CYCLIC VECTORS OF BOUNDED CHARACTERISTIC
IN BERGMAN SPACES

Robert Berman, Leon Brown, and William Cohn

1. Introduction. Let D be the unit disk in the complex plane. H” denotes the
usual class of functions analytic on D. Let 42 be the Bergman space of analytic
functions f such that

1/132= S:W S:) | f(re®)|?rdrdf<co.

If f€A?, let [f] denote the smallest closed subspace of A2 which contains
{2"f}n=o. If S is the unilateral shift Sf=zf, then [ f] is the smallest closed sub-
space of A% containing f which is invariant under S.

A function f€ A? is called cyclic if [f]=A2 It is an open problem to give a
useful characterization of the cyclic functions in 42. On the other hand, if f€ H'
much more is known.

Recall that any function f€ H! has the canonical factorization f= BsF, where
B is a Blaschke product, F'is an outer function and s is a singular inner function
generated by a singular measure o:

+z
T (—2
Here, o is singular with respect to Lebesgue measure on the unit circle 7.

A closed set KT of Lebesgue measure 0 is called a BCH set (Beurling-
Carleson-Hayman) if

@) =s,()=exp(=[ T2 do(s)).

S log !
T px($)

where pg({)=inf, ex|z— ¢|. Equivalently, K is a BCH set if (i) |K|=0, and

(ii) X |Ix|log(1/|I|) <oo, where |E| denotes the Lebesgue measure of E and

T\K=Ujy-, I is the canonical decomposition of T\K into disjoint open arcs.
We can now state the following theorem.

THEOREM L. If f is in H' and non-vanishing, then f is cyclic for A? if and only
the singular factor of f equals s, where o(K)=0 for all BCH sets K.

|d§|<eo,

The necessity is due to H. S. Shapiro [13]. The sufficiency was established
independently by Korenblum {9, 10] and Roberts [14].

Actually the authors above proved necessity and sufficiency in case f=s,. The
extension to H' was noted in [4]. We sketch a proof. If f€H', then | f|| <

Received September 8, 1983. Final revision received February 21, 1984.

The first author was supported in part by a grant from Wayne State University. The
second and third authors were supported in part by the National Science Foundation.

Michigan Math. J. 31 (1984).

295



296 ROBERT BERMAN, LEON BROWN, AND WILLIAM COHN

c||f |15 see [13, p. 325]. If f=sF then [f]=[s]. This is true since for F outer
there are polynomials p, such that Fp, —1in H'. Thus fp, —sin H' and hence
in A2. Thus s€ [f] and [s] S[f]. The other containment is obvious.

In this note we find a necessary condition for f to be cyclic which applies to all
functions f in A% which generalizes the Shapiro condition. This condition turns
out to be sufficient provided [ f] NN contains a non-vanishing function. Here, N
is the Nevanlinna class. In particular, we characterize cyclic vectors f which lie in
both A% and N. As a corollary we obtain the following result.

THEOREM. Let f be a non-vanishing function in A>O\N. Let the canonical
Sactorization of f be f= (s,/5,)F, where F is outer and s, and s, are singular inner
Sunctions. Then s, is always cyclic and f is cyclic if and only if s, is cyclic.

COROLLARY. If f€EA*NN and f~'€ A2, then f is cyclic.

This answers a question of Aharonov, H. S. Shapiro, and Shields [1]. It is still
unknown if the corollary is true for an arbitrary f invertible in A2

This paper is divided into five sections. In the second section we prove a
theorem which may be of independent interest about the restriction of singular
functions to subdomains of D. In the third section we give a necessary condition
for cyclicity. In section four we show that the condition of the third section is
sufficient under additional hypotheses. We then prove the results stated in the
introduction. In section five we indicate how the results of the previous sections
extend to the familiar weighted Bergman spaces 4*”, which we define in that
section.

We adopt the convention of using the letter ¢ to denote a constant which may
change its value each time it appears. The symbol D denotes the closed unit disc.
A positive measure o is said to live on a set X if ||o||=0(X).

2. Restrictions of singular inner functions. In this section we prove a theorem
which will be necessary to obtain the main results. Essentially, we answer the
following question: If Q is a subregion of D and s is a singular inner function,
when does the restriction of s to 2 have a singular factor? For a related result see
[7, Proposition 1]. ‘

Let Q<D be a simply connected domain whose boundary is a Jordan curve.
Let ¢: D—(Q be a Riemann map of the disc onto @ and let ¥ be its inverse. If
CET and |e($)|=1, then define the angular derivative of ¢ at ¢ by ¢'(¢)=
lim, _, ¢’(r¢) if the limit exists, and oo otherwise. It is well known that

1—|o(r{)
1_

r

|¢'(§)] = lim
r—1
and that the latter limit exists; in fact 0 <|¢’({)| < o0. See [3, pp. 7-12] and [2] for
details. _
Now let e’’ € T. Then

1-]e(2)|? | 1-|z|”
e’ —e(2)]* "I [1-72|?

dpg(n)
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for a positive measure duy, since the left hand side is a positive harmonic func-
tion. Let duy=duvy+doy be the Lebesgue decomposition of duy, where vy is
singular and oy is absolutely continuous with respect to db.

LEMMA 2.1. Suppose e’ & o(T). Then dps=doy.
Proof. Let { €T and set z=(1—e¢){. Then

I=je@® _r 1=z’
|ef0_(p(z)|2 —ST d)u’ﬂ

>§ue(1(r,e»,

where I({, €) is the arc on T centered at ¢ of length 2¢. Since () #e'l,

1-|e() 5 o i PeU (S5 €)

e —o(D> T 50 e
Since this is true for any ¢ € T it follows that the ‘‘lower cubical derivative’’ of ug
is finite for each {€T and that up<<df. See [11, Theorem 8.10, p. 169] for
details. _ '
Now suppose e’ = p(e™). According to [3, p. 11],

1—|e(2)|? 1—|z|? 1 1-|z|?
] lo(2)] 7= ixl | YIRS S —“—[-l 5 dte(n),
eT—o@F ~ Je" =2 (e T Ir Ti=iz]
where 74({e™})=0. 0

LEMMA 2.2. The measure 74 is absolutely continuous and equals ay.

Proof. Let e” €T and suppose e’ #e'™ . We repeat the argument of Lemma
2.1: For z=(1—¢)e",

1_ 2
T—% >—715(I(e",¢)).

Since e’ # p(e”), letting e — 0 shows that
. o iy
— 7o(I(e”,€)) < oo

lim
e—0 €
Since 74({e™*}) =0 it follows that 7, << d#. O

We are ready to prove the main result of this section. Let I'=¢(7) and let
wel'.If weT and ¢({) =w, let

1
WV oIl= 125

Let T'y be the subset of I'N T on which |¢/(w)|>0; that is, |¢'({)]|<eo.

THEOREM 2.1. Suppose s is a singular inner function generated by the
measure p. Then se¢ has a singular factor if and only if u(I'g) >0.
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Proof. We have

~ 1@
logls(o(en|= |, 7 5 e (®)
={ 4+ .
rnr ™('NT)
By Lemmas 2.1 and 2.2,
_ I ol | 1-|z]?
log|s ‘”‘Z’"Sro T Ve Ndu@+{ | et dos(m) du(6).

Call the first integral #(z) and the second v(z). We claim that #(z) is the Poisson
integral of a singular measure and that v(z) is the Poisson integral of an L' func-
tion. To see the second statement, observe that '

1—|z|?
v(z)= ST ngl_—zl'z dv(0),

where » is the measure defined by

v(E)=| | doyn) du(o).

Lemmas 2.1 and 2.2 imply that »<<d#, and this proves the second statement.
For the first statement, changing variables yields

1—|z|? 1
¢ =1(Tp) Ielx_zlz 'Sol(eix)|

u(z)=| di(x),

where f is the measure defined by

i(E) =pn(p(E)).

Since u lives on a set of Lebesgue measure 0 and since the inverse image under
¢ of such a set also has measure 0 [15, Theorem VIII.30, p. 322], i lives on a set
of measure 0 and is singular. Since

1 .
e dp=| |W(e)] du(6),

SE o @] =)o |¥'(e”)] du()
u(z) is non-trivial if and only if the right hand term is positive for some E. This
proves the theorem. O

If Q€ D is a domain as above then we may define H”(Q) to be all functions g
analytic on @ such that g-p € HP. Equivalently, g € H?() if and only if |g|” has
a harmonic majorant on 2. See [6, Chapter 10].

It is clear that if g€ H? then g€ HP(Q). If g=BsF is the canonical factoriza-
tion of g in H” one can ask about the canonical factorization of g in H?({2).

THEOREM 2.2. Let g=BsF € HP. Then g has a singular factor in H?(Q) if and
only if s has a singular factor in {2.
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Proof. 1t is well known that F is outer if and only if FH * is dense in H”. But if
FH is dense in H? it follows that FH () is dense in H”(Q). Thus F is outer in
H?(Q).

It is also well known that a univalent map has no singular factor. See [6,
Theorem 3.17, p. 51]. Since B(¢) is the product of univalent maps, B can have
no singular factor in H?(). This proves the theorem. O

Thus Theorem 2.1 provides a method of determining whether a function
g € H? has a singular factor when restricted to Q. We conclude this section with
the following corollary of Theorem 2.2.

COROLLARY 2.1. Suppose 2 is a simply connected subset of D bounded by
the Jordan curve I'. Let s be the singular inner function generated by the measure
p. Then if u(TNT)=0, s is outer in H*(Q).

3. A necessary condition for cyclicity. In this section we generalize Theorem 2
of Shapiro [13].

Let C denote the collection of all BCH sets. To each K in C we will associate a
region Qg and a function Fx. Without loss of generality we assume that the arc
length of each interval of T\ K has length less than . This can be accomplished
by adding at most two points to K.

Let G be the outer function (depending on K') defined by

_ I {+z
G(z)—exp(—ST log o (0) (=2 |d§‘|>.

G is well-defined because log(1/px) €L'. It is easy to see that |G| is continuous
on D and |G|=0on K.

Let T\K=U, (a,, b,), where the (a,,b,) are the open arcs comprising the
components of T\K. Define v: [0,27]— D by

(1_ (e —a,) (e’ —b,)

an _bn
(0= e, eeK.

2
)e'e, e’ € (a,, by)

The following proposition may be verified by a routine argument; we omit the
proof.

PROPOSITION. The curvey is C_1 te Joranye, 0<e<l. In fact, for an absolute
constant ¢, |y'(e”)—vy'(e’)|<cle®—e|.

Since v is a Jordan curve it bounds a simply connected subregion of D. Call
this subregion Qg and let I'y denote its boundary.

LEMMA 3.1. There are constants A and c such that
3.1) |G (2)|<A(1—|z))*
Sforz€T'xND.

Proof. For zeI'rND,
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a 1 1-]z)?
6@ o=, o8 5 f=p 1)

~ 1 1-]z|?
“X"( J, e o c—2f? 'd“)’

where J, is the arc on T with center z/|z| and length 1—|z|. By the definition of I'x,
for {€J;, px () <c,A/(1—|z]) for an absolute constant ¢, independent of z. Since

1-
S Ig. I ||2|df|>6>0

where & does not depend on z,

1
G(2)l< exp(—5 tog m>

=& (1—[2])*?,
where 8, =e ~°1°8(1/©2)  This proves the lemma. O

Now let f€A2. It is well known that for ¢>0 independent of z,

(3.2) l/@]<e— | I/ 1 42

for all z€ D. By taking a high enough power of the G of Lemma 3.1 we may
assume that Fx =G satisfies

(3.3) |F(z)|<c(1—]z])
for z€T'k.
LEMMA 3.2. Let f €A% Then Fx f€H®(Qx), and for a c independent of f
1Fx S| eo, 0 < €[S | a2-
Proof. Let p be a polynomial. Then

sup |p(2) Fi(2)|<c|pll 4
ZEFK

by inequalities (3.3) and (3.2). The maximum principle implies that
|Fx p|lw,0, = sup |p(z) F(z)|<c||p] 42

ZEK

Since polynomials are dense in A2, and since convergence in A% implies con-
vergence on compact subsets of D, the proof may be completed by standard
arguments. O

We now state the promised necessary condition for cyclicity.

DEFINITION. Let f € A% Then f is called C-outer if Fx f is an outer function
in H?%(Q) for all KE€EC.

THEOREM 3.1. Let f be cyclic for A®. Then f is C-outer.
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Proof. Since [ f]1=A2, we can find polynomials p, such that
lim ||p,f—1| 42=0.

n-—>c

By Lemma 3.2,

|Fx Pn f —Fxll 205 S lln f =1 42,

and thus the closure in H?(Qx) of Fx fH *(Qk) contains the outer function F.
By Beurling’s theorem, Fi f is also outer. O

Observe now that by combining Theorems 3.1 and 2.1 we can obtain the result
of Shapiro.

COROLLARY 3.1 (H. S. Shapiro). If o is a singular measure and 6(K) >0 fora
K€, then s, is not cyclic.

Proof. It follows from Kellogg’s theorem [15, Theorem IX.7, p. 361] that if
¢: D — Qg is the conformal map from D onto Qx then |¢’| extends to a contin-
uous function on D. By Theorem 2.1, s, has a singular factor in H°(Qx). By
Theorem 3.1, s, cannot be cyclic for A2

Observe next that the Korenblum-Roberts theorem implies that the condition
C-outer is also sufficient that f be cyclic, in case f is a singular inner function.

COROLLARY 3.2. Let s=s, be a singular inner function. Then s is cyclic if and
only if s is C-outer.

Proof. We need only show the sufficiency. If s is C-outer then s is outer in
H?(Q) for all K € C. Applying Kellogg’s theorem again and Theorem 2.1 we see
that ¢(K) =0 for all K € @. Therefore s=s, is cyclic. a

REMARK. The domains Qx, K € C were used by Korenblum in [8]. Functions
similar to the Fx’s were also used by Korenblum in [8] and [9] and Shapiro [13].

4. Cyclic functions in the Nevanlinna class. We show in this section that with
an additional hypothesis on f, the converse of Theorem 3.1 is true.

We will need to identify the dual of 4% in a particular way. It is easy to verify
that A>={f: f=X a,z", where Ly—¢|a,| /(n+1)<00} Thus (A%)* may be
identified with the space D;={g:g=X b,z", where L |b,|*(n+1)<oo]}.
fE€A? and ge€D, then {f,g)=X a,b, accounts for all bounded linear func-
tionals on A%. Also observe that

1 —
Sey=Lab,=lim — | fr0)gCrilds)

r—1 2
In particular, if f€ H?,

Sgy=5- | SEDIdsl,

since g€ D, S H?.
We are ready for our main result.
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THEOREM 4.1. Let f be non-vanishing in A%, and suppose [ SINN contains a
non-vanishing function. Then f is cyclic if and only if f is C-outer.

Proof. We must show that if [ f]# A2 then Fx f has a singular factor in H *(Qx)
for some K € C. Since [f]1#A%, [f11#{0), where [f1*={g:g€Dy, {h,g)=0,
h€[f]}. Let X=[f1]". Since [f] is invariant under the shift S, X is *-invariant,
that is, invariant under the operator S*, where

sro=8(2)=8(0)

Let X be the closure of X in H2. Then X is also *-invariant. By Beurling’s
theorem, either X=H? or X= (sH?)*, where s is an inner function and (sH?)*
is the orthogonal complement in H? of sH?. By hypothesis, there exists a non-
vanishing g such that g€ [ f]1N M. Since g =p/q where p and g can be assumed to
be non-vanishing bounded functions, and since gg also belongs to [ f], we see
that [ f] contains p, a non-vanishing bounded function.

Thus, for ¢ € X,

0=<p,0>=|_p(5) VO ds].

If X=H? it would follow that p =0, contrary to hypothesis. Thus X H?, and
X=(sH?*)* for a non-trivial inner function s.

We claim that s must be a singular inner function. If not, then s(a)=0 for
some a€D and (1—az)~'e€ (sH?*)*. Since there are functions ¢, € X converging
in H*to (1—az)~!,

0=<p, ¢s)=| PPy o
and

0= lim | p@, do=27p(a),
n—c
contradicting the fact that p is non-vanishing.

Thus X = (sH?)*, where s is a singular inner function.

By the bi-polar theorem, [12, Theorem 4.7, p. 91], [f]1="X, where “X=
(h:h€A? and (h,y)=0, Yy €X}. Since s€'X we see that s€[f] and that
[s1€(f] = A2, By the Korenblum-Roberts theorem, it follows that s=s, where
o(K)>0 for some K€C.

Factor s=s,5, where s, =s,, and s, =s,, where g, lives on X and ¢, (K)=0. We
claim that s, Fx f € [s].

To establish this, we must show that (s, Fx f, ¢ )=0 for all o€ [s]*. Now for
@€ [s]* S (sH?)*, there is an h€ H? such that

o(e’®)=s(e®)h(e®)e " a.e. [dO].

This is because ¢ is in L2© H?. See [S, p. 357] for details.
If p is a polynomial,
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1 -
(Fgp,¢)= o sTstKPsOdg

1 h
= —2‘7—; ST FKp;l‘ dz.
Since
1—|z]?
—loglsl(z)]=SK |§—|z||2 do({)

and since for x€ D\Q,
|§‘—Z|>C\/(1'—IZ|)s g‘eK’

for ¢ independent of z or { by construction of I, it follows that —log|si (z)] <
c||ay|| for z€ D\Qg. We may therefore use Cauchy’s theorem and obtain

ISFKp

hdz.
27i Jrg 8 N

(:Fxkp,p)=
Since ||Fk p|w,a, <¢||p| 42 and since s;' is bounded on I'k, a standard argument
yields

I [ Fxfh
b

(2Fx foo)=——
2mi S

for all o€ [s]*. Since X is H? dense in [s]* S (sH?)*, we may find a sequence
{¢n)} SX such that ¢, — ¢ in H2. Thus

Fthn

K S

0= (s, Fx f, <p,,>=§F dz,

where ¢, =sh,z. As ¢,—> ¢, h,—h in H?. Since Fx f/s, is bounded on I'yx we
conclude that

0= lim
n—>co
Thus s, Fx f€1([s]*) =[s], as claimed.
We now complete the proof. Since s, Fx f € [s], there are polynomials p, for
which ||p,s—5,Fk f|| 12— 0 as n — . Using Lemma 3.2,

F, F
S thn dz:S th dz:(SZFKf"p>~
T 8 P 8§

”le’an_SZFI%f”HZ(QK) —0

as n >, By Theorem 2.1, s has a singular factor in H?*(Qx) and thereforé SO
does s, FZ f. By Theorem 2.2 and Corollary 2.1, s, Fx is outer in H%(Q). Thus
Fx f has a singular factor, and the proof is complete. O

COROLLARY 4.1. If [f1NN contains a non-vanishing function and f ~'€ A%,
then f is cyclic.

Proof. Let K€C. Then (Fxf)(Fxf~")=F#. Since the right hand side is
outer, each term on the left must be outer. Thus f is C-outer and cyclic by
Theorem 4.1. O
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The next two corollaries follow immediately from Theorem 4.1 and Corol-
lary 4.1.

COROLLARY 4.2. If f is non-vanishing and in NN A2, then f is cyclic if and
only if f is C-outer.

COROLLARY 4.3. If fand f~! are in NN A? then both are cyclic.

We can also give another characterization for a function fENNA? to be
cyclic.

LEMMA 4.1. Suppose f€E NNA2. Let f=Bs,F/s, be the canonical factoriza-
tion of f, where B is a Blaschke product, F is outer, and s, and s, are singular.
Then s,=s, where o(K)=0 for all K€ C, that is, s, is C-outer.

Proof. We know s,=s, and s,=s, where p and ¢ live on disjoint sets; this
follows from the Hahn decomposition of » where

51(z) 1—|z|?
5,(2) _ST |1—{z|? dv(§)-

Suppose o(K) >0 for some K € C. Then, since fEﬂAZ,

log

Fy f= —?;—I—F-FKEH”(QK).

2
Let ¢ be a Riemann map of D onto Q. Since B(¢), F(¢), and Fg(¢) are outer
functions by Theorem 2.2, and since o(K) >0 implies that s, (¢) has a singular
factor s3, Fx f€H™(Qy) implies that s; divides s;(¢). But by the proof of
Theorem 2.1, s3=s;, where 6(E)=o0(¢(E)), and the singular part of s;(¢) is
generated by the measure i, where i(E)=u(e(E)). Since s3 divides s,(¢),
f— 6 20. This contradicts the fact that g4 and § live on disjoint sets. a

THEOREM 4.2. Let f be a non-vanishing function in NNA2 If f has the
canonical factorization f= (s1/s,) F, then f is cyclic if and only if s, is cyclic.

Proof. By Lemma 4.1 and Theorem 4.1, if s, is cyclic then f is C-outer. Since
SfEN, f is cyclic. Conversely, if f is cyclic then Theorem 4.1 implies that f is
C-outer and Lemma 4.1 implies that s, is C-outer; that is, s; is cyclic.

REMARK. Observe that Corollary 4.3 may be deduced directly from Lemma
4.1 and Theorem 4.2.

5. Generalizations to weighted Bergman spaces. Let ¢ > 0. Define 4% 9 to be
all functions f analytic on D for which

27 1 .
”f“iz.qESO So |f(re’0)|2(1—r)qrdrd0<oo.

Then A2=A%0cA4>9c A% if g<q’'.
The theorems of Korenblum [10], Shapiro [13], and Roberts [14] say that all
the A% 7 spaces have the same cyclic inner functions.

THEOREM I1. The function s, is cyclic for A*>9 if and only if ¢(K)=0 for all
BCH-sets K.
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It is a simple matter to extend our results to the spaces 4*>9. We sketch the
details.

LEMMA 5.1. Let f€A>9. Then there is a constant A, depending only on q
such that

/()| <A, (1=|z) ™| f ] 4.4
for all zeD.

Proof. This fact is well known and we omit the proof.

Let K be a BCH-set and let G be the function defined in §3 associated with K.

LEMMA 5.2. There is an N depending only on q such that if Fx ,=G" then
|Fx ,(2)|< (1—|z|)4 for z€Tg, where T'x is as in §3.

LEMMA 5.3. Let f€A>9. Then Fy ,f€H®(Qx) where Q is as in §3. Fur-
thermore,

1F,q flleo, 2 < €l N 42.0-

DEFINITION. Let f€A%4. Then f is called C-outer if Fx , is outer in H *(Qx)
for all K€ C.

Putting the three lemmas together yields the following theorem.

THEOREM 5.1. Let f be cyclic in A*»9. Then fis C-outer.

To obtain the partial converse, we note that since A>92A42%, (A4>9)*<(A%)*.
Using the duality described in §4, we see that (A%>9)* S H? and that the proof of
Theorem 4.1 (with Fy , used in place of F) applies, yielding the next theorem.

THEOREM 5.2. Let f be non-vanishing in A*»? and suppose that [ f1NN con-
tains a non-vanishing function. Then f is cyclic if and only if f is C-outer.

We get the next corollary, generalizing Corollary 4.1.

COROLLARY 5.1. Let f € A9 and suppose that f ~' € A>9 for some q and q'.
Then if [f1NN contains a non-vanishing function, fis cyclic.

Proof. Let K€ €. Then (Fx o f)(Fk o f ") =Fg 4Fk, o Since the right hand
side is outer, both factors on the left must be outer. Thus f is C-outer and hence
cyclic. O

Corollary 5.1 applies immediately to functions f€ A>9NN as does Theorem
5.2.

COROLLARY 5.2. Let f be non-vanishing and in A»9N\N. Then f is cyclic if
and only if f is C-outer.

COROLLARY 5.3. Let f€A*INN and suppose that f '€ A>? for some q
and q’. Then f is cyclic.

We can also give a more precise description of the factorization of f€
A%»9INN.
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THEOREM 5.3. Let f€A*»INN and suppose f=B(s,/s,)F is the canonical
Sfactorization of f. Then (i) s, is cyclic, and (ii) fis cyclic if and only if B=1 and
sy is cyclic.

Proof. This theorem may be proved by the arguments in Lemma 4.1 and
Theorem 4.2, provided that Fx , is used in place of Fy. a

CONCLUDING REMARKS. We have raised two natural questions. (1) If
SEA>P and is non-vanishing, must [f] ,,,NN contain a non-vanishing func-
tion? (2) If f€ A%>? and is C-outer, is f cyclic?

An affirmative answer to (1) would imply an affirmative answer to (2). An
affirmative answer to (2) would show that if f€ A%? and f ~!€.A4%7 then both are
cyclic.

ADDED IN PROOF. 1. It has been brought to our attention that Corollary 4.3
and Lemma 4.1 can be proved using the theory of pre-measures as developed by
B. 1. Korenblum in {8] and [9].

2. In a paper which will appear in Proc. Amer. Math. Soc. by Paul Bourdon,
“Cyclic Nevanlinna Class Functions in Bergman Spaces’’, another proof of
Corollary 4.3 is given.
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