DERIVATIONS FROM SUBALGEBRAS OF SEPARABLE C*-ALGEBRAS

A. J. Lazar, S.-K. Tsui, and S. Wright

1. Introduction. Let A be a C^* -algebra, M(A) its multiplier algebra, B a C^* -subalgebra of A. Suppose $\delta: B \to A$ is a derivation of B into A, i.e., a linear map for which $\delta(ab) = a\delta(b) + \delta(a)b$, for all $a, b \in B$. In many important applications, one wishes to know if δ is inner in M(A), i.e., if there is an element m of M(A) for which $\delta(b) = mb - bm$, for all $b \in B$. Akemann and Johnson [1] have pointed out in particular the importance of investigating those pairs (B, A) as above for which every derivation of B into A is inner in this sense. A first step in such an investigation would consist of studying the C^* -algebras A for which all such pairs (B, A) have this property. We formalize this by saying that a C^* -algebra A is hereditarily cohomologically trivial (HCT for short) if for each C^* -subalgebra B of A and each derivation $\delta: B \to A$, there is a multiplier m of A for which $\delta(b) = mb - bm$, for all $b \in B$.

In [6], the authors determined the structure of the HCT C^* -algebras with continuous trace. The only other class of HCT algebras known to us are the finite von Neumann algebras, a result due to Erik Christensen [3, §5] (it is of course an outstanding open problem whether the algebra B(H) of all bounded linear operators on a Hilbert space H is HCT). The HCT algebras are evidently contained in the class of C^* -algebras for which every derivation $\delta: A \to A$ is inner in M(A), and Elliott [5] and Akemann and Pedersen [2] determined the structure of the separable C^* -algebras with this latter property. In the paper before the reader, we will determine the structure of the separable C^* -algebras which are HCT. It turns out that the separable HCT algebras form a rather restricted class; in fact the only simple, separable HCT algebras are the algebras of compact operators on a separable Hilbert space, usually referred to as the *elementary* C^* -algebras. More precisely, we will prove:

THEOREM 1.1. Let A be a separable C^* -algebra. Then A is HCT if and only if A has a direct sum decomposition of the form $A_1 \oplus A_2$, where A_1 is a commutative algebra and A_2 is the restricted direct sum of a (possibly finite) sequence of separable elementary C^* -algebras.

2. Proof of Theorem 1.1. We begin with a lemma which is no doubt well-known to the experts, but for which, in the interest of clarity and completeness, we provide a proof (it is stated without proof in the argument of Lemma 3.1 of [7]).

LEMMA 2.1. Let A be a C^* -algebra, p a closed, central projection in the enveloping von Neumann algebra A^{**} of A. Then pA^{**} is naturally isomorphic to the enveloping von Neumann algebra $(pA)^{**}$ of pA.

Received June 1, 1983.

Proof. Note that pA^{**} is $\sigma(A^{**}, A^{*})$ -closed in A^{**} , and is hence a W^{*} -algebra. Let $\pi: pA \to B(H)$ be a representation of pA. We must prove that π extends to a normal representation of pA^{**} into B(H).

Define a representation $\tilde{\pi}$ of A into B(H) by $\tilde{\pi}(a) = \pi(pa)$, $a \in A$. Let $\tilde{\pi}^{**}$ be the canonical extension of $\tilde{\pi}$ to a normal representation of A^{**} . We assert that $\tilde{\pi}^{**}(pa) = \pi(pa)$, for all $a \in A$. If this is so, then $\tilde{\pi}^{**}|_{pA^{**}}$ will be the extension of π that we seek.

Since p is closed, there is an increasing net $\{a_{\alpha}\}$ of positive elements of A with $a_{\alpha} > (1-p)$. Hence $pa_{\alpha}^{1/2} = 0$, for all α , and so for all $\alpha \in A$ and α ,

$$\tilde{\pi}(a^*a_{\alpha}a) = \tilde{\pi}(a^*a_{\alpha}^{1/2})\,\tilde{\pi}(a_{\alpha}^{1/2}a) = 0.$$

Hence,

$$\tilde{\pi}^{**}((1-p)a^*a) = \tilde{\pi}^{**}(a^*(1-p)a)$$

$$= \lim_{\alpha} \tilde{\pi}(a^*a_{\alpha}a) = 0, \text{ for all } a \in A.$$

It follows from the norm identity in a C^* -algebra that $\tilde{\pi}^{**}((1-p)a)=0$, $a \in A$, and our assertion hence obtains.

We recall for use in the next lemma that if n is a positive integer, a family $\{e(i,j): i, j=1,...,n\}$ of elements of a C^* -algebra is an $(n \times n)$ system of matrix units if

- (a) $e(i, j)e(k, l) = \delta_{jk}e(i, l)$; i, j, k, l = 1, ..., n, where δ_{jk} denotes the Kronecker delta;
- (b) $e(i,j)^* = e(j,i); i, j = 1,...,n.$

We also recall that every C^* -algebra A has a unique maximal, liminary, closed, two-sided ideal [4, Proposition 4.2.6], and that A is said to be *antiliminary* if its maximal liminary ideal is the zero ideal. The next lemma is the key ingredient in the proof of Theorem 1.1.

LEMMA 2.2. Let A be a separable, antiliminary C*-algebra. Then A is not HCT.

Proof. By Lemma 6.7.2 of [8], A contains a quasi-matrix system of rank $\{2, 2, 2, \ldots\}$, i.e., sequences $\{e_n\}_{n\geq 1}$ and $\{v_n\}_{n\geq 1}$ satisfying the following conditions:

- (1) $e_n \ge 0$, $||e_n|| = ||v_n|| = 1$, for all n;
- (2) $v_n^* v_n e_n = e_n$, for all n;
- $(3) v_n^2 = 0, for all n;$
- (4) $e_n e_{n+1} = e_{n+1}, e_n v_{n+1} = v_{n+1}, e_n v_{n+1}^* = v_{n+1}^*, \text{ for all } n;$
- $(5) e_m v_n = 0, \quad m \geqslant n;$
- $(6) v_m v_n = 0, \quad m > n;$
- $(7) v_m^* v_n = 0, \quad m \neq n.$

By Proposition 6.6.5 of [8], there is a nonzero projection q in A^{**} such that q commutes with $\{e_n\}_{n\geq 1} \cup \{v_n\}_{n\geq 1}$ and $\{qe_n\}_{n\geq 1} \cup \{qv_n\}_{n\geq 1}$ is a matrix system of rank $\{2,2,2,\ldots\}$, i.e., (1) through (7) hold for these elements, as well as

(8)
$$qe_n = (qv_n^*)(qv_n), \text{ for all } n;$$

(9)
$$qe_n = qe_{n+1} + (qv_{n+1})(qv_{n+1}^*), \text{ for all } n.$$

The matrix system

$$\{e_n q\}_{n \geqslant 1} \cup \{v_n q\}_{n \geqslant 1}$$

defines systems of matrix units $\{e_n(i,j): i,j=1,\ldots,2^n\}_{n\geq 1}$ in qAq such that if $A_n = \text{linear span of } \{e_n(i, j) : i, j = 1, \dots, 2^n\}, \text{ then } A_n \text{ is a } C^*\text{-subalgebra of } qAq$ isomorphic to the algebra of complex $2^n \times 2^n$ matrices, all A_n 's have the same unit, $A_n \subseteq A_{n+1}$, $n \ge 1$, and the embedding of A_n into A_{n+1} is given by

$$e_n(i,j) = e_{n+1}(i,j) + e_{n+1}(i+2^n,j+2^n); i,j=1,\ldots,2^n$$

(cf. the discussion following Definition 6.6.1 of [8]).

We need to determine the formula for $e_n(i, 1)$, $i = 1, ..., 2^n$, in terms of q, the e_k 's, and the v_k 's. We claim that for $n \ge 2$,

- (i) $e_n(1,1) = qe_n$;
- (ii) if $2 \le k \le 2^{n-1}$, there is an increasing set of indices $1 \le i_1 < i_2 < \cdots < i_p \le i_p < i_p$ n-1 such that $e_n(k,1) = qv_{i_1} \dots v_{i_n} e_n$;
- (iii) $e_n(1+2^{n-1},1)=qv_n;$
- (iv) if $2+2^{n-1} \le k \le 2^n$, there is a set of indices as in (ii) such that $e_n(k,1) =$
- (i) and (iii) follow from (2), (3), (6), (8), and (9). For each k, $2 \le k \le 2^{n-1}$, we have from the embedding of A_{n-1} into A_n that

$$e_n(k,1) = (e_n(k,1) + e_n(k+2^{n-1}, 1+2^{n-1}))e_n(1,1)$$

$$= e_{n-1}(k,1)e_n(1,1),$$

$$e_n(k+2^{n-1},1) = (e_n(k,1) + e_n(k+2^{n-1}, 1+2^{n-1}))e_n(1+2^{n-1},1)$$

$$= e_{n-1}(k,1)e_n(1+2^{n-1},1).$$

It follows that $e_2(1,1) = qe_2$, $e_2(2,1) = qv_1e_2$, $e_2(3,1) = qv_2$, and $e_2(4,1) = qv_1e_2$ qv_1v_2 , which is (ii) and (iv) for n=2. Assuming inductively that (ii) and (iv) hold for n-1, we compute from (i), (iii), (4) and the above embedding formulae that

$$e_n(k,1) = \begin{cases} qv_{i_1} \dots v_{i_p} e_{n-1} e_n = qv_{i_1} \dots v_{i_p} e_n, & 2 \leq k \leq 2^{n-2} \\ qv_{n-1} e_n, & k = 1 + 2^{n-2} \\ qv_{j_1} \dots v_{j_r} v_{n-1} e_n, & 2 + 2^{n-2} \leq k \leq 2^{n-1}, \end{cases}$$

$$e_{n}(k,1) = \begin{cases} qv_{i_{1}} \dots v_{i_{p}} e_{n-1} e_{n} = qv_{i_{1}} \dots v_{i_{p}} e_{n}, & 2 \leq k \leq 2^{n-2} \\ qv_{n-1} e_{n} & , & k=1+2^{n-2} \\ qv_{j_{1}} \dots v_{j_{r}} v_{n-1} e_{n} & , & 2+2^{n-2} \leq k \leq 2^{n-1}, \end{cases}$$

$$e_{n}(k+2^{n-1},1) = \begin{cases} qv_{i_{1}} \dots v_{i_{p}} e_{n-1} v_{n} = qv_{i_{1}} \dots v_{i_{p}} v_{n}, & 2 \leq k \leq 2^{n-2} \\ qv_{n-1} v_{n} & , & k=1+2^{n-2} \\ qv_{j_{1}} \dots v_{j_{r}} v_{n-1} v_{n} & , & k=1+2^{n-2} \\ qv_{j_{1}} \dots v_{j_{r}} v_{n-1} v_{n} & , & 2+2^{n-2} \leq k \leq 2^{n-1}, \end{cases}$$

for appropriately chosen indices $1 \le i_1 < \cdots < i_n \le n-2$ and $1 \le j_1 < \cdots < j_r \le n-2$ n-2. This is (ii) and (iv) for n.

We claim next that for $n \ge 1$,

- (v) $e_{n+2}(2^n, 1) = qv_1 \dots v_n e_{n+2},$ (vi) $e_{n+2}(2^{n+1}, 1) = qv_1 \dots v_{n+1} e_{n+2},$ (vii) $e_{n+2}(2^{n+2}, 1) = qv_1 \dots v_{n+1} v_{n+2}.$

This follows straightforwardly from the embedding of A_n into A_{n+1} , (4), and induction.

We can now compute $e_{n+2}(3\cdot 2^n, 2^n)$, $n \ge 2$. By the embedding of A_{n+1} into A_{n+2} , (4), (iii), and (v)-(vii),

$$e_{n+2}(3 \cdot 2^{n}, 1) = e_{n+2}(2^{n} + 2^{n+1}, 1)$$

$$= (e_{n+2}(2^{n}, 1) + e_{n+2}(2^{n} + 2^{n+1}, 1 + 2^{n+1})) e_{n+2}(1 + 2^{n+1}, 1)$$

$$= e_{n+1}(2^{n}, 1) e_{n+2}(1 + 2^{n+1}, 1)$$

$$= qv_{1} \dots v_{n} e_{n+1} v_{n+2}$$

$$= qv_{1} \dots v_{n} v_{n+2}$$

and so

(viii)
$$e_{n+2}(3 \cdot 2^n, 2^n) = e_{n+2}(3 \cdot 2^n, 1) e_{n+2}(1, 2^n) = e_{n+2}(3 \cdot 2^n, 1) e_{n+2}(2^n, 1)^*$$

= $qv_1 \dots v_n v_{n+2} e_{n+2} v_n^* \dots v_1^*$.

Now, for $n \ge 1$, set

$$t_n = \sum_{i=1}^n v_1 \dots v_i \, v_{i+2} \, e_{i+2} \, v_i^* \dots v_1^*.$$

Claim 1: $||t_n|| \le 1$, $n \ge 1$.

To verify this, set $a_i = v_1 \dots v_i v_{i+2} e_{i+2} v_i^* \dots v_1^*$, and notice first that by (2) and (4), $v_k^* v_k$ acts as a unit for v_m , $m \ge k+1$, so for $i \ge j+1$,

$$v_i^* \dots v_{j+1}^* v_j^* \dots v_1^* v_1 \dots v_j = v_i^* \dots v_{j+1}^*,$$

and it therefore follows that for $i \ge j+1$, there are elements $b_i, b_j \in A$ for which $a_i a_j^* = b_i v_{j+1}^* e_{j+2} b_j$, whence by (5), $a_i a_j^* = 0$. A similar computation shows that $a_i a_j^* = 0$ for i < j. Hence by (2) and (4),

$$t_n t_n^* = \sum_{i=1}^n v_1 \dots v_i v_{i+2} e_{i+2} v_i^* \dots v_1^* v_1 \dots v_i e_{i+2} v_{i+2}^* v_i^* \dots v_1^*$$

$$= \sum_{i=1}^n v_1 \dots v_i v_{i+2} e_{i+2}^2 v_{i+2}^* v_i^* \dots v_1^*.$$

If c_i denotes the *i*-th term of this sum, then $||c_i|| \le 1$ and $c_i \ge 0$. By (2) and (4) there are elements $d_i, d_j \in A$ such that $c_i c_j = d_i v_{i+2}^* v_{i+1} d_j$ for $j \ge i+1$, and so by (7), $c_i c_j = 0$. Thus for $n \ge 1$, $t_n t_n^*$ is a sum of pairwise orthogonal, self-adjoint elements each of norm not exceeding 1, and so $t_n t_n^*$, and hence t_n , also has norm not exceeding 1. This verifies Claim 1.

Let B= the C^* -subalgebra of A generated by $\{e_n\}_{n\geq 1} \cup \{v_n\}_{n\geq 1}$, and let C= the C^* -subalgebra of B generated by $\{e_n\}_{n\geq 1}$ and all elements of the form $v_{i_1} \ldots v_{i_p} e_n^2 v_{i_p}^* \ldots v_{i_1}^*$, where $1 \leq i_1 < i_2 < \cdots < i_p \leq n-1$, $n \geq 2$. By Claim 1, there is a $\sigma(A^{**}, A^*)$ -limit point t of $\{t_n\}$ in A^{**} .

Claim 2: $(adt)(C) \subseteq A$.

Here adt denotes the derivation of A^{**} given by $a \to ta - at$, $a \in A^{**}$. To verify this, fix $n \ge 1$ and let $k \ge n+1$. By (5), $a_k e_n = e_n a_k = 0$. Let $x = v_{i_1} \dots v_{i_p} e_n^2 v_{i_p}^* \dots v_{i_1}^*$ with $1 \le i_1 < i_2 < \dots < i_p \le n-1$. By (3), (4), and (7) either $a_k x = 0$ or there exist

elements $b_k, c_k \in A$ with $a_k x = b_k v_k^* \dots v_j^* e_n c_k$ for some $j \le n$, and so by (5), $a_k x = 0$ also in this instance. Similarly, $xa_k = 0$. Now all words in the generators of C begin and end with either an e_n or a product of v_n 's or v_n^* 's, and the preceding computation hence shows that $ad(a_k)$ vanishes on all words from generators of C which are formed from elements of $\{e_1, \dots, e_n\}, \{v_1, \dots, v_{n-1}\}$, and $\{v_1^*, \dots, v_{n-1}^*\}$ for $k \ge n+1$. If $\{t_{n(\alpha)}\}$ is a net from $\{t_n\}$ with $\sigma(A^{**}, A^*)$ -limit t, we hence conclude that $(adt_{n(\alpha)})(c) = \sum_{i=1}^{n(\alpha)} (ada_i)(c)$ is equal to a fixed element of A for all α sufficiently large, c ranging over a norm-dense subset of c. Thus $(adt)(c) \in A$ for c ranging over a norm-dense subset of c, and Claim 2 follows.

Claim 3: qC contains $e_n(i, i)$, $i = 1, ..., 2^n - 1$, $n \ge 1$. By (i), $e_n(1, 1) = qe_n \in qC$, $n \ge 1$, and by (ii),

(10)
$$e_n(i,i) = e_n(i,1) e_n(i,1)^* = q v_{i_1} \dots v_{i_p} e_n^2 v_{i_p}^* \dots v_{i_1}^* \in qC,$$
$$2 \le i \le 2^{n-1}, \quad n \ge 2.$$

Thus Claim 3 holds for n=1, and assuming inductively that it holds for n we have, for $2 \le i \le 2^n - 1$, that

$$e_{n+1}(i+2^n, i+2^n) = e_n(i, i) - e_{n+1}(i, i),$$

which by (10) and the induction hypothesis is in qC. This and (10) shows that Claim 3 holds for n+1.

We now assert that $\delta = adt|_C : C \to A$ is outer in M(A). This will show that A is not HCT and finish the proof.

Suppose to the contrary that there exists $m \in M(A)$ with $\delta = adm|_C$. Then we can find an element y of the commutant C' of C relative to A^{**} such that m = t + y. By Theorem 6.7.3 of [8], q can be chosen such that it commutes with B and qAq = qB. It hence follows, by the Kaplansky density theorem and the $\sigma(A^{**}, A^{*})$ -precompactness of bounded sets of A^{**} , that $qB^{-} = (qB)^{-} = qA^{**}q$ (here and in what follows, S^{-} denotes the $\sigma(A^{**}, A^{*})$ -closure of a subset S of A^{**}). Thus

$$qyq \in qB^- \cap C'.$$

Let $b \in B$. Since $m \in M(A)$, we have $qmqb = qmbq \in qAq = qB$, and similarly $bqmq \in qB$. Hence $qmq \in M(qB)$. But qB is a UHF algebra, and hence has an identity, and so

$$qmq \in qB.$$

Now, let H be a fixed separable Hilbert space with orthonormal basis $\{\xi_n\}_{n\geq 1}$. By construction, qB is a UHF algebra with matrix units $\{e_n(i,j): i,j=1,\ldots,2^n\}$, $n\geq 1$, and we now define a faithful representation π of qB on H as follows. Fix positive integers n and p, and write $p=m\cdot 2^n+r$ in its unique representation with m and r integers, $m\geq 0$, $1\leq r\leq 2^n$. Then set

(13)
$$\pi(e_n(i,j))\xi_p = \begin{cases} 0, & r \neq j \\ \xi_{m \cdot 2^n + i}, & r = j. \end{cases}$$

By examining the proof of Theorem 6.7.3 of [8], we find that q is central and

closed with respect to $B^-=B^{**}$, and so by Lemma 2.1, π has a unique extension to a normal representation of qB^- into B(H), which we also denote by π . Set

$$T_n = \sum_{i=1}^n \pi(e_{i+2}(3\cdot 2^i, 2^i)), \quad n \ge 1.$$

Each T_n is a finite sum of partial isometries with orthogonal initial spaces and orthogonal final spaces, and hence has norm 1. We wish to evaluate T_n at ξ_p . If p does not have a representation of the form $m \cdot 2^{i+2} + 2^i$, then $T_n \xi_p = 0$. Otherwise, $T_n \xi_p = \xi_{2^i(4m+3)}$. Thus for n > p, $T_n \xi_p$ is constant, and so by the uniform boundedness of $\{T_n\}$, the infinite sum $\sum_{i=1}^{\infty} \pi(e_{i+2}(3 \cdot 2^i, 2^i))$ converges in the ultraweak topology on B(H) to an operator T with ||T|| = 1. Now $qt = \lim_{\alpha} qt_{n(\alpha)}(\sigma(A^{**}, A^*))$, and by (viii) and the definition of t_n , we have $\pi(qt_{n(\alpha)}) = T_{n(\alpha)}$, for each α . Thus by the normality of π , $T = \pi(qt)$.

Let D= the C^* -subalgebra of qB generated by $e_n(i,i)$; $i=1,\ldots,2^n$, $n \ge 1$. It follows from Claim 3 that the commutant of qC relative to qB^- equals the commutant of D relative to qB^- , and so by (11), we deduce that

$$\pi(qyq) \in \pi(D)',$$

where the commutant in (14) is taken relative to B(H). Thus by (12) and (14),

(15)
$$T = \pi(qt) \in \pi(qB) + \pi(D)'.$$

We will now show that for each $d \in \pi(D)'$, T-d has distance at least 1 from $\pi(qB)$. This contradicts (15), and hence shows that δ is outer in M(A).

In what follows, we identify qB with its image under π , and hence repress π in the notation.

Let $d \in D'$. We claim first that d is diagonal relative to the basis $\{\xi_n\}$. Fix distinct positive integers p and q, and consider $(d\xi_p, \xi_q)$. If n is chosen so that 2^n exceeds both p and q, then by (13), $e_n(q,q)$ fixes ξ_q and maps ξ_p to 0. Thus $(d\xi_p, \xi_q) = (de_n(q, q)\xi_p, \xi_q) = 0$, and so d is diagonal. Let (d_n) denote the diagonal of d.

Let k be a fixed positive integer, and select $S \in \text{span of } \{e_k(i, j) : i, j = 1, ..., 2^k\}$. Let h be a fixed integer exceeding k. Then by (13),

(16)
$$(T-d)\xi_{2h} = -d\xi_{2h} + \sum_{i=1}^{\infty} e_{i+2}(3 \cdot 2^{i}, 2^{i})\xi_{2h}$$

$$= -d_{2h} \cdot \xi_{2h} + \xi_{3 \cdot 2h}.$$

On the other hand, there are scalars s_{ij} such that

$$S\xi_{2h} = \sum_{1 \leq i, j \leq 2^k} s_{ij} e_k(i, j) \xi_{2h}.$$

From (13) and the fact that $2^h = (2^{h-k}-1)2^k + 2^k$ is the unique decomposition of 2^h in the form $m \cdot 2^k + r$, $m \ge 0$, $1 \le r \le 2^k$, m and r integers, we conclude that

$$e_k(i,j)\xi_{2^h} = \begin{cases} 0, & j \neq 2^k, \\ \xi_{2^h-2^k+i}, & j=2^k, \end{cases}$$

and so

(17)
$$S\xi_{2}h = \sum_{i=1}^{2^{k}} s_{i,2}k \, \xi_{2}h_{-2}k_{+i}.$$

Thus by (16) and (17), $||T-d-S|| \ge 1$, and since k and $S \in A_k$ are arbitrary, we hence deduce from the fact that $\bigcup_k A_k$ is norm-dense in qB that T-d has distance at least 1 from qB.

Proof of Theorem 1.1. (\Leftarrow). This is a consequence of Theorem 1.1 of [6].

(\Rightarrow). If A is a separable HCT algebra, then in particular every derivation of A into itself is inner in M(A), and so by Theorem 3.9 of [2] (see also Theorem 1 of [5]), A has a direct sum decomposition of the form $B \oplus C$, where B has continuous trace and C is the restricted direct sum of a family of simple C^* -algebras. Now it is easy to see that hereditary cohomological triviality passes to ideals, and we hence conclude that B and each direct summand of C are HCT. Thus by the separability of B and Theorem 1.1 of [6], B has a direct-sum decomposition of the form $A_1 \oplus B_1$, where A_1 is commutative and B_1 is the restricted direct sum of a sequence of separable elementary C^* -algebras. On the other hand, each direct summand of C is separable, simple, and HCT, and so by Lemma 2.2, each summand of C is liminary, and hence elementary. Setting $A_2 = B_1 \oplus C$, we thus obtain a direct-sum decomposition of A of the desired type.

REMARKS. (1) As mentioned in the Introduction, Christensen has shown that infinite-dimensional finite factors are HCT. Since such algebras are antiliminary, it follows that the nonseparable analog of Theorem 1.1 does not hold.

(2) Let A be a C^* -algebra, with B a C^* -subalgebra of A. In the introduction to [1], Akemann and Johnson indicated the importance of studying pairs (B, A) as above for which every derivation of B into A is inner. They in fact showed that if $A = C \otimes B(H)$, where C is a separable, unital C^* -algebra with only inner derivations and H is a separable Hilbert space, then every derivation of $1 \otimes B(H)$ into A is inner. In contrast to this example, the construction used in the proof of Lemma 2.2 can be used to show that if A is any UHF algebra, generated by an ascending sequence $\{A_n\}$ of full matrix algebras, say, and if D is the commutative C^* -subalgebra of A generated by the sequence $\{D_n = \text{diagonal subalgebra of } A_n\}$, then there are outer derivations of D into A. We will indicate briefly how this construction proceeds in the case when A is $U(2^{\infty})$, the CAR algebra of mathematical physics.

In this example, A is generated by an ascending sequence of matrix algebras $\{A_n\}$, with A_n isomorphic to the algebra of $2^n \times 2^n$ complex matrices, $n \ge 1$, and A_n is embedded in A_{n+1} via the relations

$$e_n(i,j) = e_{n+1}(i,j) + e_{n+1}(i+2^n,j+2^n); i,j=1,\ldots,2^n,$$

where $\{e_n(i,j): i, j=1,...,2^n\}$ is a system of matrix units for A_n , $n \ge 1$ (this is of course the algebra qB which appears in the proof of Lemma 2.2). Representing A on a Hilbert space H as in the proof of Lemma 2.2, one now notes that if $T \in B(H)$, then $(adT)(D) \subseteq A$ whenever

(*)
$$e_n(i,i) Te_n(j,j) \in A; \quad i,j=1,...,2^n, \quad i \neq j, \quad n \geq 1.$$

Letting $T_n = \sum_{i=1}^n e_{i+2}(3 \cdot 2^i, 2^i)$, $n \ge 1$, one then shows that $\{T_n\}$ converges in the strong operator topology to a $T \in B(H)$ and that T satisfies (*). The last part of the proof of Lemma 2.2 then applies to place T - S at a distance at least 1 from A for each operator S in the commutant of D. Restricting adT to D therefore yields an outer derivation of D into A.

REFERENCES

- 1. C. A. Akemann and B. E. Johnson, *Derivations of nonseparable C*-algebras*, J. Funct. Anal. 33 (1979), 311–331.
- 2. C. A. Akemann and G. K. Pedersen, *Central sequences and inner derivations of separable C*-algebras*, Amer. J. Math. 101 (1979), 1047-1061.
- 3. E. Christensen, Extensions of derivations, J. Funct. Anal. 27 (1978), 234-247.
- 4. J. Dixmier, C*-algebras, North-Holland, Amsterdam, 1977.
- 5. G. A. Elliott, *Some C*-algebras with outer derivations*, III, Ann. of Math. (2) 106 (1977), 121-143.
- 6. A. J. Lazar, S.-K. Tsui, and S. Wright, *Derivations from subalgebras of C*-algebras with continuous trace*, to appear.
- 7. G. K. Pedersen, Isomorphisms of UHF algebras, J. Funct. Anal. 30 (1978), 1-16.
- 8. ——, C*-algebras and their automorphism groups, Academic Press, London, 1979.

Department of Mathematics Oakland University Rochester, Michigan 48063