A LATTICE POINT PROBLEM IN HYPERBOLIC SPACE

Peter Nicholls

1. Introduction. We consider the model of n-dimensional hyperbolic space
which is given by the interior of the unit ball, B={x: |x|<1}, where x=
(X1,X2,...,%X;) ER” and |x|=(Lx?)"% Lines in the space are arcs of circles
orthogonal to the unit sphere, S={x: |x|=1}, and angle is Euclidean angle. The
hyperbolic metric p is derived from the differential

_ 2|dx|
C1-|x?

and the hyperbolic lines are geodesics for this metric.

A Moebius transform preserving B is a product of an even number of inver-
sions in spheres orthogonal to S and such transforms preserve the hyperbolic
metric p. We denote by M the full group of all Moebius transforms preserving B.
If G is a discrete subgroup of M and we select a point x € B, then the collection of
G-equivalents of x form a lattice of points in B. We shall be concerned in this
paper with the way in which such a lattice is distributed in B.

Suppose x;, X, are two points of B and s is a positive real number. For the dis-
crete group G we define the counting function N(s, x;, x;) to be the number of
transforms v € G such that p(x;, v(x;)) <s. We are concerned with the asymp-
totic behavior of N(s, x;, X;) as s approaches infinity - this can be viewed as the
hyperbolic analog of the Gauss circle problem.

The Dirichlet region D for the group G is defined by

D={x€B:p(x,0)<p(y(x),0) all yEG,y#I).

dp

Now if v is a Moebius transformation we denote by v’(x) the Jacobian matrix of
v at x and by |y’(x)| the positive number such that ’(x)/|y’(x)| is orthogonal.
In other words |y’(x)| is the linear change of scale at x, the same in all directions.
Since |y/(x)| = (1—|v(x)|*)(1—|x|?) " (see [1: ch. II]) then |y’(x)| <1 if and only
if |v(x)|>]x| and we see that

D={x€B:|y'(x)|<lall yEG,y#I]}.
Hyperbolic volume V in B is derived from the differential

2"dxdx, . . .dx,
V=
a (1—|x[»"

where x= (xi,...,X,). We denote by V(G) the hyperbolic volume of D. In this
paper we are concerned solely with the situation when V(G) <o (the infinite
volume case is discussed in an earlier paper of the author [11]).
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A few years ago S. J. Patterson [12] showed that, in dimension two, for a
group G of finite volume

N(s,x1,x%)~Vix:p(x,0)<s}/V(G) as s—> o0

—a result that accords exactly with intuition. His proof makes essential use of
the Selberg theory concerning the spectral decomposition of the Laplace operator
on the quotient space and yields also the second order term. A weaker, but anal-
ogous result in dimension three has been proved by F. Fricker [4].

Similar analytic methods have been used very recently by Lax and Phillips [7]
to obtain asymptotic estimates for the counting function for a wide class of dis-
crete groups of Euclidean and non-Euclidean motions. In particular, their results
contain Theorem A below.

Quite recently Aaronson and Sullivan (conversation with J. Aaronson) have
proposed a new method for deriving the asymptotic formula above. This method,
using an ergodic result of E. Hopf [5] concerning the geodesic flow on the quo-
tient space, is valid in all dimensions but yields only the first order term. The
asymptotic result is as follows.

THEOREM A. Let G be a discrete group of finite volume acting in the unit ball
of Euclidean n-space. If x,x, €B then

N(s,x1,x)~Vix:p(x,0)<s}/V(G) as s—> o,

In the case where G not only has finite volume but has a Dirichlet region D
whose closure is compact in B we can do better.

THEOREM 1. Let G be a discrete group acting in the unit ball of Euclidean
n-space, if DCB then :

N(@s,x1,x)~Vix:p(x,0)<s}/V(G) as s—> .
uniformly for all x|,x, in B.

We remark that Theorem 1 is false without the assumption that DC B. To see
this, we consider a sequence {a,} of points of D with |a,| converging to one.
Define s, =p(0, a,) which is unbounded as » tends to infinity and note that, for
all n, N(s,,0,a,)=0.

Since this proof of Theorem A has not appeared in the literature we will prove
it, and Theorem 1, in Section 3. Our main purpose however, is to show how the
ergodic method can be refined to obtain sharper orbital distribution results. We
will show that each orbit under a discrete group of finite volume is uniformly dis-
tributed in all directions.

Let 6 be a region on S which is obtained as the intersection of S with the interior
of a ball. It is possible to consider more general regions than this—the crucial
properties are that # should be open, connected and such that the part of 8 within
e of its boundary should have Euclidean (# —1) dimensional area which goes to
zero with e. The region @ subtends at the origin a solid angle which we denote by
O and, for s positive, we define
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O(s)=0N{x:p(x,0)<s}.

For the discrete group G we wish to count orbit points which lie in O(s) and
accordingly define, for s positive, a€B and O as above, N(O,a,s) to be the
number of v € G with y(a) €O (s). The measure of solid angles subtended at the
origin is denoted by w and we state our main result.

THEOREM 2. Let G be a discrete group of finite volume acting in the unit ball
of Euclidean n-space. If a € B and 8 is the intersection of S with the interior of a
ball then

N(O,a,s)~w(@)Vix: p(x,0)<s}/V(G)W(S) as s—> oo,

We note that weaker, integrated, versions of this result have been obtained by
Tsuji [14: p. 557] in dimension two and the author [9] in dimension three.

We give two applications of these asymptotic results. The first is to the conver-
gence of certain classical series associated with a discrete group.

THEOREM 3. Let G be a discrete group of finite volume acting in the unit ball
of Euclidean n-space and let t be a positive real number. The series

Y =]y
v:ly(0)|<s
converges, as s — 1, if and only if t >n—1. Further,
_ w(S) 1
(1—=|y(0))"~ 1~ log( ) as s—1,
i 47O V(G) “\l-s
and, if t<n-—1,

(n—1—-t)"'1—=5)""*! gs s>1.

¢ wi(S)

7:|vac':>|<s(1 oD V(G)

Certain estimates on the partial sums of such series have been obtained, in the
case n=2, by Lehner [8] and, in the case n=3, by Beardon and Nicholls [3].

The second application yields some quantitative results connected with a class

of limit points called points of approximation [2], or conical limit points [13].

We first define a Stolz cone. Choose £ €S and let L(§) denote the radius to £.
Now for s>0 we define the Stolz cone of opening s at £, denoted S(§,s), by

S(¢,s)={x€B:|x|>3 and p(x, L(£)) <s).

The point £ is said to be a conical limit point for the discrete group G if one (and
hence every) G orbit meets some Stolz cone at { in infinitely many points. This
class of limit points is of great importance in the theory of discrete groups and
has been studied extensively [2, 10, 13]. Suppose G is a discrete group with
DcCB, then it is known that every point of S is a conical limit point. We can
obtain estimates of the number of orbit points which approach a given conical
limit point in a Stolz cone. Defining then, for ¢,5>0 and £ €S,C(¢,&,5) to
be the number of v in G with p(0,v(0)) <t and y(0) € S(£,s) we have the fol-
lowing result.
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THEOREM 4. Let G be a discrete group acting in the unit ball of Euclidean
n-space such that D CB. There exist real positive constants ty, Sy, a, b, such that
l:ff>t(), S>Sp then

at<C(t,£,s)<bt
Jor any £ €8.

Theorem 4 is motivated by a classical result in the theory of Diophantine
approximation and we conclude the introduction by indicating the connection.
Consider the modular group T,

I'={y:y(z)=(az+b)(cz+d) ', a,b,c,dE€Z, ad—bc=1},

which is a Fuchsian group acting in the upper half of the complex plane. The set
of limit points for this group comprises the extended real line and the conical
limit points are precisely the finite irrationals.

Suppose y €T" and a €R, denote by # the angle between the (Euclidean) join
of o and (i) and the line {Rez=«a, Imz>0}. Some easy trigonometry and
algebra lead to:

_m~()
|y (i) —«f
where y(z) = (az+b)(cz+d) ™. Thus |§| < if and only if |ac+bd —a(c?+d?)| <
M where 8 and M are related by a (complicated) formula. Now let {v,] (v,=
(a,z+b,)(c,z+d,) ") be a sequence in T' with {v, (i)} approaching « in a Stolz
angle. We see, from the above, that for each such », |a,c, + b, d, — of(c? +d,?)| <
M. Now, consideration of isometric circles or some elementary algebra shows
that the sequence {—d,/c,} also converges to « and thus, for » large enough,
|d,/cy| <|ee|+1. For such n,

a,c,+b,d,
ci+d?

Cos = = {1+ [ac+bd—a(c?+d*)]?} 12,

a,  ayCpt+byd, <M+|a]+1 k
Cn ci+d? ct+d? ¢k’

la—a,/c,|<|a—

where k£ depends on the opening of the Stolz angle. Estimates such as this serve to
show that counting solutions of the inequality |a —a/c| <k|c| 2 is essentially the
same as counting group images of i approaching « in a Stolz angle.

A result in Diophantine approximation [6: p. 27] states that for almost all real
a the number of integer solutions p, g of the inequalities 0 <ga—p<1/q and
1<g <N is asymptotic to klog N as N — oo, Theorem 4 gives estimates of this
type (weaker, since they are only bounds and not asymptotic results) for more
general discrete groups in all dimensions.

In Section 2 we give some details concerning the geodesic flow and the ergodic
result we need. The proofs of Theorem A and Theorem 1 are given in Section 3
and Section 4 comprises the proof of Theorem 2. Finally, in Section 5, we give
the proofs of Theorem 3 and 4.

2. The geodesic flow. In this section we define the geodesic flow and state
some of its properties. The geodesic flow is first defined on the unit tangent
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space of the ball (we follow the treatment in Ahlfors [1] for this). We then show
how to define the flow on the quotient of the tangent space by a discrete group
G. Finally, we give the crucial result (due to E. Hopf [5: p. 291]) that when G is
of finite volume then the geodesic flow on the quotient space is mixing.

Denote by 7(B) the unit tangent space of B. Thus a point of 7(B) consists of a
point x€B and a direction at that point. The direction will be given by a unit
vector £ €S. Thus T(B) is the space of directed line elements (x, £). The Moebius
group M acts in an obvious way on T(B). If vy € M then x is mapped to y(x) and
at the same time £ is transformed by the matrix y’(x) to give the new direction
v'(x)- £ for the line element at y(x)—but in order to obtain a unit vector we must
divide by |y'(x)|.

Thus the action of vy on 7T(B) is defined by

Y'(x)
7 £) G”Mwmﬁ>
There is an invariant volume m on 7T(B) derived from the element dm=
dV(x)dw(¢) where w(§) denotes the solid angle. The volume V is invariant
under a Moebius v, and £ undergoes a rotation which keeps the spherical measure
invariant.

We now define the geodesic flow, which is a one parameter group of diffeo-
morphisms g, of T(B) which satisfy g,cg, =g, +5.

Every line element (x, £) determines a geodesic ray which starts from x in the
direction . Fix a real number ¢. Let x move along the geodesic from x to a point
x" at a directed hyperbolic distance ¢ from x. At the same time let the vector £
slide to the positive tangent vector £’ at x’. We define g,(x, £)=(x", £’).

It is quite evident that g,cg; =g, and that g7 '=g_,. It is also clear that the
flow is invariant under Moebius transforms in the sense that g,ey=+vyeg, for any
Moebius v preserving B. It is known that g, is a flow in the sense that each g,
leaves the volume element dm invariant (see [1: p. 76] for a proof).

Now suppose G is a discrete subgroup of M with Dirichlet region D as defined
in Section 1. Consider the quotient space @ =T7(B)/G with the projection map
7: T(B) > T(B)/G. A subset A of Q is said to be measurable if = '(A) is
m-measurable in T(B) and in that case we define the m-measure of A: m(A)=
mi(x,£)€n " Y(A): x€D}. Note that Q is measurable and that m(Q) is finite if
and only if G is a group of finite volume. In that case we have m(Q) =V (D) w(s).

Since g, is invariant under Moebius transforms and preserves the measure m
on T(B), we see that it acts as a flow on Q. This action, of g, on the quotient
space (2, has been studied extensively for many years and much is known. From
our point of view the most important property of g, is that it is mixing for groups
of finite volume. This result, Lemma 2.1 below, is due to E. Hopf [5, p. 291].

LEMMA 2.1. If G is a group of finite volume then the flow g, on Q is mixing. In
other words, if Ay and A, are measurable subsets of ) then

lim m(AiNg (Ag)}= T 7(A)
t—>co m(Q)
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For our purposes it is more useful to have a formulation of this result in the
line element space 7T(B). Considering one sheet of = ~'(T(B)/G) we derive the
following from Lemma 2.1.

LEMMA 2.2. If G is a group of finite volume and if A,, A, are measurable sub-
sets of DX S (itself a subset of T(B)) then

. _ m(A))m(A,)
lllrr:om{G(Al)ﬂg;(Az)}— V(D)-w(S)

3. Proofs of Theorem A and Theorem 1. Let G be a discrete group of finite
volume acting in B with Dirichlet region D centered at the origin. Let ACD bea
ball centered at a € D. We will use the ergodic result, Lemma 2.2, to prove the
following asymptotic formula.

. wilxip(x,0)=¢}JNG(A)]  V(A)
3.1 lim = ,
{— o w(S) V(D)
where w, as before, denotes solid angle subtended at the origin. Thus (3.1) says
that the group images of A ultimately cover their fair share of large enough
hyperbolic spheres centered at the origin.
We show first how (3.1) leads to the desired asymptotic formula for the count-
ing function.
Upon integration we obtain from (3.1):
. Vllxip(x,0)<t}NG(A)]  V(A)
(3.2) lim = .
{— o Vix:p(x,0)<t} V(D)

Now choose ¢ >0 and find § >0 so small that for £>¢,, say,
Vix:p(x,0)<t+6}/Vix:p(x,0)<t}<l+e,

which may be done since, in n-dimensions, V{x: p(x,0)<t}~kexp[(n—1)¢].
We apply (3.2) to the ball A of radius 6 and deduce that, for #>¢,, say,

Viix:p(x,0)<t+6}NG(A)]/Vix:p(x,0)<t+6}<V(A)(1+€)/ V(D).
Now if p(y(a),0) <t then y(A)C{x: p(x,0)<t+6}, and so
V(AYN(t,0,a) <VI[{x:p(x,0)<t+6}NG(A)].
Using the inequalities above we see that, for 1> ¢, _
N(t,0,a)/Vix: p(x,0) <t} < (1+€)*/V(G).
A similar lower bound shows that
(3.3) N(t,0,a)~Vix:p(x,0)<t}/V(G)

as t — oo,

Now consider two points x,x, in B and let v be a Moebius transform with
v(x1) =0, v(x3) =w, say. We write I‘:'yG'y_1 and note that V(I') = V(G).
Clearly,
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p(x1,8(x2)) =p(v(x1),7&(x2))
=p(0,vgy (W)
for any g € G. It follows that
Ng(s,x1,X%)=Nr(s,0,w).

Theorem A is now an immediate consequence of (3.3).

It remains to prove (3.1). The idea is as follows. Let A be the fixed ball with
hyperbolic radius 6 and hyperbolic center a. Now let C be a ball centered at the
origin of hyperbolic radius r. We define two subsets 4,, 4, of T(B) by

A1=AXS, A_')_:CXS
and apply Lemma 2.2. Note that g,(A,) is the ‘‘annulus”
{x:t—r<p(x,0)<t+r)}

together with a set of directions at each point. The lemma now gives information
about how much of this ‘“‘annulus’’ is covered by group images of A;. We are
able to account for the direction set at each point and, by letting r tend to zero,
we will be able to derive (3.1).

To save writing we will denote g(s)=w[{x: p(x, 0)=5s}NG(A)] and the fol-
lowing result is needed.

LEMMA 3.1. The function g(s) is uniformly continuous on (0, ).

Proof. We will show that, in dimension n (n22), |g(s)—g(s—¢€)|=0(e"™")
uniformly in s as e = 0. We assume first that the radius, 6, of A is so small that
G(A) is a non-overlapping set of balls. We ask how many such balls can intersect
the sphere {x: p(x,0) <s}, and accordingly define n(s, A) to be the number of
v € G with the property that y(A)N{x: p(x,0) <s}# @. We can obtain an upper
bound on n(s, A) by a volume argument and, in fact,

(3.4 n(s,Ay<kVix:p(x,0)<s} for s=sy, say,

where k is an absolute constant. The proof of (3.4) is exactly analogous to that giv-
en by Tsuji in dimension two [14: p. 516] and by the author in dimension three [9].
Now consider a single image A’ of A and we claim that the difference

fw(A'N{x:p(x,0)=5—€}) —w(A'N{x: p(x,0)=s})

is maximized if A’is internally tangent to the sphere {x: p(x,0) =s}. To see this,
consider the two-dimensional case with s large and e small (compared to §). The
intersection A’N{x: p(x,0)=s} is essentially a chord of A’ and the difference
given above reduces to a multiple (depending on s and ¢) of the difference in
angle subtended at the Euclidean center of A’ by two parallel chords. Our claim
follows easily from this. 0

Now the set A'N{x: p(x, 0) =s—e¢] is almost (for s large and e small) an (n—1)
dimensional ball, situated in the hyperplane normal to the radius of B which
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Qix,0)=5~¢

Figure 1

passes through the center of A’, and whose hyperbolic distance from the origin is
s—e. See Figure 1, which illlustrates the situation in dimension two.
The solid angle subtended at the origin by this (n—1) dimensional ball is
asymptotic to a constant times N*~! where \ is its Euclidean radius.
Calculation shows that A is asymptotic (as s — ) to e exp(—s). As can be
seen from Figure 1, this calculation requires only Pythagorads’ theorem but is
fairly tedious as it involves the Euclidean radius of A’ which is given by the

formula
o Afe=t e' "% -1
=5 le+1 e 2®+1 ]
Thus the difference
|w(A’ﬂ{x:p(x,0)=s—e])—w(A'ﬂ[x:p(x,0)=s])|

is bounded by a quantity which, as s =, is asymptotic to a constant times
(8¢)" “lexp[—(n—1)s]. If we assume that this maximum difference is attained
for every single image A’ of A which intersects the ball {x: p(x,0) <5}, we obtain
from the above and (3.4) that |g(s)— g(s—e) is bounded above by a quantity
which is asymptotic (as § = ©) to

k(se)" ' exp[—(n—1)s]Vix: p(x,0)<s).

The proof of Lemma 3.1 is complete when we note that V{x:p(x,0)<s} is
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asymptotic to a constant times exp[(n—1)s] (this is obtained by integrating the
volume element dV over the ball).

We now prove (3.1). Let a € D be fixed and let A C.D be a fixed hyperbolic disc
centered at a. Define A, and A, as before. It becomes necessary at this point to
consider both Euclidean and non-Euclidean radii of spheres centered at the
origin. For the remainder of this section, whenever s is a positive real we define

3 sinh(1s)
 [1+sinh?(35)]"?
and note that p(x, 0) =s if and only if |x|=s,.
We make two further definitions. If 0 <7 <o then set
X(t)={x:(x,£)eg, (A,) for some £€S)

and for any x€B set I(x,t)={£€S: (x,E)Eg,(A,)}. Trivially I(x,t) #¢ if and
only if x€X(¢). It follows from the symmetry of the situation that if
p(X] ’ 0) =p(XZ, 0) =s then

S

wll(x, t)]=w[I(x;, )]
=L(s,t), say.

We are now in a position to use Lemma 2.2, and we observe that

mIGANNg (A= WL, O] xaw () dVx)

_S’“ L(s,t)g(s)s/ " ds
o d=sp)" ds

where we recall that X (¢) is the annulus {x: ¢t —r<p(x,0) <t+r}. Now observe
that m(A,;)=m(g,(A,)) and

ds

mg A= Wil 0] dV e
t

das.

_S'“ L(s,0)w(S)s'~" ds
e (=sp)" s
We thus write m[G(A;)Ng,(A,)]/m(A;) as the quotient of two integrals and,
from the continuity of the integrands, we see that for some s satisfying  —r <
s<t+r we have m[G(A;)Ng,(Ay)1/m(A,)=g(s)/w(S). However, by Lemma

3.1, g is uniformly continuous and so, given ¢>0, we find r>0 so small that
|m{G(A)Ng,(Ay)]1/m(A,) —g(t)/w(S)|<e. From Lemma 2.2,

m[G (A1) Ng (A2)]/m(Az) = m(A)/V(D)w(S)
as t = oo, We note that m(A4;) =V (A)w(S) and deduce that
lim g(¢)/w(S)=V(A)/V(D).

t—> o

This is (3.1) and the proof of Theorem A is complete. a
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We now prove Theorem 1. Suppose G is a discrete group with DC B, suppose
further that there exist sequences {a,}CB and {s,}, with s, = c and that, for
some ¢>0,

3.5) IN(s,,0,a,)/Vix:p(x,0)<s,) —1/V(G)|>¢

for all n. We will derive a contradiction. It is clear that for all v € G and any
weEB, N(s,0,w)=N(s,0,v(w)), and so we may assume that for each n, a, eD.
Thus, passing to a subsequence if necessary, we assume @, — @ in B. From (3.5)
we verify that |N(s,,0,a)/V{x:p(x,0)<s,}—1/V(G)|>¢ for n large enough.
This contradiction with Theorem A completes the proof of Theorem 1. O

4. Proof of Theorem 2. Let G be a discrete group of finite volume acting
in B with Dirichlet region D centered at the origin. Let ACD be a disc cen-
tered at the origin. Let § C.S be the intersection of S with the interior of a ball,
and denote by O the solid angle subtended at the origin by 6. For s>0 set
O(s)=0N{x:p(x,0)<s}. We will use the ergodic result, Lemma 2.2, to prove
the following asymptotic formula:

. wix:p(x,0)=¢}NONG(A)]  V(A)
4.1) lim = .
Note that this formula generalises (3.1) and shows that the group images of A
ultimately cover their fair share of all conical sections of large enough hyperbolic
spheres centered at the origin.
Before deriving (4.1) we show how it leads to the desired asymptotic formula

for the counting function.
Upon integration we obtain from (4.1):

_VIB(NG(A)] _ V(A)
(4.2) hm =] - VD)

We recall that N(¢, ©) is the number of v € G with y(0) €O(¢) and, using esti-
mates similar to those given in Section 3, we see that

lim V(A)-N(t,0) —
ow VIO@)NG(A)

Combining this with (4.2) yields:

i NGO 1
i»w VIO()]  V(D)’

which is the required asymptotic estimate for N(s, O).

It remains now to prove (4.1). The proof proceeds along similar lines to the
proof of (3.1). Accordingly we fix A and define A;=A X S; now let C be a disc
centered at the origin and of hyperbolic radius r. We define A, =C X and note
that A, is different from the A, defined in Section 3—in the present case we
assign to each point in C only those directions in . It is useful to observe that
O(t)=Up<s<; & ({0} x80) and thus g,(A;) is (for small r) a thin shell whose
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cross-section is approximately g, ({0} x8) (i.e., ©N{x:p(x,0)=¢}), together
with a set of directions at each point.

Explicitly, this shell is given by X () ={x: (x, £)€g,(A;) for some £ €S} and
the set of directions at each point x of X(¢) is given by

I(x,t)=[£€S: (x,§) €8/ (A2)].

For economy of notation we have used the same symbols, X(¢) and I(x,t), as
were used in Section 3—their meaning is of course different in this section. The
shell X(¢) is now a subset of the ‘‘annular region” {x: t—r<p(x,0)<t+r}. Of
great importance is the fact that, contrary to the situation in Section 3, the values
of the angular measure w of two direction sets I(x;, t), I(x,, ) associated with
points x;, x, of equal modulus in X(¢) are not necessarily equal. This fact gives
rise to an added difficulty in computing m[G(A;)Ng,(A,)]1/m(A,), which is
required for the application of Lemma 2.2.
We will show that given ¢ and s satisfying t —r <s <t +r, then

X()N{x:p(x,0)=s]}

comprises an admissible part, any two points of which have direction sets of the
same angular magnitude, and an inadmissible part which, for r close enough to
zero, is so small as to make no difference in our asymptotic estimates.

Accordingly, suppose x€ X(t). Then, for some (€S, (x,£)€g,(A;) and so
the sphere { y: p(x, y) =t} intersects C. Join each point z of this intersection to x
by a geodesic ray and let £, be the direction at z which determines this geodesic.
We say that x is admissible if each such £, €60. To put it another way: If x € X (¢)
then x is obtained by moving a distance ¢ from a point of C along a geodesicin a
direction belonging to 0; x is admissible if it can be so obtained from any point
of C which is distant ¢ from x. Figure 2 illustrates an admissible point x and the
set of directions 7(x,¢). It will be seen that if x;,x, € X(¢) are both admissible
and if [x;|=|x;|, then I(x;, ¢) is merely a rotation of 7(x;, ¢) and consequently
wll(x;, )] =wll(x,1)].

As regards the inadmissible set we have the following.

LEMMA 4.1. Given ¢>0 there exists ro>0 such that if r<ry and s, t satisfy
1<t—r<s<t+r then the inadmissible part of X(tYN{x:p(x,0)=s) has angu-
lar measure (w) less than e.

Proof. Suppose x € X(¢) is inadmissible. Then there exists a point z € C with
p(z,x) =t and such that the geodesic connecting z to x determines a direction at z
which does not belong to 6. On the other hand, x is obtained by moving a dis-
tance ¢ from a point of C along a geodesic in a direction belonging to §. We may
as well suppose that this latter point is on the radius joining 0 to x. Figure 3 illus-
trates the situation.

A straightforward calculation shows that the Euclidean separation of the two
points &, &, of Figure 3 is O(r) as r — 0 provided that p(x, 0) > 1, say. It follows
then that the radial projection of x onto S has a separation from the boundary of
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6 which is of the order O(r). Thus the radial projection of the inadmissible set
onto S is contained in a band of width O(r) around the edge of 6. Since 4 is the
intersection of S with the interior of a ball, this band has an area which ap-
proaches zero with r. Since the angular measure of our inadmissible set is the
area of its projection onto S, we see that the lemma is proved. O

We return to the proof of (4.1) and note that

4.3) m[G(A)Ng (Ax)]= SX“) wlI(x, t)IxG(a)(x) dV(x).

The right side of (4.3) is computed as a double integral—first over the sphere
{x:p(x,0)=s] and then radially, letting s vary from ¢ —r to ¢ +r. We approxi-
mate this first integral, replacing X(¢)N{x: p(x,0)=s} by the slightly smaller
set O©N{x:p(x,0)=s} and then assuming that every point in the latter set is
admissible. The error obtained may be estimated using Lemma 4.1. For admis-
sible x in X (¢) satisfying p(x,0)=s, we denote by L(s,¢) the angular measure
wll(x,1)].

Given ¢ >0 we find ry so small that if »<ry and #>1, say, then

t+r L(S’t)sln—l
i—r  (1=s{)"
differs from 1 by at most e.

Similarly, for the same values of r and ¢,

r L(s,t)s! ds,
- a-spy O ®

d.
m[G(A4)Ng (A,)] / | wilx: p(x,0)=s]NONG(A)] 1 ds

migi ) |

differs from 1 by at most e.

We proceed as in the proof of (3.1), using the uniform continuity of
wl{x: p(x,0)=5s}NONG(A)] (which follows from the proof of Lemma 3.1), to
deduce that

lim wi{x:p(x,0)=t}NONG(A)]/w(0)= lim m[G(A)Ng,(A)1/m[A,].

{ —> co {—>co
By Lemma 2.2 this latter limit is equal to m(A4,;)/V(D)-w(S) and, since m(A,) =
V(A)-w(S), we see that

lim wl{x: p(x,0)=¢t}NONG(A)]/W(0)=V(A)/ V(D).

t— oo
This is (4.1) and the proof of Theorem 2 is complete. O

5. Proofs of Theorem 3 and 4. Let G satisfy the hypotheses of Theorem 3 and
define, for 0 <r <1, n(r) to be the number of y € G with |y(0)|<r. Clearly n(r) =
N(log((1+r)/(1—r)),0,0) and so, by Theorem A, n(r)~V{|x|<r}/V(G) as
r = 1. From the definition of solid angle measure, '

r ZHW(S)tn—l

V{|x|<r}=S0 Gy
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and we see that
w(S)
(n—=1)V(G)(1—r)"" "

Theorem 3 now follows from (5.1) and the fact that, for positive ¢,

(5.1) n(r)~

L (-ly@)'=| (=r)'dnir),

[v(0)| <s
Now let G satisfy the hypotheses of Theorem 4 and, from Theorem 1, we find
So such that if s 25

(5.2) %V{x: p(x,0)<s}/V(G)<N(s,x1,x)<2V{x:p(x,0)<s}/V(G)

for all x;,x, in B. Now choose £€S and form a sequence of discs D,, each
of hyperbolic radius s, and whose centers a, lie on the radius to £ and satisfy
ol(a,, 0)=2ns,.

Those open discs are mutually exterior and are all contained in the Stolz cone
S(&,s0). From (5.2) we see that the number of images of 0 contained in each
D, is at least %V{x: p(x,0)<s}/V(G). The lower bound of Theorem 4 now
follows when we observe that the number of complete discs D, contained in
{x:p(x,0)<t}is, for ¢ large enough, the integer part of ¢/2sy plus one.

To obtain the upper bound of Theorem 4 we proceed as follows. Any point of
S(&,sp) is at most a hyperbolic distance s, from the radius to £ and therefore at
most a hyperbolic distance 2s, from one of the points a, previously defined.
Thus the cone S(&, sp) is contained in the union of discs D, which are each of
radius 2s, and centered at the points @,. The required result follows from (5.2)
when we observe that S(&,s0) N {x: p(x,0) <t} is contained in U}_, Dj,, where
N is the integer part of ¢/4sp plus one.
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