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1. Introduction. Let 4 be a C*-algebra, M(A) its multiplier algebra, B a
C*-subalgebra of A. Suppose 6: B— A is a derivation of B into A, i.e., a linear
map for which é(ab)=aé(b)+6(a)b, for all a, b € B. In many important appli-
cations, one wishes to know if 8 is inner in M(A), i.e., if there is an element m of
M(A) for which 6(b)=mb— bm, for all b€ B. Akemann and Johnson [1] have
pointed out in particular the importance of investigating those pairs (B, A) as
above for which every derivation of B into A is inner in this sense. A first step in
such an investigation would consist of studying the C*-algebras A for which al/
such pairs (B, A) have this property. We formalize this by saying that a
C*-algebra A is hereditarily cohomologically trivial (HCT for short) if for each
C*-subalgebra B of A and each derivation 6: B — A, there is a multiplier m of A
for which 6(b)=mb— bm, for all b €E€B.

In [6], the authors determined the structure of the HCT C*-algebras with con-
tinuous trace. The only other class of HCT algebras known to us are the finite
von Neumann algebras, a result due to Erik Christensen [3, §5] (it is of course an
outstanding open problem whether the algebra B(H) of all bounded linear
operators on a Hilbert space H is HCT). The HCT algebras are evidently con-
tained in the class of C*-algebras for which every derivation 6: A = A is inner in
M(A), and Elliott [5] and Akemann and Pedersen [2] determined the structure
of the separable C*-algebras with this latter property. In the paper before the
reader, we will determine the structure of the separable C*-algebras which are
HCT. It turns out that the separable HCT algebras form a rather restricted class;
in fact the only simple, separable HCT algebras are the algebras of compact
operators on a separable Hilbert space, usually referred to as the elementary
C*-algebras. More precisely, we will prove:

THEOREM 1.1. Let A be a separable C*-algebra. Then A is HCT if and only if
A has a direct sum decomposition of the form A|®A,, where A, is a commuta-
tive algebra and A, is the restricted direct sum of a (possibly finite) sequence of
separable elementary C*-algebras.

2. Proof of Theorem 1.1. We begin with a lemma which is no doubt well-
known to the experts, but for which, in the interest of clarity and completeness, we
provide a proof (it is stated without proof in the argument of Lemma 3.1 of [7]).

LEMMA 2.1. Let A be a C*-algebra, p a closed, central projection in the envel-
oping von Neumann algebra A** of A. Then pA** is naturally isomorphic to the
enveloping von Neumann algebra (pA)** of pA.
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Proof. Note that pA** is 6(A**, A*)-closed in A**, and is hence a W*-algebra.
Let 7: pA — B(H) be a representation of pA. We must prove that = extends to a
normal representation of pA** into B(H).

Define a representation @ of A into B(H) by #(a)=n(pa), a€A. Let #** be
the canonical extension of # to a normal representation of A**. We assert that
7**(pa) =w(pa), for all a € A. If this is so, then 7“r**|p,4n will be the extension of
« that we seek.

Since p is closed, there is an increasing net {a,} of positive elements of A with

a, -~ (1—p). Hence pal/?=0, for all «, and so for all € A and «,

#(a*aya)=#(a*al’*) #(al?a) =0.
Hence,
T**((1—-p)a*a)=7**(a*(1—p)a)

=lim #(a*a,a)=0, for all a€A.

It follows from the norm identity in a C*-algebra that #**((1—p)a)=0, a €A,
and our assertion hence obtains. O

We recall for use in the next lemma that if » is a positive integer, a family
fe(i,j):i,j=1,...,n} of elements of a C*-algebra is an (nXn) system of
matrix units if

@ e(i,j)e(k,l)y=0;ce(i,l); i,j,k,I=1,...,n, where ;; denotes the Kron-

ecker delta;

(b) e(i,j)*=e(j,i); i,j=1,...,n.

We also recall that every C*-algebra A has a unique maximal, liminary, closed,
two-sided ideal [4, Proposition 4.2.6], and that A is said to be antiliminary if its
maximal liminary ideal is the zero ideal. The next lemma is the key ingredient in
the proof of Theorem 1.1.

LEMMA 2.2. Let A be a separable, antiliminary C*-algebra. Then A is not HCT.

Proof. By Lemma 6.7.2 of [8], A contains a quasi-matrix system of rank
{2,2,2,...]), i.e., sequences {e,},>; and {v,},>, satisfying the following condi-
tions:

(1) e, 20, |eu=|lvs]=1, for all n;

2) viv,e,=e,, for all n;

(3) v2=0, for all n;

4 €nlnr1=€ntls €nUny1=Unt1, €nUn4+1=Un4y, forall n;
&) en,=0, mz2n;

(6) UnU,=0, m>n;

7 omu,=0, m#n.

By Proposition 6.6.5 of [8], there is a nonzero projection g in A** such that g
commutes with {e,},>1U{v,}.>1 and {ge,},>1Y [qu,)n> is @ matrix system of
rank {2,2,2,...}, i.e., (1) through (7) hold for these elements, as well as
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(8) gen=(quz)(quy), for all n;
&) gen=qep 1+ (qUa11)(quiyy), forall n.
The matrix system

{enq}nz1YU{vnq)nz
defines systems of matrix units {e,(i,j):i,j=1,...,2"},>; in gAq such that if
A, =linear span of {e, (i,j):i,j=1,...,2"}, then A, is a C*-subalgebra of gAq
isomorphic to the algebra of complex 2” X 2” matrices, all A4,’s have the same
unit, 4, €A, ., n 21, and the embedding of A4, into A4, is given by

en(iaj)=en+l(i,j)+en+](i+2n1j+2n); i,j::l"-"zn

(cf. the discussion following Definition 6.6.1 of [8]).
We need to determine the formula for e, (i,1), i=1,...,2", in terms of g, the
e;’s, and the v;’s. We claim that for n =2,
(i) en(1,1)=gqen;
(ii) if 2<k<2"7!, there is an increasing set of indices 1<i;<i,<--- <ip<
n—1such that e, (k, 1) =qui;...vi,ey;
(i) e, (142", 1) =quy;
(iv) if 242" 1<k <2", there is a set of indices as in (ii) such that e, (k,1) =
qUiy. . . Vi, Uy.
(i) and (iii) follow from (2), (3), (6), (8), and (9). For each k, 2<k<2""!, we
have from the embedding of 4,,_, into A, that

e, (k,1)=(e,(k,1)+e,(k+2""' 1+2" Y)e,(1,1)
=e,-1(k,1)e,(1,1),
en(k+2"" 1 1) = (e, (k, 1) +e, (k+2"7 1, 1+2" Y e, (1+2"7, 1)
=e,_(k, e, (1+2"1, 1).
It follows that e,(1,1)=gqge,, e,(2,1)=qu,e,, e,(3,1)=qv,, and e;(4,1)=
qv; v5, which is (ii) and (iv) for n=2. Assuming inductively that (ii) and (iv) hold
for n—1, we compute from (i), (iii), (4) and the above embedding formulae that
QUi . Vi, €y_ 1€, =qUi.. .V, e,, 2<k<2""?
e,(k,1)=< qu,_,e, , k=1+2""2
qUj,- .. Vj, Uy_, €, , 2+2"72gk<g2" ],

qUiy . . - Vi, €y — Uy =QqUi;. . . Vi, Up, 2<kg2"?
en(k+2" 1L 1)=1 qu,_,v, , k=1+4+2""2
qUj,...Vj, Uy_ Uy , 242" gkg2m

for appropriately chosen indices 1<ij<: - <ip,<n—2 and 1<j;<---<j,<
n—2. This is (ii) and (iv) for n.
We claim next that for n>1,
(V) e,42(2",1)=qu|...V 8,43,
(Vi) ens22" 1) =qui...Ups 16042,
(vii) e,,+2(2”+2,1)=qv|...vn+lv,,+2.
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This follows straightforwardly from the embedding of A4, into 4,,,,, (4), and
induction.

We can now compute e, ,,(3-2",2"), n>2. By the embedding of A, ,, into
An+23 (4)’ (lll)s and (V)_(Vii)’

en2(3:2", 1) =€, (2" +2"+11)
=(€n42(2", 1)+ e 22" +2" 142" ) g, (142" H, 1)
=ens1(2", 1) e (142741 1)
=qU...Vp€y41Uny2

=qU...0p Uy
and so
(Vi) €;12(3-2",2") = €,12(3-2",1)€,42(1,2") = €,52(3-2", 1) €,42(2", 1)*
=qU)...UpUp12€,4205...05.
Now, for n>1, set

n
l,= 'E] V1...0;jU;i2€; 42 U,?. .. Uik.
=
Claim 1: ||t,||<1, n21.
To verify this, set a;=v,...v;v;4,€;.,0F. ..}, and notice first that by (2) and
(4), v vy acts as a unit for v,,, m2k+1,so forizj+1,

USRI THRR 7 TS T VPEL R SRR

and it therefore follows that for i 2 j+ 1, there are elements b;, b; € A for which
a;af =b;vf e, b;, whence by (5), a;af =0. A similar computation shows that
a;af =0 for i <j. Hence by (2) and (4),

n
*
bl =Y U1...0jVj12€i420F .. . 0FUL... V€ 12 0F o UF. . . UF
i=1

2 *
V... ViV 42642V 490 Ufk. . .Uik.

i

i

If ¢; denotes the i-th term of this sum, then ||¢;||<1and ¢; 2 0. By (2) and (4) there
are elements d;, d; € A such that c;c;=d; v} ,v;;,d; for j2i+1, and so by (7),
ci¢c;=0. Thus for n=1, ¢,t} is a sum of pairwise orthogonal, self-adjoint ele-
ments each of norm not exceeding 1, and so #,¢}, and hence ¢,, also has norm
not exceeding 1. This verifies Claim 1.

Let B=the C*-subalgebra of A generated by {e,},>1U{v,},>1, and let C=
the C*-subalgebra of B generated by {e,},>; and all elements of the form
Vi - ..v,-pe,fvi;. .. Uiy, where 1</ <i,< -+ <i,<n—1, n22. By Claim 1, there is a
g(A**, A*)-limit point ¢ of {¢,} in A**.

Claim 2: (adt)(C) S A.

Here adt denotes the derivation of A** given by a — ta—at, a € A**. To verify
this, fix n >1and let k >n+1. By (5), axe,=e,a,=0. Let x=v;,... Vi, e50f,. . . U
with 1</ <i;<:--<i,<n—1. By (3), (4), and (7) either a,x=0 or there exist
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elements by, cr €A with ayx=>b,vE...vje,c;, for some j<n, and so by (5),
a; x=0 also in this instance. Similarly, xa; =0. Now all words in the generators
of C begin and end with either an e, or a product of v,’s or v;}’s, and the pre-
ceding computation hence shows that ad(ax) vanishes on all words from gen-
erators of C which are formed from elements of {e;,...,e,}, {v,,...,v,_1}, and
{vf,...,ui_) for k2n+1. If {#,q,] is a net from {¢,} with o(A4**, A*)-limit ¢,
we hence conclude that (adt,(4))(c) =L} (ada;)(c) is equal to a fixed element
of A for all « sufficiently large, ¢ ranging over a norm-dense subset of C. Thus

(adt)(c) € A for c ranging over a norm-dense subset of C, and Claim 2 follows.
Claim 3: gC contains e, (i,i),i=1,...,2"—1, n21. By (i), e, (1, 1) =qe, €qC,
n 21, and by (ii),
10) en(i,i)=e,(i,1)e,(i,1)*=qui...vi,esv},... v}, €qC,
2<ig2"!, n=2.
Thus Claim 3 holds for n=1, and assuming inductively that it holds for n we
have, for 2<i<2"—1, that

en+1(i+2n,i+2n)=en(i, i)—€n+1(i,f),

which by (10) and the induction hypothesis is in gC. This and (10) shows that
Claim 3 holds for n+1.

We now assert that 6=adt|cz C — Ais outer in M(A). This will show that A4 is
not HCT and finish the proof.

Suppose to the contrary that there exists m € M(A) with 6=adm|c. Then
we can find an element y of the commutant C’ of C relative to A** such that
m=t+y. By Theorem 6.7.3 of [8], g can be chosen such that it commutes with B
and gAqg=g¢gB. It hence follows, by the Kaplansky density theorem and the
g(A**, A*)-precompactness of bounded sets of A**, that gB~ =(gB) ™ =qA**q
(here and in what follows, S~ denotes the a(A**, A*)-closure of a subset S of
A**). Thus

(11) gygeEqB NC".

Let be€B. Since meM(A), we have gmgb=qgmbg € qAq=qB, and similarly
bgmq € gB. Hence gmq € M(gB). But gB is a UHF algebra, and hence has an
identity, and so

(12) qmgq € gB.

Now, let H be a fixed separable Hilbert space with orthonormal basis {£,),>;.
By construction, gB is a UHF algebra with matrix units {e, (i, j): i, j=1,...,2"},
n 21, and we now define a faithful representation = of gB on H as follows. Fix
positive integers n and p, and write p=m-2" +r in its unique representation with
m and r integers, m =20, 1<r<2". Then set

0 , r#j
‘Em-z"+i, I‘=j.

By examining the proof of Theorem 6.7.3 of [8], we find that g is central and

(13) W(en(i,j))gpz{
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closed with respect to B~ =B**, and so by Lemma 2.1, 7 has a unique extension
to a normal representation of gB~ into B(H), which we also denote by .
Set

n
T,= Y w(ei42(3:2,2")), n=l
i=1

Each T, is a finite sum of partial isometries with orthogonal initial spaces and
orthogonal final spaces, and hence has norm 1. We wish to evaluate 7, at &,. If
p does not have a representation of the form m-2*242/, then T, £,=0. Other-
wise, T, &, =%5iam+3). Thus for n>p, T,&, is constant, and so by the uni-
form boundedness of {7, ]}, the infinite sum X2, w(ei+2(3-2',2")) converges
in the ultraweak topology on B(H) to an operator T with |7]|=1. Now gt=
lim, gt,(q)(c(A**, A*)), and by (viii) and the definition of ¢,, we have 7 (qt,()) =
T, («), for each a. Thus by the normality of =, T=7(qgt).

Let D=the C*-subalgebra of gB generated by e, (i,i); i=1,...,2", n21. It
follows from Claim 3 that the commutant of gC relative to gB ~ equals the com-
mutant of D relative to gB~, and so by (11), we deduce that

(14) T(qyq) Ew (D),
where the commutant in (14) is taken relative to B(H). Thus by (12) and (14),
(15) T=n(qt)Ew(qB)+ (D)’

We will now show that for each d€ x(D)’, T—d has distance at least 1 from
w(qB). This contradicts (15), and hence shows that 6 is outer in M(A4).

In what follows, we identify gB with its image under n, and hence repress 7 in
the notation.

Let d € D’. We claim first that d is diagonal relative to the basis {£,}. Fix dis-
tinct positive integers p and g, and consider (d¢,, &,;). If n is chosen so that 2"
exceeds both p and g, then by (13), e,(q, q) fixes £, and maps &, to 0. Thus
(dép, §q) = (de,(q,q)Ep, £4) =0, and so d is diagonal. Let (d,) denote the diag-
onal of d.

Let k£ be a fixed positive integer, and select S €span of [ey(i,j):i,/j=
1,...,2%}. Let h be a fixed integer exceeding k. Then by (13),

(T—d)én=—disn+ ¥ €142(3-27,2)) Epn
(16) i=1
= —dpn-Exn+ £3.9n.

On the other hand, there are scalars s;; such that

Skr= Y siex(i,J)érn.
, 1<i,j<2
From (13) and the fact that 2" = (2% =% —1)2% + 2% is the unique decomposition of
2" in the form m-2*+r, m>0, 1<r<2*, m and r integers, we conclude that
. 0 , J=2k,
ex (i, /)& h={ :
* 2 ‘EZh—Zk-f-i: J =2k3
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and so

2k
(17) Skan= 3, Si 2k Eah_ok 4.
i=1

Thus by (16) and (17), |T—d—S||>1, and since k and S € A; are arbitrary, we
hence deduce from the fact that Uy A, is norm-dense in gB that T—d has dis-
tance at least 1 from gB. 0O

Proof of Theorem 1.1. (). This is a consequence of Theorem 1.1 of [6].

(=). If A is a separable HCT algebra, then in particular every derivation of A
into itself is inner in M(A), and so by Theorem 3.9 of [2] (see also Theorem 1 of
[5]1), A has a direct sum decomposition of the form B@®C, where B has con-
tinuous trace and C is the restricted direct sum of a family of simple C*-algebras.
Now it is easy to see that hereditary cohomological triviality passes to ideals, and
we hence conclude that B and each direct summand of C are HCT. Thus by the
separability of B and Theorem 1.1 of [6], B has a direct-sum decomposition of
the form A;@® B, where A, is commutative and B, is the restricted direct sum of a
sequence of separable elementary C*-algebras. On the other hand, each direct
summand of C is separable, simple, and HCT, and so by Lemma 2.2, each sum-
mand of Cis liminary, and hence elementary. Setting A, =B;® C, we thus obtain
a direct-sum decomposition of A of the desired type. O

REMARKS. (1) As mentioned in the Introduction, Christensen has shown that
infinite-dimensional finite factors are HCT. Since such algebras are antilimi-
nary, it follows that the nonseparable analog of Theorem 1.1 does not hold.

(2) Let A be a C*-algebra, with B a C*-subalgebra of A. In the introduction to
[1], Akemann and Johnson indicated the importance of studying pairs (B, A) as
above for which every derivation of B into A is inner. They in fact showed that if
A=CQB(H), where C is a separable, unital C*-algebra with only inner deriva-
tions and H is a separable Hilbert space, then every derivation of 1&Q B(H) into
A is inner. In contrast to this example, the construction used in the proof of
Lemma 2.2 can be used to show that if 4 is any UHF algebra, generated by an
ascending sequence {A4,} of full matrix algebras, say, and if D is the commuta-
tive C*-subalgebra of A generated by the sequence { D, = diagonal subalgebra of
A,}, then there are outer derivations of D into A. We will indicate briefly how
this construction proceeds in the case when A is U(2%), the CAR algebra of
mathematical physics.

In this example, A is generated by an ascending sequence of matrix algebras
{A,}, with A, isomorphic to the algebra of 2" x 2" complex matrices, n 21, and
A, is embedded in A4, via the relations

e,,(i,j)=en+1(i,j)+en+1(i+2",j+2"); i,j=1,_“,2",

where {e, (i, j):i,j=1,...,2"}is a system of matrix units for 4,, n 21 (this is of
course the algebra gB which appears in the proof of Lemma 2.2). Representing A
on a Hilbert space H as in the proof of Lemma 2.2, one now notes that if
TeB(H), then (adT) (D)< A whenever
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(*) en(i,)Te,(J,J)EA; 1,j=1,...,2", i#j, nz2l

Letting T, = X7_, €;+2(3-2/,2%), n>1, one then shows that {T},} cbnverges in the
strong operator topology to a 7€ B(H) and that T satisfies (*). The last part of
the proof of Lemma 2.2 then applies to place 7— S at a distance at least 1 from A
for each operator S in the commutant of D. Restricting adT to D therefore yields
an outer derivation of D into A.
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