EXTRINSIC SPHERES IN A KAHLER MANIFOLD
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1. Introduction. An n(>2)-dimensional submanifold of an arbitrary Rie-
mannian manifold is called an extrinsic sphere if it is totally umbilical and has
nonzero parallel mean curvature vector [5]. An n-dimensional Riemannian man-
ifold is called an intrinsic sphere if it is locally isometric to an ordinary sphere in
a Euclidean space. Since extrinsic spheres are natural analogues of ordinary
spheres in a Euclidean space from the extrinsic point of view, it is natural to ask
when an extrinsic sphere is to be an intrinsic sphere. In this situation, it is well
known that an extrinsic sphere in a Euclidean space is an intrinsic sphere. How-
ever, in general, an extrinsic sphere is not always an intrinsic sphere (see [4:
p. 66], for example). On the other hand, when the ambient manifold is a Kéhler
manifold, B. Y. Chen has proved the following Theorem A:

THEOREM A [2]. A complete, connected, simply connected and even-dimen-
sional extrinsic sphere of a Kdhler manifold is isometric to an ordinary sphere if
its normal connection is flat.

He has also given counterexamples which are not isometric to an ordinary
sphere in odd-dimensional case [3].

In this paper, we shall try to classify a complete, connected and simply con-
nected extrinsic sphere of a Kdhler manifold. That is, we shall prove the follow-
ing Theorem:

THEOREM. A complete, connected and simply connected extrinsic sphere M"
in a Kdhler manifold M*™ is one of the following:

(1) M" is isometric to an ordinary sphere,

(2) M" is homothetic to a Sasakian manifold,

(3) M" is a totally real submanifold and the f-structure is not parallel in the

normal bundle.

Here we note that case (2) and (3) occur only when n=odd and m 2 n+1, respec-
tively.

2. Preliminaries. Let M be a Riemannian manifold of dimension m and M an
n-dimensional submanifold of M. Let ¢ , ) be the metric tensor field on M as
well as the induced metric on M. We denote by V the covariant differentiation in
M and by V the covariant differentiation in M determined by the induced metric
on M. Then the Gauss-Weingarten formulas are given by

eX)/=VX Y+h(Xa Y),
e)(N= —ANX-I-V;\/LN,
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respectively, where X and Y are vector fields tangent to M and N normals to
M. Moreover V* is the linear connection induced in the normal bundle 7+ M,
called the normal connection, and 4 (resp. Ay) is called the second fundamen-
tal form (resp. the shape operator at N). Then 4 and Ay satisfy (AN X, Y )=
(h(X,Y),N). If the second fundamental form # satisfies #(X,Y)=(X,Y)H,
then M is called a totally umbilical submanifold in M, where H= (trace h)/n is
the mean curvature vector of M in M. Then the Gauss-Weingarten formulas
reduce to

VxN=—(N,H)X +ViN.

If the mean curvature vector H of a totally umbilical submanifold is nonzero
and is parallel with respect to the normal connection V*, then M is said to be an
extrinsic sphere of M. The mean curvature p=~/(H, HY of an extrinsic sphere
is a nonzero constant.

Let M be a real 2m-dimensional (complex m-dimensional) almost Hermitian
manifold with almost complex structure J and with Hermitian metric ( , ). An
n-dimensional Riemannian manifold M isometrically immersed in M is called a
totally real submanifold of M if JT, M C T+ M for each point x of M, where T, M
denotes the tangent space of M at x and 77 M the normal space of M at x. Let
N,(M) be an orthogonal complement of JT,M in Ty M. Then we have the
decomposition T; M=JT,M@®N,(M). Thus we see that the space N, (M) is
invariant under the action of J, that is, if Ne N, (M) then JNEN,(M). If Nisa
vector field in the normal bundle T*M, we put JN=tN+ fN, where ¢N is the
tangential part of JN and fN the normal part of JN. Then f is called an
f-structure in the normal bundle T+ M. If Vi f=0 for any tangent vector field X,
then the f-structure in the normal bundle is said to be parallel.

Next, let us recall the definition of a Sasakian manifold (for details, see [9]).
Let M be a Sasakian manifold with structure tensors (¢, &, 4, { , )). Then they
satisfy

¢’ X=—-X+9(X)E,
¢£=0, n(¢X)=0, n(&)=1,
(0 X,0Y)=(X,Y)—n(X)n(Y),
NX)=(X,&), Vx{=-9¢X,
(Vxd)Y=(X,Y) ¢t —n(Y)X,

for any vector fields X and Y on M. A Sasakian manifold is odd-dimensional and
orientable. The following Theorem B is known:

THEOREM B [7]. Let M be a Riemannian manifold. I[f M admits a Killing
vector field & of constant length satisfying

k2(VxVytE—Vo,vE)=(Y,E)X— (X, Y )¢
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for a nonzero constant k and any vector fields X and Y on M, then M is homo-
thetic to a Sasakian manifold.

The next Theorem C plays a fundamental role in this paper.

THEOREM C [6], [10]. Let M" , n>2, be a complete, connected and simply
connected Riemannian manifold. Then M" admits a non-trivial solution p of

(VVW)(X; Y; Z) + k2(20(Z){X, YY)+ (YK Z, X )+ w(X)(Y,Z)) =0

for any vector fields X, Y and Z on M", where w=dp, if and only if M" is iso-
metric to an ordinary sphere.

3. Proof of Theorem. Let M " be an extrinsic sphere in a Kéhler manifold /72"
with complex structure J. Let », be the vector subspace of the normal space of
M" at x€M" spanned by the mean curvature vector field H and »; be the or-
thogonal complement of », in the normal space. Then v and »* are differentiable
vector bundles over M " such that the normal bundle is the direct sum of theirs. For
any tangent vector field X of M” and a unit normal vector field e=H/pu, we put

G.1) JX=¢X—n(X)e+PX,

where ¢ X (resp. £) denotes the tangential component of JX (resp. Je), PX (resp.
¢) denotes the »*-component of JX (resp. Je). Notice that e is a parallel unit
normal vector field and

(3.3) Vye=—uX.
It is clear from (3.1) and (3.2) that
N(X)=—(JX,e)=(X,Je)=(X, &),
(X,Y)={JX,Y)=—(X,JY)=—(X, ¢Y).

Differentiating (3.2) covariantly and making use of (3.1), (3.2) and (3.3), we
obtain Vy &+ V§ {=—u(d X+ PX), from which

(3.5) Vx&=—pudX,
(3.6) Vi ¢ = —uPX.

It follows from (3.4) and (3.5) that £ is a Killing vector field on M". Differenti-
ating (3.1) covariantly and making use of (3.1), (3.2), (3.3), (3.4) and (3.5), we
obtain

V(oY) +un(Y) X+ Vi (PY)=¢Vx Y +PVx Y+ ulX, Y YE+ulX, V)¢,

3.4)

which implies that
(3.7) (Vx@)Y=Vx(¢Y)—o¢Vx Y=p(X,Y)§—n(Y)X),
(3.8) PVxY=Vi(PY)—pu(X, Y)¢.
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The equations (3.5) and (3.7) tell us that
3.9 Vi VyE— Vo, rE=p’ (Y, )X — (X, Y)§).

Now, let us consider a function p and a 1-form w defined by p=(§, £) and
w(X)=dp(X)=Xp, respectively. Then we have from (3.5)

(3.10) W(X)=2(Vx§, £)=2(VyE, £)=—2u{dX, £).
Operating Y to w(X) and using (3.5), (3.7) and (3.10), we get
(3.11) (Vyw) X ==2p%(o{X, Y)—9(X)(Y) — (DX, ¢ Y)).

Moreover, taking account of (3.5), (3.7), (3.10) and (3.11), we can see that the
1-form w satisfies

(V) (X3 Y5 Z) +p2QRu(ZMX, YY)+ (Y )X, Z) +w(X )Y, Z)) =0.

Its calculations are simple but lengthy, so we omit the calculations. Thus, if the
function p is non-trivial, that is, p is not a constant, M is isometric to an ordinary
sphere by means of Theorem C. This proves Case (1) of our Theorem.

Next, if the function p= (¢, £) is a nonzero constant, then Theorem B with
(3.9) implies that M" is homothetic to a Sasakian manifold since ¢ is a Killing
vector field on M". This proves Case (2) of our Theorem.

Lastly, if the function p vanishes identically, i.e., £ =0, then from (3.1) and
(3.5) we see that JX=PX, which means that M" is a totally real submanifold. In
this case, the vector bundle »* is decomposed more finely. Since (JTM, Jv)=0
and JvC»*, we find, for each point x of M", TirM=JT M®v,®Jr,®7,,
where 7, is the orthogonal complement of JT,M®v,®Jv, in T;-M which is
invariant under the complex structure J. Thus we have dim(7,) =2m —2n-2 20,
that is, m 2n+1. Next we show that the f-structure is not parallel in the normal
bundle. If N is a vector field in the normal bundle 7*M, we put JN=tN+ fN,
where ¢N is the tangential part of JN and fN the normal part of JN. Operating
X to the above equation, we have

Vx(IN) +pul X, tNYe—u(fN,e) X + Vi (fN)=—u(N,eYPX+tVy N+ fV¥N,
from which (Vx f)N=—p((N,ed)PX+{X,tN)e) or
I(Vx SIN|?=p> (KN, e)* | PX||*+ (X, tN Y.

If we assume that the f-structure is parallel in the normal bundle, then we have
PX=0and ¢tN=0. This is a contradiction. This proves Case (3) of our Theorem
and completes the proof of our Theorem. O

REFERENCES

1. B. Y. Chen, Geometry of submanifolds, Dekker, New York, 1973.
2. » Extrinsic spheres in Kdhler manifolds, Michigan Math. J. 23 (1976), 327-330.




10.

11.

EXTRINSIC SPHERES IN A KAHLER MANIFOLD 19

, Odd-dimensional extrinsic spheres in Kdhler manifolds, Rend. Mat. 12
(1979), 201-207.
, Geometry of submanifolds and its applications, Sci. Univ. Tokyo, Tokyo,

1981.

K. Nomizu and K. Yano, On circles and spheres in Riemannian geometry, Math.
Ann. 210 (1974), 163-170.

M. Obata, Riemannian manifolds admitting a solution of a certain system of dif-
Serential equations. Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto,
1965), 101-114, Nippon Hyoronsha, Tokyo, 1966.

M. Okumura, Certain almost contact hypersurfaces in Kaehlerian manifolds of con-
stant holomorphic sectional curvatures, To6hoku Math. J. (2) 16 (1964), 270-284.

, Totally umbilical submanifolds of a Kaehlerian manifold, J. Math. Soc.
Japan 19 (1967), 317-327.

S. Sasaki, Almost contact manifolds I. Proc. U.S.-Japan Seminar in Differential
Geometry (Kyoto, 1965), 128-136, Nippon Hyoronsha, Tokyo, 1966.

S. Tanno, Some differential equations on Riemannian manifolds, J. Math. Soc.
Japan 30 (1978), 509-531.

K. Yano and M. Kon, Anti-invariant submanifolds, Dekker, New York, 1976.

Department of Mathematics
Faculty of Science
Science University of Tokyo
Tokyo, Japan, 162






