By (2.1a),
g has order A on {x;}, k€ K. Then define F = f/g where it is not forbidden that
f, g have some common zeros. By [6] and [8],

2.2) N(xk,0;8) ~T(xx, 8) (k- o, keK)

(2.1) T5(8)/To(xx) 5{

so that {x;} is a sequence of strong peaks of N(r,0; g). Thus by [8] and Theorem
3 there exist r;p ~ x; so that (1.6)-(1.14) all hold (with u replaced by \). By in-
creasing the 5, in (1.6)-(1.14), if necessary, we can assume that the ¢; in (2.1)
satisfy nx — 1.

The argument of Section 1 now gives (1.16) as before, when k € K. Since (1.16)
holds for z inside v, and v, — c (k€ K), we can argue as before to obtain

(2.3) liminflog M(ry, W)/T(ry, g) = nAcot T\
ek

provided g has a zero a; € C that is not a zero of f. Otherwise, f/g may still have
a pole at some point a;: in that case F = f,/g,, where f(z) =(z—a,)" fi(z), g(z) =
(z—a))"gi(z) with fi(a))#0, g(a;)=0. Since f;, g, W(/fi,g) differ from
f, &, W(f, g) by polynomial factors only, we can apply the previous argument to
fi, & to get (2.3) again. Finally, if F= f/g is an entire function, then W(f, g) =
—g?F’, where F’# 0 since f,g are linearly independent. Thus N(r,0; W)=
2N(r,0; g)+ N(r,0; F’) and, by (2.2),

liminf N(rg, 0; W)/T(ry, 8) =2,
Wk
so that (2.3) holds in any case.
Now recall the intervals 7, in (1.10), and define ¢, € I by
max N(r,0; W)/r* = N(t,,0; W)/t}.

rel;
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Using the first inequality in (1.19) again, we now deduce

t\ redt
1—o(1))logM(ry, W)<N(t;,0; W — ) ——
(1-0(1)) log M(ri, W) < Nt ’S;k(t,) T

< N(tx, 0; W) (ri/te) mh csc .

(2.4)

Since ¢, € I;, we can use (1.8) with (2.3) to see that
(14 0(1)) log M(ry, W)= w\cot aNT (¢, g)(ri/ti)*

when k — o in K. This with (2.4) proves the second inequality in (10). Further,
for ke K, (2.3) and (2.4) imply

N(ty, 0; W)= C\T(rg, g)(t/ri)*
with C; = (cos w\)/2, while (2.1) implies
T(ri, 8) ~ T(xi, 8) = Ta(xx) > carp ~ %,
so that
N(ty, 03 W) >2ct) ™k (ty [re) > ct)

for k= ko, ke K, since ty/r,=n;.
This proves (10) in case the subsequence K exists; if not, then T5(x;) = T(xx, f)
for all large k, and we can argue exactly as above with 1/F=g/f.
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