VALUES OF BMOA FUNCTIONS
ON INTERPOLATING SEQUENCES

Carl Sundberg

1. Introduction and preliminaries. For 0 <p <o we denote by H” the usual
Hardy class of functions analytic in D={z:|z|<1). Denote by p(z,w)=
|(z—w)/(1—Zw)| the pseudo-hyperbolic distance between z, w €D. Let {z,} =D
be an interpolating sequence, i.e. a sequence satisfying inf,, Il,, =, 0(Zm,2,)>0.
A theorem of Carleson [1] states that if {«,} is any bounded sequence of num-
bers then there is an f € H* such that f(z,) =, for all n. For 0<p <o, a subse-
quent theorem of Shapiro and Shields [9] characterizes the sequences {c,}
for which there exist f€ H? satisfying f(z,)=a, for all n; they are just the
sequences for which ¥, |a,|?(1—|z,|*) <. The purpose of this paper is to
extend this characterization to another space of analytic functions closely related
to the Hardy spaces, the space BMOA of analytic functions of bounded mean
oscillation. \

The following definitions and notations will be used in the sequel. If ESdD =
{z:|z|=1} we denote by |E| the Lebesgue measure of E. If f€L'(dD) and
E<dD we write fg=(1/|E|) g f, and

1
|If[|,,:=sup{ﬁ—I S |f—f1|: I an arc in BD}.

I
The space BMO is the space of functions f for which || f|| . <. For f€L'(dD)
and z € D we write f(z) for the Poisson extension of f at z:
™ 1_|z|2
_x |1—e7"z]?

1 :
f(z)= 5 f(e") do.
27
The space BMOA is the set of f€ BMO whose Poisson extensions are analytic
in D.
We define a Carleson measure to be a positive measure p on D for which

1~z
lullo=sup || =20 du(z) <oo.
20€D |1—Zoz]

If z, is an interpolating sequence, then the measure ¥, 8;,(1 —|z, Iz) is a Carleson
measure (see Chapter VII, Theorem 1.1 of [5]).

For a€ D we define ¢,: D > Dby ¢,(z)=(z2—a)/(1 —az). It is well known that
then || fe¢g| « < C|| f]| «, C a universal constant (see Chapter VI, Section 3 of [5]). If
Wn=4(z,), then it is easy to check that | L, 8w, (1—|Wa|*) |+ =L n 62,(1 =|za| |-
Finally, we state a theorem of Carleson that we will need (see Chapter II,

Theorem 3.9 of [5]):
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If p is a Carleson measure, 1 <p <o, and f€L”(3D), then there is a constant
depending only on p and ||u|| . such that

1 ¢7 )
SS lf(Z)|p du(z) SCES_W lf(e’o)l"dﬁ.

D
2. The main result.

THEOREM 2.1. Let {z,] D be an interpolating sequence. Then the following
statements are equivalent for a sequence of numbers {a,}.
(@) There is a BMOA function f such that f(z,)=«ay, for all n.
(b) There is a BMO function f such that f(z,)=cay, for all n.
(c) There is a positive number \ and numbers {3(z))};ep such that
sup ¥ exp[N o, —B8(2)|1[1—p(2, 24)*] <o,

ZED n

(d) There is a positive number N\ such that

sup ¥ exp[ Mo, —a(z)|1[1—p(z,2,)*] <o,
ZED n

where the average «(z) is defined as

a(z)= Enenl1=p(2,2)°)
Ln [1-p(2,2,)°]

Proof. The implications from (a) to (b) and from (d) to (c) are of course imme-
diate. Those from (b) to (c), (c) to (d), and (b) to (a) are not difficult and are
done below. The hard part of the proof is the implication from (c) to (b); this will
be done using the result of a construction that will be given in Section 3.

(b)=(c) By the John-Nirenberg Theorem [7] there are positive numbers Ao, M
such that if # € BMO with || 4|, <1, then (1/27) |™, exp(No| k(™) —h(0)]) db <
M. Now say f€ BMO satisfies f(z,)=«a, for all n. As was mentioned above,
there is a constant C such that for any z€D, | fe¢_;|+<C| f|«. Pick z€D
and set g=fedp_,, w,=¢,(z,). Writing A=No/C| f||+, we then have that
(1/727) §*, exp(}\|g(em) —g(0)|)do<M. Let G be the Poisson extension of
exp[(A/2)|g(e”®) —g(0)|]. Since exp[(A/2)|g(w)—g(0)|] is subharmonic as a
function of w€D, we have that G(w) = exp[(N/2)|g(w) —g(0)|] for all weD.
By the result of Carleson mentioned at the end of the Introduction, there is a con-
stant C; depending only on ||8y, (1—|w,|?)||+=|8z, (1—|z,|?)||+ such that

Y exp(Mg(wn) —g(O)) (1=|w,|?) < & G(w,)2 (1—|w,|?)

_l_ﬂ 02
<c127rS _G(e'"y o

T

1 .
=CI_S exp(M|g(e’) —g(0)|) do
27 J_

<G M.
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Using the definitions of g and w,,, we see that this is equivalent to

Y exp(Na,—f(2)) [1-p(z,2,)* 1 SO M,

which yields (c) with 8(z)=f(z).

(¢)=(d) The proof of this implication is due to Wolff; it is exactly the same as
the proof of the parallel point in [10]. Say A >0, {8(z)};ep and M <oo are such
that ¥, exp[\|a, —B(2)|1[1—p(z,2,)*]1 <M, all z€D. Then for z €D fixed and
t>0,

Y [1—p(z,2,)°] Smin{z [l—p(z,zn)z],Me‘)"}.

fn:|a,—B(z)|>t) n

Hence (using, e.g., Lemma 4.1 from Chapter I of [5]),

le(z) —B(2)| < Y |an —B(2)|[1—p(z, 24)?]

o [1-0(z,2,)%1 5

! " mi - 2 nYy
S T =502, 20)7] SO mm{; [1—-p(z,24)°], Me }dt
——1— lo +i
N BTz ) N

so by Holder’s inequality
X exp[(N\/2)|etn —a(2)|1[1=p(2,21)*]
n

172
< [Z eXp[klan—ﬁ(z)ll[l—p(z,zn)zl]

172
xexp[(k/2)|a(z)—t3(Z)|]{E [l—p(z,zn)zlz
< el/ZM,'

proving (d) with A replaced by A/2 and M replaced by e'/?M.

(b)=(a) It clearly will suffice to consider the case where the «,,’s are real. Let u
be a real-valued BMO function such that u#(z,)=«, for all n. By the Duality
Theorem of C. Fefferman ([3], [4]) we can find real-valued g, # € L” such that
u=g+h and h(0)=0—as usual /# denotes the Hilbert transform of h. Then
ii=g— h. Using Carleson’s Interpolation Theorem we can find F € H” such that
F(z,)=g(z,)+ih(z,). Define f=u+iii— (g+ig)+F. Clearly f € BMOA, and it
is easy to check that f(z,) =«, for all n.

(c)=(b) Let A, [{8(2)});ep, [a,]} beasin (c). We again may assume the «,,’s are
real. Proposition 3.3 in the following section will yield ¥ € BMO such that
{a, —1(z,)]} is bounded. By Carleson’s Interpolation Theorem there is g€ H ™
such that g(z,)=«a,—u(z,) for all n. Then f=g+u is in BMO and satisfies
f(z,) =y, all n.
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3. A construction. The main result of this section, Proposition 3.3, completes
the proof of Theorem 2.1. We will first need to discuss some definitions and
results. In this section all functions are real-valued.

DEFINITIONS. A dyadic arc is an arc 1S9D of the form
/ [+1
I={ 27r2k <027 —— oF }

for some nonnegative integers k, /. We will denote the set of dyadic arcs by D,
and if JED we define D,;={I€D:ISJ].
Let J€D. We define BMO,4(J) to be the set of those f€L!(J) for which

I o= sup 7 | 1r=fil<e.

We will write BMO, for BMO(dD) and refer to this space as dyadic BMO.

A theorem of Davis (Theorem 3.1 of [2]) easily implies the following result,
first stated and exploited by Garnett and Jones in [6].

THEOREM 3.1 (Davis-Garnett-Jones). Let 7 = u'") be a measurable mapping
Jrom [0,27) to BMOy. Define u by

u(e'®)= 2—17; [u(e’+0) ar.

Then there is a universal constant C such that |u| .« < C sup,|u‘” | smoy-

The construction needed to prove Proposition 3.3 is based on the dyadic ver-
sion of a theorem of Wolff [10].

THEOREM 3.2 (Wolff). Let J € D and let @ S J be measurable with |2|>0. Let
S be a function on Q and suppose there exist numbers N\ >0, M, and for each
1€D,; a number a; such that

1
i §ﬂmexp(x|f—a1|) <M.

Then f is the restriction to @ of a function FEBMOy(J) with ||F|smouw)
bounded by a constant depending only on \ and M. Moreover we can choose F
so that {;|F—a,;| < Clq|f—ay|, where C depends only on \ and M.

REMARK. Wolff does not state his result in this way—in particular he works
with BMO instead of dyadic BMO and defines a; = (1/|Q2N1|) {on; f. However,
the above statement follows from his proof.

We are now ready for the main result of this section.

PROPOSITION 3.3. Let {z,} €D be an interpolating sequence. Let {a,} SR
A>0, M>0, and {B(z)};ep be such that
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Y exp[\ | a,—B(2)|1[1—0p(z,2,)’ 1 <M for all zED.

Then there is a u € BMO such that the sequence {«a, —u(z,)} is bounded.

Proof. To get an idea of the proof, let us temporarily define 7, to be the arc
with center z,/|z,| and length 27 (1—|z,|). Suppose that the collection {/,} is
pairwise disjoint and define f on U I, by setting f=«,, on I,,. If we could extend
J to a BMO function F on all of D, then clearly F;, = o, and so by a well-known
property of BMO functions the sequence {«, —F(z,)} would be bounded. This
approach will not work in general, however, since the arcs {,} of course need not
be pairwise disjoint and also since the function f defined above might not be
extendable to a BMO function. These difficulties are taken care of by using
instead of the arcs {/,} a certain closely related collection of dyadic arcs, and by
building the function F in nested stages using the above idea. The resulting func-
tion is not in BMO but is in BMO,, and Theorem 3.1 is then used to finish the
proof.

In this proof the letter C will stand for various constants depending at most on
A and M, and not necessarily the same at each occurrence. Clearly we may
assume the numbers 3(z) are real.

We first thin the sequence {z,} out somewhat; find a subsequence {z;;} such
that (i) 0(zx;, 2n,) >99/100 if j#k and (ii) ¥n 3 such that p(zx;, 2,) <999/1000.
Clearly the hypothesis implies that exp(\|a, —8(z,)|) <M, hence |, —B(z,)| <
(1/N) log M. If p(z,n, 24) <999/1000 then by the hypothesis exp (|, —B8(z,)]) <
1000M, so |a,, —B(z,)|<(1/N)1log(1000M). This shows that if p(z,,z,) <
999/1000, then |o, — @, | < (1/N) [log (1000M ) + log M. 1t is a standard fact that
there is a constant C such that if p(z,w)<999/1000 and f€BMO, then
|f(z) = f(w)|<C| f|l+. Say now that f€BMO, | f|« is bounded by a constant
depending only on A and M, and | f(zx;) —any|<C for all j. For a given n find by
(ii) a j such that p(2Zn, Zn;) <999/1000. Then

If(zn) —anl Slf(zn) _f(znj)l+lf(znj) _anj|+|anj_an|<c

by the above observations. These remarks show that we may as well assume from
the outset that p(z,,,2,)>99/100 if m#n. Since we may conformally translate
the points {z,} without altering the hypothesis or the conclusion we may assume
zo=0. Finally we may subtract og from each term of the sequence {«,} without
affecting hypothesis or conclusion, so we may assume that ay=0.

To a dyadic arc

- / [+1
I= {610: 27{'? <0<2W7}
we associate the ‘‘dyadic square’’

; / [+1 1
S;= {rele; 27!‘5;7 S0<27l'—"ir, 1—? <r<1}

and its ‘“top half”’
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; 1
T,= {re’0€S11r<l-— W}

Note that by the condition p(z,,, 2,) >99/100 if m #n, there is at most one z,, in
any 77j.

Our first task will be to construct a BMO, function F such that |F; —a,|<Cif
z,€T;. To this end we define the collection IS as follows. 9=9,U4d, where
9={I€D:3z,€T;} and 9, ={I€D: 3J €Y, such that |J|=|I| and J is adjacent
to I}. The reason for considering the extra arcs 9, will become apparent at the
end of the proof.

Let 7€ ® and pick a point z;E€T;. To I we will then associate the number
a;=p(zs). Note that if z,€T; or if |I|=|J|, J is adjacent to I, and z, €T}, then
(21, 2,) <999/1000. Hence from the hypothesis

exp[ N e, —B(z1)|] == <exp[\a,—B(z)|1[1—p(2;,2,)?1 <M,

1000

so that |a, —oy| < C. Since zy=0 and ap=0 we may also assume that ayp=0.
CLAIM. If J€D then Xjc; exp(May—ay)(|1|/]J])<C.
Ieg

To prove this Claim we first note that an easy and well-known estimate shows
that if z€ T and z, €Sy, then (1—|z|%)/|1—2Z,z|>1/10. Hence

IJ' 1—|Z,,]2
Y exp[Noy—ay|l-—<C ¥ exp[A o, — ﬁ(ZJ)H 3
IcJ III ZHESJ I I

1€9;
1—|z,*) (1—]z2y]?
<100C Y, exp[)\lan—ﬁ(ZJ)H( 12| z( .l.J| )
2, €S, |1-2,24|

=100C ¥ exp[ Mo, —B(z))|1[1—p(2s,2,)*1 <CM.

To handle the arcs in 9, write J;, J, for the two arcs adjacent to J for which |J;|=
|J|=|J3|. If I€9,, let I’ be adjacent to I, |I’|=]|I|, and z,€T}. Then z,€
S;,US;US,. Hence, as is easily shown, (1—|z;|*)/|1—Z,z;/>1/100, and we
have already observed that |a, — ;| <C. Combining these observations, we see
that

2 eMO‘I‘O‘Jlﬂ_I_ <C E )\lan—ﬁ(zj)ll lznlz
;gg |/ 2, €8;,US;US;, 1—|z/]|
2
1—- 1—|z,|%)
<10000C ¥ eMea—piel { |Zln| (1= |z,[7)
2,€8;,US;USy, |1—2,2/]
<10000CM.

Note that a trivial consequence of the claim is that

I
r ]
i<y /|
Iey

<C.
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Using the language of Garnett (Chapter VII, Section 3 of [5]) we now define the
generations Gy, Gy, G, ... as follows. G is the singleton set {dD}, and for j >0

Gj={/€9:1 is a maximal arc in 9 satisfying /G J where JEG;_,}.

Set @, =U {I: I €G,} and define f; on ©, by setting fi=o; on TEG,. Let K€ D.
If KEIe€ Gy, then fi=a; on K, so if we set ax =a; we see that

¢ |
— exp(Alfi—ak|)=1.
IKI anK l 1 Kl
If X is not contained in a member of Gl set ax = a; then

1
& o PO = T exp(Nar —ax])|7]<C

ICK
by our above Claim. Hence by Wolff’s Theorem, Theorem 3.2, there is a
function Fy€BMOy such that Fij=o; on I€G,, |Fi|smo,<C, and fzp |Fi|<
C Lieg, |as||1] since @ap = tgp =0.

Now for J € G, define Q= U (I: € G,, ISJ} and define f; on Q4 by setting
fi=a;—ayonlforIe G,, I=J. We verify the hypothesis of Wolff’s Theorem
in the same way as above and hence we can find F5¥ € BMO,(J) such that F5 =
aj—oyonlforleqG,, IS/, ”Fj]”BMOd(J) <C, and IJ IFZJI QCEIGGZ |a[_ajl|1|.

rcJ
Define F, on dD by setting F,=F; on JEG,, F,=0off U {J: JEG,].

Continuing in this fashion we obtain functions { F;};% satisfying the following
properties:

(@) If I€Gy;, ISJE€G;_y, then Fj=a;—ay on K.

(b) If JEG;_, then F;€BMO,(J) with ||Fj|smo,) < C.

() Fj=0o0ff U{J:JEG;_,].

(d) If JEG;_, then

IKI

[ 1B1<C £ Jar—aylltl.
J IeG

€G;j
ey
We now set F=Y;2, F;. Let €D and let J be the highest generation arc in 9
containing 1, say J € Gj,. Notice that then Fy,..., Fj, are constant on [ and that
by (b), ||Fjy+1l|BMoys) < C. Hence
1 S i
P=Fl< T o | 1B =),
il A i

1 1
F - .
,Il S | Jo+1— (F10+1)I|+2 —JZO;+2 III 51 IF:Il

1
<C+2 ¥ > S|F|
j=ig+2 JEG;_ |1|
s<r
o0 1 .
<C+2C Y ¥ & L |ax—ayl|K[, by (d).
i=io+2 veG;_y || Keg,
JEI KeJ
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Now by our above Claim,

K
% expMax—as) Kl <, 5o T lax-aullK| <Cl]

KGGJ |J| € j
KcJ KcJ

Hence the above sum is bounded by
> J J
cC+C Y ), iUl <C+C Y iUl <C,
j=i+2 7€G,_, | Jeg 1]~
JEI Jel

by the remark following our Claim. This shows that || F||smo, < C. Furthermore
if 1€ 9, say I € Gj,, then Fi+ --- +Fj,=c; on I, hence

Frels £ onfipl= L L | 16
.__10+1 | | J j0+1 JeGj—l | | J
JETI
it 1

<C Y Y —I-‘ Y laK—O‘J”Kl

J=jo+1 JEG;_, 7] KegG;
Jer KeJ
<C

in exactly the same manner as above.

Bearing in mind our definition of the numbers «; and the remarks immediately
following that definition, we can summarize what we have done so far in the
following manner. For {z,}, {a,}, A, M as in the statement of the Proposition
we have constructed a function F € BMOy such that | F||smo, < C and such that if
1€ and z, €T then |F;—a,|<C. Furthermore because of our use of the extra
arcs 9,, if €D, z,€T;, and JED is adjacent to I with |J|=|I|, then
Iib anL<C?

Now for 0 <7 <2 define z\” =z, '™ and construct a function F (" € BMO, as
above corresponding to the points {z{”} and the sequence {c,}. Define u(e®) =
(1/27) [3* F(e'®*7) dr. Then by the Davies-Garnett-Jones result, Theorem
3.1, we have that ¥ € BMO, |u||.<C. Let 2, €T; where € D. We have

u,:J—SZW 1 S FM(e'*) do dr
2w Jo  |I] Jeioey

1 SZW 1 S .
=\ —= F{(e') dodr.
2w Jo || Jeivepeir
We examine the inner integral. Say |/ |=21r/2j . Then [ exp[i(27k/2/)] €D and
232 ™12 € Ty o\ otianksaiy)- Hence by the construction
” 1 ‘
’ F(e"®)ydo—a,|<C

| Seiﬂeleir

if 7=2mk/2/. If T=(2mk/2’)+ 1, 0<7<27/2/, set [} =Iexp(i2wk/2’), I,=
Texp(i2nw(k+1)727), Ji=ILNIe'", J,=L,NIe'". Then I}, I, € D. Notice that for
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7 in the range we are considering, either z\" €Ty, or z\” € T},. By the com-
ments in the preceding paragraph, in either case we have |F,(T)—an|<C and
|F” —a,|<C. Now a well-known consequence of the dyadic version of the
John-Nirenberg Theorem tells us that

1 - 5 172 1 ) 5 172
i S FO—a,f) <C and (o S; IFO—a,?) <C.
2

Hence

] -l ) ()
II' Jl nl |Il I nl |II|

1
EARNG
< <
C<|11| ) ¢

and similarly (1/1|) {;, |F” —a,| < C. Therefore

F (e df—a,

‘m ]eir
1 1 :

—\ (FO>e?)y—a,) di+ — (F“’(e"’)—a,,)do

121 9, 1] 2y

<C.

This bound holds for all 7€[0,27), and by integrating in 7 we thus see that
]u, - Oln| <C.

Now for z,€T;, 1€ D, write z, for the midpoint of the inner boundary of §;.

Since u € BMO, | u|.«<C, we have that |u(z;)—u(z,)|<C, and a well-known
estimate (see Chapter 4 of [8]) tells us that |u(z,) —u;| <C. Hence |u(z,) —a,|<
C, completing the proof of the Proposition and of Theorem 2.1. O

ARG
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