ASYMPTOTIC ESTIMATES FOR THE PERIODS
OF PERIODIC SOLUTIONS
OF A DIFFERENTIAL-DELAY EQUATION

Steven A. Chapin and Roger D. Nussbaum

Introduction. A periodic solution x(¢) of

0.1) x'(t)=—af(x(t—1))

will be called a “‘slowly oscillating periodic solution (of (0.1))’” if there exist
numbers g>1 and g§>¢q +1 such that x(#)>0 for 0<t<gq, x(¢) <0 for g<i<g,
and x(¢f+q) =x(¢) for all . The word “‘slowly’’ refers to the fact that the separa-
tion of zeros of x(¢) is greater than the time lag, which is 1.

If f(x) is odd (the case considered in this paper), it is useful to consider a sub-
class of the slowly oscillating periodic solutions of (0.1). A slowly oscillating
periodic solution of (0.1) is called an S-sol/ution (in the notation of D. Saupe
[7, 8]) if §=2q and x(t+q)=—x(¢) for all ¢. Actually, it will be useful to be
more pedantic and call an S-solution of (0.1) a pair («,x) such that x(¢) is a
periodic solution of x’(¢) = —a. f(x(t—1)), x(t) is positive on an interval (0, g)
where ¢>1, and x(f+q)=—x(t) for all ¢. This paper will treat properties of
S-solutions of (0.1) and in particular properties of the maps («,x) 2>g=¢q(«, Xx)
for « large and («, x) an S-solution.

The problem of the existence and qualitative properties of slowly oscillating
periodic solutions of (0.1) has been studied by several authors, and there is ample
evidence by now that the qualitative properties of periodic solutions of (0.1) may
depend subtly on the function f. Here we shall consider odd functions f(x)
which are similar to f,(x), where

Sy =x(1+|x]"tHN

Equation (0.1) with such an f was suggested by J. Yorke (in a private communi-
cation to the second author) as a model for somewhat more complicated-looking
equations like

0.2) x'(t)=—Ax(t) +Bf(x(t=1)), A,B>0,

which had been proposed by Mackey and Glass [2, 3] in connection with physio-
logical control theory.

D. Saupe [7, 8] has carried out a careful numerical study of equation (0.1)
for f(x)=/f,(x). Saupe’s results suggest that (0.1) displays very complex dynam-
ical behaviour, but little has been proved. It has, however, been proved that
if r>2 and « is sufficiently large, then equation (0.1) has at least three S-solu-
tions (Saupe’s numerical studies actually suggest the existence of at least seven
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S-solutions for large «). In particular, if f(x) is sufficiently like £, (x) and r>2,
Nussbaum [5, 6] has proved that, for all « sufficiently large, equation (0.1) has
an S-solution (e«,Xx,) such that x,(¢) is positive on an interval (0,q,),
X (t+qy)=—x,(t) for all ¢, and lim, - » g, =<. In general we shall use the
notation 2g(«, x) to denote the minimal period of an S-solution («, x) of (0.1),
SO go=q(a, Xg).

D. Saupe has observed [7, 8] (see Proposition 1.2 below) that if f is odd and
(e, x) is an S-solution, then one can obtain by a simple transformation another
S-solution (&, X). If this trick is applied to the family {(«,x,)] of S-solutions
described above, one obtains a new family of S-solutions {(&, X,)}, and we shall
see that

lim g(&, %,)=1.

The purpose of this paper is to give sharp asymptotic estimates on the minimal
periods of the periodic solutions x,(¢) and X, (¢). In fact we shall prove that if
r>2 and f(x) is sufficiently like f, (x) then there are positive constants ¢; and ¢,
(independent of «) such that, for all large «,

(0.3) cra’ T <g(a, x.) Sy’

Furthermore, with the aid of Saupe’s transformation, we shall prove that there
exists 8p>0 such that, for each 8 >8,, equation (0.1) has an S-solution (8, z3)
with

(04) I+C3BT<CI(B,Z6)<I+C46T,
where c¢; and ¢, are constants independent of 8 and 7=—1+(r—1)"" (so
—1<7<0).

Our direct motivation for proving such results comes from a theorem which
plays a central role in recent work by Mallet-Paret and Nussbaum [4]. Mallet-
Paret and Nussbaum study equations of the form

(0.5) x'(8) = —alyx(£) +f(x(t=1)).

Assume that f: R—>R is C! on a neighborhood of zero and continuous and
bounded on R, and in addition satisfies the properties that xf(x) >0 for all x and
that f'(0) >~ >0 (where v is as in (0.5)). It is proved in [4] that if v, is the unique

solution in [#w/2, 7] of
Y
COS o= — ,
’ (f’(O) >

then (0.5) has a slowly oscillating periodic solution (which can be taken to be an
S-solution if f is odd) for each a> (vy/~/(f'(0))2—~2). Furthermore, for y and
S fixed, there exists a positive constant ¢s; (independent of o >0) such that if
X, (t) is any slowly oscillating periodic solution of (0.3) of period p,, then

(0.6) Pou—2<csa .

{Thus even though equations (0.1) and (0.5) both have (for f sufficiently like
fr and r>2) S-solutions whose minimal periods approach 2 as o approaches oo,
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we see from equations (0.4) and (0.6) that the rate of convergence is different for
v>0 than for y=0.}

1. Existence of periodic solutions. Recall that an ‘‘S-solution’’ of equation
(0.1) is a pair («,x) such that x(¢) is a periodic solution of (0.1) for which there
exists g>1 such that x(¢)>0 for 0<t<q and x(t+q)=—x(¢) for all ¢. It is
proved in [6] that for functions like £, (x) =x(1+|x|"*")~!, r>2, and for each «
sufficiently large, equation (0.1) has an S-solution of minimal period 2¢q,, where
g, >0 as o —> 0,

We list here the assumptions on f that will be used in the sequel.

Hl. f:R—-Risan odd (f(—x)=—f(x) for all x), continuous map. There
exists a number x, >0 such that f|[0,x,] is nondecreasing and f|[x,, ) is
nonincreasing. There exist positive constants a, d, r and ¢ and a constant x; such
that, for x = x,,

(1.1) (a—dx ) x7"<f(x)<(a+dx )x".

By replacing f(x) by (1/a) f(x) and suitably modifying « in equation (0.1), we
can assume in the following work (if it is convenient) that a=1 in HI.
The following result follows from Theorem 1.1 of [6].

THEOREM 1.1 [6]. Assume that f satisfies H1 and that r>2 and o >r/(r—1)
(r and o as in H1). Then there exists ay>0 such that
(i) equation (0.1) has a periodic solution x,(t) for a Z «y,
(i) x,(t)>0 on an interval (0, q,),
(iii) x,(t+qy)=—x,(t) forall t, and
(iv) lim, - o g, =c°.

REMARK 1.1. It is easy to check that if 3>0 and r>2, the function
J(x)= (sgn(x)) x| (1+]x|*7)~!

satisfies H1 and gives a class of examples for Theorem 1.1.
Assume that f satisfies the hypotheses of Theorem 1.1 and select positive con-
stants a; and a, such that

(1.2) ax "< f(x)y<a,x™" for x=x,,

where x, and r are as in H1. It is proved in Section 1 of [6] that for « sufficiently
large equation (0.1) possesses an S-solution («, Xx,) such that

(1.3) X, (2)zkat, e=(r+1)7,
where
(1.4 k=2aj;.

It is then proved that such an S-solution has the property that lim, -« g, =
(where 2¢q, is the minimal period of x,). A variety of asymptotic estimates on
X, () are also obtained, but all of these depend only on knowing that («, x,) is
an S-solution satisfying (1.3).

In order to make use of the asymptotic estimates obtained in [6], we must
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prove that if x,(¢), o >«q, are S-solutions as in Theorem 1.1, then equation
(1.3) is automatically satisfied for « large enough. This technical point is handled
by the following proposition.

PROPOSITION 1.1. Assume that f satisfies H1 and let r be as in H1 and e=
(r+1)~L If cis a positive constant, there exists Q=Q(c) such that if (o, x) is an
S-solution of

(1.5) x'(t)y=—of(x(t—1))
for some a>0 and
(1.6) x(2) <ca’,
then

q<Q

where 2q is the minimal period of x(t).

Proof. Define Q(c)=5+a; 'c’*! (a; as in equation (1.2)); more precise esti-
mates of Q can be given. We assume that («,x) is an S-solution of (1.5) and
satisfies (1.6), but that g> Q, and we obtain a contradiction. Notice that (1.5)
implies that x is increasing on [0, 1] and decreasing on [1, g+ 1], so that (defin-

ing ||x||=sup,|x(2)])
|x[|=x(1)=|x(qg+1)|.

Case 1. Assume that x(2) <x. (x, as in H1). Because x(¢) is decreasing on
[1,g+1] and f(x) is increasing on [0, x,], equation (1.5) implies that x(¢) is
concave up (x’(¢) is increasing) for 3<f<qg+1. It follows that for 3<¢<g+1
the graph of x(¢) lies above the graph of the straight line with slope x’(gq) passing
through the point (g, 0). Concavity implies that

, x(3)
|x (q)|<—~—q_3,
so we obtain that
_ x(3) x|
(1.7 xa+ni=lxl< (325 )<(,55 )

We obtain a contradiction from (1.7), because we are assuming that g >4.

Case 2. Assume that x(2)>x,. Let 722 be the first time #>2 such that
x(t)=x.. The same argument as in Case 1 shows that x(f) is concave up on
[7+1, g+1] and that (assuming g>7+1)

(1.8) |x(q+1)|=i|x||<( X )<( Il )
q—7—1 g—71—1

We conclude from (1.8) that
(1.9 g<t+2.
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Because x(¢) is decreasing for 1<¢<qg+1 and f(x) is decreasing for x 2x,, we
obtain from (1.5) that

(1.10) X' ()|Zzaf(x(2)) Za(ca) "aj=a;c""a"

for 3<t<7+1. If 723, equation (1.10) implies

(1.11) ca‘2x(3)—x(r)2(ajc "a’)(r—3)

or

(1.12) r<c a4 3.

Of course equation (1.12) follows automatically if 2 <7< 3. Equations (1.9) and
(1.12) contradict the assumption that g> Q. O

Proposition 1.1 allows us to use all the asymptotic estimates on x, () obtained
in Section 1 of [6]. We also obtain as a bonus a slight sharpening of the main
theorem of Section 2 of [6].

COROLLARY 1.1. Assume that f satisfies H1 and that 0<r<2 and o>
max(r—1,0) (r and o as in H1). Then the minimal period 2q of any S-solution
of equation (1.5) is bounded above by a constant independent of o> 0.

Proof. Is is proved in Lemma 2.3 of [6] that there exist az>0 and ¢>0 such
that if («,x) is an S-solution of equation (1.5) for some « 2 «y, then

(1.13) x(2)<caf, e=(r+1)"L

Proposition 1.1 then implies that there exists Q; > 0 such that the minimal period
2q of any S-solution of equation (1.5) for some o 2« satisfies

(1.14) q<Q.

On the other hand, if x(¢) is an S-solution of (1.5) for some « with 0 < a < «y,
we have

0
(1.15) x(2) <||x||=x(1)=-ag_1f(x(s))dssaf(x*).
Equation (1.15) implies that
(1.16) x(2) <dat,
where
(1.17) d=f(x.)o ™"

Proposition 1.1 then implies that there exists Q, > 0 such that the minimal period
2q of any S-solution («, x) with 0 <« < oy satisfies

(1.18) q< Q.
Finally, we obtain the desired conclusion from (1.14) and (1.18). O

REMARK 1.2. In Theorem 2.1 of [6] it is also assumed that there exist positive
constants ¢; and ¢, such that
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(1.19) cx<f(x)<cx for 0<x<x,.

Corollary 1.1 shows (1.19) is unnecessary in discussing S-solutions.
One can check that Corollary 1.1 is applicable to

F(x)=(sgn(x)) | x| (1+]x|"*F)~!

if >0 and 0<r<2. However, equation (1.19) will only hold if 8=1, so
Theorem 2.1 of [6] only applies for 8=1.

If f satisfies H1 with »>2 and o> (r/(r —1)), then the existence of an S-solu-
tion of equation (0.1) of minimal period 24, (where g, — 1 from above as o — )
now follows directly from Theorem 1.1 and the following simple but ingenious
and useful observation.

PROPOSITION 1.2 (D. Saupe [7, 8]). Let f: R— R be a continuous, odd func-
tion. Assume that for some oa#0, x(t) is a periodic solution of x'(t)=
—af(x(t—1)) of minimal period2q>0and x(t+q) = —x(t) forallt. If q#1 (g
is necessarily unequal to 1if f is locally Lipschitzian) and if we define § and %(t)
by G=(q/(q—1)) and %(t) = —x(—(q—1)t), then X(t) is a periodic solution of
X(t)=—af(X(t—1)), where @=(q—1)a. Furthermore, 2|q| is the minimal
period of X(t) (X(t+q)=—Xx(t) for all t) and if x(t)>0 for t €(0,q), then
X(t)>0 forte(0,q).

Proof. Lemma 4.1 of [1] implies that equation (1.5) has no nonconstant
periodic solution of period 2 if f is locally Lipschitzian. Thus in our case g #1 if
/S is locally Lipschitzian; otherwise, assume g #1. The rest of the lemma follows
by direct calculation, using the fact that f is odd and x(f+q)= —x(¢) for all .

(]

In Theorem 1.1 we have not used the full strength of the results in Section 1 of
[6], and we shall need a slightly stronger version of Theorem 1.1 later in this
paper. To state this stronger version we first need a definition. Let £ and e be
constants as in equations (1.3) and (1.4) and define a set I" of S-solutions by

(1.20) I'={(a,x): (o, x) is an S-solution of equation (1.5) and x(2) =2 ka‘).
Recall that g(«, x) is the minimal period of an S-solution («, x).

THEOREM 1.3. Assume that f satisfies H1 and that r>2 and o> (r/(r—1)).
There exist constants cg>0 and ¢>0 such that (1) for each o 2 «q there exists
(a, x) €T (the a-slice of T is nonempty), and (2) if (a,x)€T and o 2 oy, then

(1.21) x(2)zca "V e=(r+1)7L

There is a function p(«a) such that lim, -, ; © p(a) =0 and such that if (8,x)€T
Jfor some B2 a, then

(1.22) q(B,x)zp(a).

Finally, there exists py>0 such that for every p 2 p, there exists (a,x) €T with
azag and
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(1.23) a(q(a,x)—1)=p.

Proof. The fact that the a-slice of I' is nonempty for all large « is proved in
Section 1 of [6]. Equation (1.21) is a consequence (for large «) of equation (1.68)
in [6]. Equation (1.22) follows from the fact that equation (1.4) in [6] is valid for
any (o, x) in T' (or one can derive a cruder estimate for p(«) by using Proposi-
tion 1.1 and equation (1.21)). |

It remains to prove equation (1.23). This follows by exactly the connectivity
argument used to prove Corollary 3.1 in [5]; the necessary estimates are given in
Section 1 of [6]. We leave the details to the reader. O

Although Theorem 1.3 will be adequate for our applications, it is a special case
of a more general and natural theorem which we shall state but (for reasons of
length) shall not prove. Recall that if («,x) is an S-solution, one can identify
(o, x) with («, ¢), where ¢=x|[0,1] (the map («,x)— (a, ¢) is 1-1). In this
way the set of S-solutions inherits a metric as a subset of (0, ) X C[0, 1]. For
each oy >0 define a subset I'y, of T by

(1.24) I‘aoz{(a,x)GI‘:aZao}.
Then we have the following.

THEOREM 1.4. Assume that f satisfies H1 and that r>2 and o> (r/(r —1)).
Then there exists ayg>0 such that T, has an unbounded connected component
GooCTly, and Gy, has nonempty intersection with {(cy,x) €T }.

Note that if J is any compact interval of reals, JC (0, ), one can easily prove
that there exists a constant M such that if x(¢) is any S-solution of equation (0.1)
for some w€J, then |x|| <M. Using this fact and the connectedness and un-
boundedness of G, (Theorem 1.4), one obtains that for each a >« there exists
an S-solution (a, x) € GoyCTy,.

The proof of Theorem 1.4 involves only a slight extension of the arguments of

Corollary 3.1 and Lemma 3.4 of [5]. Theorem 1.3 follows immediately from
Theorem 1.4 by connectivity arguments and the estimates of Section 1 of [6]. For
example, it is proved in [6] that
(1.25) lim [inf{qg(B8,x): (B,x)ET and 2« }]=co.
We have just remarked that the a-slice of Gy, is nonempty for each o 2 . If we
define a continuous function 4: G4, > R by h(o,x) =a[g(a,x) —1], then equa-
tion (1.25) implies that the supremum of 4 on G, is . If the infimum of 4 on
Gq, is By (the inf is achieved), connectivity of G, implies that the range of 4 is
[Bo, ), which is the conclusion of Theorem 1.3.

2. Asymptotic estimates of the periods of periodic solutions. We proceed now
to obtain asymptotic estimates for the minimal periods of the periodic solutions
described in the previous section. Our main result is the following.

THEOREM 2.1. Assume that f satisfies H1 and that r>2 and > (r/(r—1)) (r
and o as in H1). For each o sufficiently large let («, x,) be an S-solution of
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2.1 xX'(t)y=—af(x(t—1))
such that 2q,, the minimal period of x,(t), satisfies
(2.2) lim g, =o0.

(The existence of x,(t) is ensured by Theorem 1.1.) Then there exist ay>0 and
constants k, and k, such that for all a 2 «y,

(2.3) ko' "*<qu<hkya’ R
Furthermore, there exists oy >0 such that

(2.4) kia"2<q(a,x) <k,a" 2

Jor all (a,x) €T with a 2« (where T is as in equation (1.20)).

The proof of Theorem 2.1 is based on the following lemma, whose proof we
defer to an appendix.

LEMMA 2.1. Assume that f satisfies H1 and that r>2 and o> (r/(r—1)) (r
and o as in H1). Let T" be as in equation (1.20). Define a function m=m(a, X)
Jor (a,x)€ET by

m(a,x)=x(q—1), g=q(a,x).

Then there exist positive constants d, and d, (independent of o) such that for all
o sufficiently large and (a,x) €T,

(2.5) dia‘<m(o,x)<daf, e=(r+1)".

Furthermore, there exist positive constants c,, ¢, ¢; and ¢4 (independent of o)
such that for all pairs (a,x) €T’ with a sufficiently large,

(2.6) em" <x(1)<se;m’
and
2.7 c;m" T '<x(2)<eam’ T,

where m=m(«a, x) in equations (2.6) and (2.7).

Proof of Theorem 2.1. Proposition 1.1 implies that the solutions («, X, ) must
lie in T’ for « sufficiently large, so it suffices to prove equation (2.4). By using
equation (2.5) we can assume that m(«,x)2x, for a 2, and it then follows
from (2.1) that if (a,x) €I’ and a 2 «;, x(¢) is decreasing and concave down on
{2,q], where g=q(«a, x). If we assume that equations (2.6) and (2.7) hold for
azap and (a,x) €T, we see that (possibly increasing «;) x(2)2x, for any
(a,x) €T with a 2 «y, and we obtain from (2.7) and obvious estimates that for
(e, x)ET and a 2
(2.8) cam '—a(esm" Y Ta,<x(3) seym”T
where a, is as in equation (1.2). It follows that there exists ¢s>0 such that for
(a,x) €T and « sufficiently large (say, o 2 «;),
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(2.9) csm'<x(3)<eym™™Y, m=m(a,x).

By using the fact that f(u) is decreasing for u 2 x, we find that if « 2« and
(a,x)€ET, then y(t)=x(t—1) —x(¢) is increasing from 3<7<q, g=qg(a,Xx).
Concavity of x(¢) on [3, g] also implies that x(g—2) —x(g—1)<m=x(qg—1),
and we obtain from the two previous equations

2.10) x(t—1D)—x(t)<x(g—2)—x(g—1)<m<x(t), 3<t<q—L
It follows that if («,x) €I’ and « 2 «; we have

(2.11) x(t)<x(t—=1)<2x(t), 3<t<q(a,x)—1
Because f is decreasing on [x,, o) we obtain from (2.11) that

(2.12) af(2x(t)) < —x'(t)<af(x(t)), 3<i<qg(o,x)—1

If we use (1.2) we derive from (2.12) that

(2.13) QTapax(t) "< —x"(t)<aa(x(t))”", 3<t<qg-1

If we multiply both sides of (2.13) by (x(¢))" and integrate from r=3tot=qg—1,
we obtain

(2.14) Q2 "a)a(g—H < (r+D)7'x@B)Y T -m < a,alg—4].

If we use the estimates on 1 given by (2.5) and those on x(3) in (2.9), inequality
(2.14) gives estimates on g in terms of powers of « and yields inequality (2.4).
O

With the aid of Theorem 2.1 we can give precise asymptotic estimates for
periodic solutions of (2.5) whose minimal periods approach 2 as o — co.

THEOREM 2.2. Assume that f satisfies H1 and that r>2 and o> (r/(r—1)) (r
and o as in H1). Then there exists 3,>0 such that for 8 =20, the equation

(2.15) z2'(t)=—-Bf(z(t-1))
has an S-solution (8, zg) whose minimal period 2q (8, zg) satisfies
(2.16) 1+k387<q(B,25) <1+ky4B7,

where 1= —1+ (r—1)"! and k5 and k4 are positive constants independent of 8.

Proof. The constant «y in Theorem 1.3 can be chosen as large as desired, so
select o = «;, where «; is as in Theorem 2.1. According to Theorem 1.3 there
exists 3y such that for every 8 =, there exists (o, x) €T, such that

(2.17) a(q(o,x)—1)=0.
If we define z3(#) by
(2.18) 2g(t)=—x(—=(g—1)t), qg=q(a,x),

where (o, x) is as in (2.17), then Proposition 1.2 shows that (83, zg) is an S-solu-
tion of (2.15). Furthermore, we have

(2.19) (B, z5) = % g=q(a, x).
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Theorem 2.1 implies that there are positive constants b, and b, (independent of
«) such that if 8 is given by (2.17) and «y 2« is sufficiently large, then

(2.20) bIB(l/(r—l))sasbzﬁ(l/(r—l))_

Theorem 2.1 also implies that there are positive constants b3 and b, such that if
ap is sufficiently large,

(2.21) 1+bya"*2<q(B,z5) <1+bga™ "2
By combining (2.20) and (2.21) one obtains Theorem 2.2. ]

Appendix. Proof of Lemma 2.1. Inequality 2.5 is proved in Lemma 1.2 of
[6]. If («,x) €T, the lower bounds on x(1) and x(2) follow from Lemmas 1.3
and 1.4 of [6].

Section 2 of [6] is concerned with obtaining upper bounds on x(1) and x(2)
when (a, x) is an S-solution of (2.1). However, it is assumed in Section 2 of [6]
that 1<r<2 (r as in H1), so we must indicate how the arguments there can be
modified to handle the case r>2.

PROPOSITION 3.1. Assume that f satisfies H1 and that r>2 and 0 21 (r and ¢
as in H1). There exists a;>0 and a constant c independent of a such that if
(a,x)e€T (I as in equation (1.20)),

(.1) x(1)<( )S:f(x)dx+cm"1,

1
f(m)
where m=x(q—1) and q=q(o, Xx).

Proof. The upper estimate on x(1) in equation (2.6) follows from (3.1) and the
estimates on x(g —1), so it suffices to prove (3.1). For purposes of this proof we
shall adopt the notation of [6], although g here corresponds to z; in [6]. As
remarked before, we can assume that a=1 in equation (1.1).

An examination of the proof of Lemma 2.1 in [6] shows that even though it is
assumed there that 1 <r <2, the same arguments apply until equation (2.18) in
[6] for the case r>2. Thus we obtain from equations (2.4) and (2.18) in [6] that if
(a,x) €Tl and « is sufficiently large, then

1 Xs
J(m+mo) So J(u) du
m'(14+68)" SBO(O)

b, (m)
In equation (3.2), m=x(q—1) (where g=qg(«,x)) and 6>0 is the smallest posi-

tive number such that x(g —6) =x, (where x, is as in H1). Furthermore, y, and
69 (0) are defined by

1
x()=a| f(¥o(s)) ds<
(3.2
S)[1=y(w—x,)]7"""D dv.

X

Yo(s)=x(g—1+s), 0<s<l1
and

o (2m
90(0)=x*+7S f(u) du.

m+ém
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The function b, (m) is defined by b,(m)=1—dm ~°, where d is as in inequality
(1.1), and 7 is given by

_(r=1)m'(1+8)"""

 ab(m+6m)

Lemma 1.2 in [6] implies that there are positive constants ¢ and d, such that for
a large enough

(3.3) dm'<é<d,m™!,

and equation (2.13) in [6] implies that there exist positive constants d; and d4
such that for sufficiently large «

Equation (2.19) in [6] is still valid for r>2 and shows that there exists a constant
k with 0 <k <1 such that for all sufficiently large «

(3.5) v(06(0) —xx) <k.

(In proving (3.5) one needs equation (2.12) in [6]; that equation has a typo-
graphical error and should read, for r>1, c(r)=(r—1)"'[(1+8) 7" =2!""])

By using inequality (1.1) it is easy to see that there exists a constant ds such
that for all sufficiently large o and (o, x) €T,

X+

1 Xe 1
(3.6) (f(m-}—ma) )So J(u) du< f(m) So

To estimate the second term on the right of (3.2) we define n=—(r/(r—1))
and pu=04(0), and use the binomial theorem (as is justified by (3.5)). We obtain

fuw)du+dsm™™ ",

J; s =yw=xordo< | fw)do—{" vy do
3.7 '
+ X YJ(W.)(—l)jr f()(v—x.) dv.
ji=1 J X

Our previous estimates show that there is a constant dg such that
(3.8) y<dem™!,

so by replacing k& with a slightly larger constant we can assume that for suffi-
ciently large o

(3.9 yu<k<l

If we observe that (] }(—1)’ >0 and select a, as in equation (1.2), we thus obtain
from (3.7) that

¢.10 | fU—yw-x)rdv<|” fwydvia, T ny'(".)(—l)fg” v/ " dv.
Xe X« _I=1 J Xe

If we denote the summation on the right in (3.10) by X;2;, we have in the

obvious notation
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(3.11) Y= X + Y .
j=1 j—r<—1 j—r>-—1
By using (3.8) we see that there exists d; such that for all sufficiently large «
(3.12) Y, <dmL.
Jj—r<—1

On the other hand, term-by-term integration (using (3.9)) shows that

< i1y "><_L_M> j=r
j—r?‘;—1<j—rz>:—17( ) (J J—r+l #
(3.13) w7 ¥ kf(_l)f("_x_;)

Jj—r>-—1 J j—l'+1
sdsml—r,

where dy is a constant independent of . (Note that if 1<r<2, j—r> —1 for all
J 2 1and d; can be taken zero, but that for r>2 the term ¥;_, ¢ _, is always of the
order m 1)

By using (3.12) and (3.13) we see that there exists dy>0 such that for suffi-

ciently large o,
(3.14) S” f(v)[l——y(v—x*)]“dvsSwf(v)dv+d9m_'.
Xx X

Some easy estimates show that for sufficiently large «

m'(1+6)" < 1
bi(m) = f(m)

where dj is independent of «. Thus there exists a constant d,; such that

m'(1+8)" u 1
(3.16) W—Sx*f(v)[l—'y(v—x*)]"dvsf(m)

Combining (3.2), (3.6), and (3.16) completes the proof. O

(3.15) +diom” ™,

Swf(v) dv+dym™\.
Xx

If (o, x) €T, define Yo (s) =x(g—1+s) (where g=¢(a, x)) and define ¥, and
¥, by

(3.17) nn=al fonds,  ban=al rp(s) ds

for 0<r<l1, so
(3.18) xX(2) =y (1) —y¢(1).

To obtain an upper bound on x(2) we need a lower bound on , (1), and we shall
obtain this by modifying the proof of Lemma 2.2 in [6].

PROPOSITION 3.2. Assume that f satisfies H1 and that r>2 and o 2 1. There
exist a;>0 and ¢;>0 such that if (o, x) €T and o 2oy and Y, (t) is defined by
equation (3.17), then
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(3.19) Yo (1) = fw)ydv—cym™ .

o)

Proof. As before, assume that ¢=1 in inequality (1.1) and define b,(x)=
1+dx~° where d and o are as in (1.1). If (a,x) €T, define g=¢g(o,x) and
m=x(q—1), and define §; to be the smallest §; >0 such that x(g+6,) = —x.. Itis
proved in Lemma 1.2 of [6] that there exist constants ¢, and c3 such that for suf-
ficiently large o
(3.20) c;m ' <8 <eym™L
If one uses (3.20) and equation (2.28) of [6], one can easily show that for suffi-
ciently large «

(3.21) 0<x,—abd f(m)<cym™,

where ¢, is independent of «. Inequality (3.21) and inequality (2.27) of [6] imply
that there exists a constant ¢s such that for large enough «,

(3.22) aSZ] F(Yi(s)) ds > S: f(v) dv—csm"™ .

1
Sf(m)
If («,x) €T, define v, u, and 5 by

m—X,
1-6

Lemma 1.2 of [6] implies that there exists cg> 0 such that for all large enough «,

p=—

r
= o1 v, d =— .
, u=m-+ov, an Ui (r-1>

(3.23) mzuzm—cs and m=2—v2m—cg.

In Lemma 2.2 of [6] it is assumed that 1 <r <2, but an examination of the argu-
ment giving equation (2.46) of [6] shows that it is valid for »> 2. Thus there exist
positive constants ¢; and k such that for sufficiently large o«

1-8 “r X« +km
o 7 ronen drz LT pony aw
8y B Jx.
(3.24)
X +km .
w2 F ( ) T rom =) dw.
6 j 1 Xy
In equation (3.24), é is as in the proof of Proposition 3.1, 8=b,(c;m), and
(r=Dy[p""
3.25 =
N ! ab(c;m)

where b,(x)=1—dx " ° and d is as in equation (1.1). The constant k can also be
chosen so that for all sufficiently large «

(3.26) (X +km) <k <l,

where k; is independent of « (see equation (2.45) in [6]).
The same sort of argument used in Proposition 3.1 shows that there is a con-
stant cg such that
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-1

(3.27) <cgm

0 i . X +km .
)3 ( .>7’S Sw)(w—x,) dw

j=1\J *
Notice that it is at this point that the fact that r> 2 enters: just as in the proof of
Proposition 3.1 there will be integers j 21 such that j—r < —1.

If we use (3.23) and (3.27), we obtain from (3.24) that there exists a positive

constant cg such that for large «,
r

1-6 K ® r—I1
(3.28) O‘Sal f(\bl(t))dt?TB—L F(w) dw—com”™ ",

It is easy to show (using (3.23) and the fact that ¢ > 1) that there exists a constant
cio such that for large enough «o

(3.29) %—Bf(m)"—qom’_',

and we obtain from (3.28) and (3.29) that there exists a constant ¢; such that

1— )

630 o s dez o7 fon) dw—cym’
1 X

Inequalities (3.22) and (3.30) imply that for large enough «

330 pa>al " fen dez——— [ fon) dw— (es+enym’ T,

S ( )
which is the desired result. O

As an immediate corollary of Propositions 3.1 and 3.2, we obtain the upper
bound in equation (2.7).

COROLLARY 3.1. Assume that f satisfies H1 and that r>2 and 0 21 (r and o
as in H1). There exists c;>0 and a constant d> 0 such that if (c,x)€TI (I as in
equation (1.19)) and a = o, then

(3.32) x(2)<dm'™™,
where m=x(q—1) and g=q(«, Xx).

Proof. Propositions 3.1 and 3.2 show that there are constants ¢ and ¢, such
that for (e, x) €T and o 2 «;,

1
x(2)=y 1 (1) =y (1) < (f—(TS S(w)dw+cm’ ')

1 o _ _
—(m So Sw)ydw—cym’ ')=(c+c1)m’ L
which is the desired estimate. O
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