DOUBLY SLICED KNOTS AND DOUBLED DISK KNOTS

J. Levine

A doubly sliced knot is, roughly speaking, a knot which can be realized as a
slice of a trivial knot. This notion was introduced by Fox [4] and Sumners [16];
Kearton [9] and Stoltzfus [18] have extracted algebraic obstructions from the
middle dimensional homology of the infinite cyclic covering of the complement
of the knot. In the case of higher dimensional simple knots the vanishing of this
obstruction is necessary and sufficient for a knot to be doubly sliced ([16], [7],
[19]). One can, in addition, ask whether there are further obstructions in the case
of non-simple knots. In comparison, recall that there are no such further ob-
structions to a knot being sliced [12].

In his recent Ph.D. dissertation [15], D. Ruberman has used Casson-Gordon
type invariants to define such obstructions and construct ‘‘algebraically’’ doubly
sliced knots (i.e., satisfying the Sumners or Stoltzfus conditions) of every dimen-
sion which are not doubly sliced (also see [5]).

In the first part of this note we present a simpler approach by showing that the
entire cohomology ring of the infinite cyclic covering of the complement of a
knot represents a generalization of the Sumners and Stoltzfus obstructions.
Examples in dimension 2 and 4 show this is a non-trivial generalization, but I
have not yet found examples in higher dimensions.

The analogy between doubly sliced knots and codimension one submanifolds
of Euclidean space, which is pointed out in [5] and [15], is also apparent in this
result—compare [14].

We illustrate the usefulness of this approach by some examples: (1) the 2-twist
spin of any 2-bridge knot and (2) the knots constructed by Cappell-Shaneson [3]
are all shown to be not doubly sliced.

In the second part we show that a large number of doubly sliced knots can
be generated by the process of ‘‘doubling’ a disk knot. This generalizes the
observation of Sumners [16] that the connected sum of any knot with its in-
verse is doubly sliced and, furthermore, includes all spun and super-spun knots
[2]. It is not hard to find doubly sliced knots, in low dimensions, which are
not doubled disk knots, but I have not been able to find higher-dimensional
examples.

We also discuss, following suggestions to the author by D. Sumners, the re-
lated phenomenon of invertible disk knots (see [16]). The above result about
doubled disk knots follow from the fact that ‘‘suspensions’’ of disk knots are in-
vertible. On the other hand, examples of invertible knots which are not suspen-
sions can be found in every dimension using the construction of [6].

However, I have found no examples which are ‘‘1-simple’’, i.e. the comple-
ments of the disk knot and its boundary knot have abelian fundamental group.
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1. A. An n-knot is defined to be a locally flat PL-submanifold K"<S"*2,
where K" is PL-homeomorphic to S”. It is doubly sliced if there exists a trivial
(n+1)-knot K"*'c8"*3 such that K"+'NS"T2=K", A knot is trivial if it
bounds a PL-locally flat imbedded disk. We regard S”*2<S”*3 in the standard
way (see [16]).

In [16] Sumners observes that the Blanchfield pairing of a doubly sliced
n-knot, with »n odd, is Ayperbolic. In [18] Stoltzfus observes that the ‘‘torsion
pairing’’ of a doubly sliced n#-knot, with n even, is hyperbolic.

If X denotes the complement of the knot and X the canonical infinite cyclic
covering defined by H;(X) = Z, then we have non-singular pairings:

H{(X)xH,.,_i(X)—>Q(A)/A (Blanchfield pairing)
T(X)+T,_.(X)>0/Z (Torsion pairing)

satisfying certain linearity and Hermitian properties (see [11]). 7;(X) is the
Z-torsion submodule of H;(X) and both are regarded as A=Z[¢, '] modules
induced by the group of covering translations.

When n=2i—1, for the Blanchfield pairing, or n=2i, for the torsion pairing,
we are dealing with a pairing of a module with itself. Such a pairing, ¢ , ) is
hyperbolic if the underlying module H=A4 ® B where A, B are self-annihilating
submodules under ( , ). By non-singularity, A and B are thus represented by
( , » as duals of each other.

Conversely, it has been proven by Sumners [16] and Kearton [7] that in the
case of simple, higher odd-dimensional (n>2) knots, these hyperbolic proper-
ties are sufficient to imply doubly sliced. A knot is simple if ©;(X) = m;(S') for
2i<n. When n=1,2 the Casson-Gordon invariants imply the existence of
counter-examples (see [15]).

We will regard the product structure in X from a different point of view—that
taken by Milnor [13]. We will proceed from Milnor’s result [13] that the infinite
cyclic covering X of the complement X of a tubular neighborhood of an n-knot
behaves, homologically, like a compact (7z+1)-manifold. More specifically
H"tY(X,0X)=F, where coefficients are a field F, and the cup-products
B;: H(X)x H"*'=/(X,3X) — F are non-singular for all i. Note that H'(X) =
H(X,3X), for 0<i<n+1, when X is a knot complement.

THEOREM A. If X is the complement of a doubly sliced knot, then H*(X)
is hyperbolic in the following sense. There exist (graded) subalgebras A, BS
H*(X) (i.e., A, B are F[t,t '1—submodules and closed under cup-product),
closed under cohomology operations, satisfying:

() HY(X)=A'®B' fori>0;

(ii) Bi(A'xA"T'=)=0=6;(B'xB"*'~) for all .

As a consequence, the pairing A'XB""1 " > F induced by B;, is non-singular
Joro<i<n+l1.

This theorem overlaps with the previous results ([16), [18]) since the Blanch-
field pairing (over Q) can be derived from (§;, when n=2i—1, and the torsion
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pairing on elements of prime order p can be derived from 3;, when n=2i, and
the Bockstein H (X) » H'*Y(X), for F=Z/p.

The proof of theorem A is very easy. Let K**!<$”*3 be a trivial knot such
that K"*1N$"+2=K" a doubly sliced knot. Let T be a tubular neighborhood of
K"*'in $"*3 so that TNS"*2 is a tubular neighborhood of K" in S$"*2. Set
X=8""2—(TNS"*?), X,=D*2_(TNDI*?). A Mayer-Vietoris argument
gives isomorphisms:

H{(X,)®H(X_)>H'(X), for i>0,

induced by the inclusion maps i, : X = X, since X, U X_ is the complement of
a trivial knot and so H (X, UX_)=0 for i>0.

If we now set A=i%* H*(X,), B=i* H*(X_), all the conclusions of the
theorem, except (ii), are immediate. To see (ii), let V. =D2*3NJT and consider
the exact homology sequence:

H"™ (X, V) S H™ (X, V) S H™ X, 0%,) > H' (X, V).

Note that V, is contractible and, by [13], H"*?(X,)=0and H"**(X,,0X,)=F.
Also H" 20X, V,)=H"*\(X,8X) =F by excision. Thus, §* is an isomorphism
and so i} =0. Since (3; |A"><A'“rl ~/ pulls back, under i%, to the cup- -product
HY(X,) x H™ (X, V,) > H"" (X, V,), it follows that §; (A x A" =

0. A similar argument shows g3;(B’xB"*1=)=0. 0O

B. We illustrate Theorem A by several examples.

1) We show that the 2-twist spin of any 2-bridge knot K is not doubly sliced.
This example could also be deduced from the hyperbolic property of the torsion
pairing.

According to Zeeman [20] these knots are fibred with fiber the double
branched cover of K. According to Schubert [17], this cover is a lens space
L(r,s) for some odd integer r. Thus, if we choose p a prime dividing r and
F=2Z/p, then H'(X)=F generated by «, and H*(X)=F generated by the
Bockstein of «. The impossibility of a decomposition of H*(X) required by
Theorem A is clear.

2) We consider the knots constructed by Cappell-Shaneson [3].

Let M be an (n+1) X (n+1) integer matrix satisfying the following proper-
ties:

(1) det M= +1,

(i) det(NM—TI)==+1for 0<i<n+1,
where N'M is the ith exterior power of M, and I the identity matrix. M defines a
linear automorphism of R”*! preserving the integer lattice, and therefore, an
automorphism p of the (n+41)-torus T=S!x --- xS!. The induced automor-
phism on H;(T) is given by N'M. By taking the mapping torus of i, [3] con-
structs a fibred n-knot with fiber 7% = T-point and monodromy pu.

Conditions (i) and (ii) are actually conditions on the characteristic polynomial
A(t)=det(tI—M). For the cases n=2,3,4 only i=1, 2 must be checked in (ii),
since N'M is the transpose of N"*'=/M. Particular examples can be found in [3].
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PROPOSITION. None of the CS-knots are doubly sliced.

This will follow from the observation that A(#) must be irreducible for any
CS-knot, for then H'(X)=H!(T) would admit no proper submodules, and we
could therefore assume that, e.g., A'=H!(X), B'=0 (coefficients in Q). But,
since H*(X)~H*(T*) is generated, as an algebra, by H!(X), we would con-
clude A=H*(X), B'=0 for i>0.

To see that A(¢) must be irreducible, suppose f(¢) is a factor of degree d<
n+ 1. Consider the characteristic polynomial ¢(¢) of N°M; ¢(¢) is the product of
linear terms (f#—§&;...£&,), where £,,...,&,; are roots of A(¢). If we choose
£1,...,£4to be the roots of f(¢), we see that £ f(0) is a factor of ¢(¢). But since
S(t)|A(t), f(0)==x1and so ¢(1) has a factor which is either zero or 2. In either
case ¢(1)==x1 will be impossible.

In the cases n=2, 4 these results could not be obtained from the torsion pair-
ing, since there are no Z-torsion elements in H,(X). In the case n=3, however,
it can be checked that the characteristic polynomial of A2M is irreducible when-
ever A(t) is and, therefore, the Blanchfield pairing cannot even be metabolic—
thus these CS-knots are not even sliced.

2. A. An n-disk knot A" El?”” is a locally flat, properly imbedded n-disk. Its
boundary is the (n—1)-knot A"S D" *2, The double of A" is the n-knot obtained
by identifying two copies of (D"*2, A") along their boundary.

THEOREM B. The double of any disk knot is doubly sliced.

We put this in a somewhat more general context. A disk knot A” is invertible if
there exists another disk knot A% such that A”= A% and the n-knot created by the
union A"UAJSD"+*2UD"+2=8"+2 is unknotted (see [16]). Clearly the bound-
ary of an invertible disk knot is doubly sliced, whereas every doubly sliced knot is
the boundary of an invertible disk knot. The suspension of an n-disk knot A" is
the (n+1)-disk knot IXx A"SIx D"*2=D"*3; clearly the boundary of the sus-
pension of a disk knot is its double.

THEOREM C. The suspension of any disk knot is invertible.

This is proved in [16] when the boundary is unknotted. Theorem B is an
obvious consequence of Theorem C.

LEMMA. A disk knot A" is invertible if and only if the complement X =
D"*2— A" imbeds in S' x S"*! inducing an isomorphism H,(X) = H (S'x S"*1).

Proof. If A" is invertible then the pair (D"*2, A") imbeds in (S"*2,S"), the
trivial knot. A surgery along S” converts S"*2 to S!xS"*! and will display
D"*2_ A" imbedded, as desired.

Conversely, assume XSS! x S”*! where X will now denote the complement
of an open tubular neighborhood of A" in D" *2. Choose a meridian of A” in .X.
A surgery along this curve (with an appropriate framing) will convert S!x S”*!
into S”*2. If we insist that the framing contain the normal field to 4X in X, then
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the surgery will add a handle of index 2 to X along the meridian. This converts
X into D"*2, Furthermore the transverse sphere X" of ‘the surgery, which is
unknotted in $”*2, will intersect D"*2 in A". Thus (D"*2, A") is realized as a
submanifold of the trivial n-knot (S”*2, "), completing the proof of the lemma.

Now suppose the n-disk knot A” is the suspension of a disk-knot A”~!. Then
the complement X=D"*2—A"=Ix X,, where X,=D"*!'—A""!, There is an
obvious imbedding X,C D"*'c S"*!, denoted by i. Choose any smooth map
¢: Xo— S! representing a generator of H!(X,; Z) and consider the imbedding
Xo,CS"!x 8! defined by x— (i(x), $(x)). The normal bundle is clearly trivial
and so there is an extension to an imbedding of X=1x X,SS!x S”*!. The proof
of Theorem C is now completed by invoking the Lemma. O

B. We now pose the problem of finding invertible disk-knots which are not sus-
pensions, and doubly sliced knots which are not doubles of disk knots. We give
some examples drawn from the constructions of [6]. We begin by recalling the
main result of [6] in a somewhat more general and explicit form.

THEOREM [6]. Let r <n, positive integers, and o € w,(S'V S") such that, upon
projection S'VS"— 8", a—identity in w,(S"). Then there exists an invertible
disk A"SD"*2 whose complement is homotopy equivalent to the adjunction
space S'vS U, e 1. ‘

The construction in [6] will suffice to prove this result except that the authors
impose more severe restrictions on r than ours. The necessary modifications are
as follows, using the notation of [6]. The required imbedding f: S"— 6K —46A4
may be constructed by taking connected sums of copies of f;: S” — 6K, and its in-
verse, using tubes which go around 6A4 in 6K. The imbedding g: B'*! > L —E92
(g=n+2in our notation) is constructed by taking boundary connected sums of
g; and its inverse which extend the tubes used in the construction of f. To see that
S and f] are diffeotopic in 6K and g and g, are diffeotopic in L, it suffices to no-
tice that the tubes may be reeled in so that f and g are diffeotopic (in 6K and L) to
trivial connected sums of a number of copies of f; and g, and their inverses which
add up, algebraically, to +1; but a trivial connected sum of f] or g, with its inverse
is diffeotopic to the trivial imbedding and so we have the required conclusion.

C. We now apply this theorem to prove:

THEOREM D. For any n> 1, there exists an invertible n-disk knot which is not
a suspension.

THEOREM E. For n=1, 2 there exists a doubly sliced n-knot which is not the
double of a disk knot.

If X denotes the complement of an n-disk knot, and X its infinite cyclic cover,
then the theorem of [6] asserts the existence of invertible disk-knots such that
H,(X) is a cyclic Z[¢, ¢ ~!]-module of order A(#), where A(¢) is any element of
A=2Z[t,t71] satisfying N(1) =1, and H;(X) =0 for i #0, r. In particular we may
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choose r=n—1. But it is not hard to see that /,,_; (X) must be zero if the knot is
a suspension. If X=17IXx X, where X, is the complement of an (n—1)-disk knot,
then H,_,(X)=H,_(Xy) = H}(X,, 0X,), by duality, where the latter is equi-
variant cohomology with a dual A-module structure (see [11]). It follows from
the universal coefficient arguments of [11] that H2(X,, dX,) is an extension of
ez(Hp(XO, X)) by e'(Hy(Xy,8X,)). But Hy(Xo, 3Xo) =0=H;(X,, 0.X,) since
H (X)) =H(X)=0.

This proves Theorem D. a

To prove Theorem E for n=1 is easy. The double of a 1-disk knot must be of
the form K#(—K), for some 1-knot K, but the knot 9,4 is not of this form (its
Alexander polynomial is (2 —¢)(2¢—1)) and is constructed in [6]—corrected in
[16]—as a doubly sliced knot. For n=2 we consider the 3-twist spin K of 94,
which is doubly sliced as a consequence of the easy fact that any twist-spin of a
doubly sliced knot is again doubly sliced. To see that K is not the double of a disk
knot we consider H,(X), where X is the infinite cyclic cover of the complement
X of K in S*. According to [20], X is equivariantly homotopy equivalent to the
cyclic 3-fold branched cover of 94 and so

H(X)=A/Q2—t, =1 @A/(2t—1,13=1).
On the other hand we will show that, when H; (X) is finite and K is the double of
a 2-disk knot, then H,(X)=B®B, for some finite A-module B. To see that this
is not the case for our example notice that H,(X)/(¢t—2)H,(X)=Z/7, which is
indecomposable.

If K is the double of a 2-disk knot with complement X,, then X=X,UX,
where the two copies of X, are identified along the complement X; of the bound-
ary 1-knot. If H;(X) is finite, then H,(X)=0 by duality (see [11]) and the
Mayer-Vietoris sequence yields the short exact sequence:

0— H, (X)) = H(Xo) ®H, (Xp) = H|(X) = 0.

Since X, is the complem_e_nt of a 1-knot, H,(X,) is a Z-torsion free and so
H,(X)=tH (X,)®tH,;(X,), where ¢ denotes Z-torsion submodule.

D. On the positive side we prove:

THEOREM F. Any simple odd-dimensional doubly sliced knot, of dimension
> 2, is the double of a disk knot.

Recall [10] that a simple (2g —1)-knot K with complement X is defined~by the
condition 7; (X) = m;(S') for i <q, and K is determined by T (X) = Hy(X) with
the Blanchfield pairing [8]. If the knot is doubly sliced, then H,(X) is hyper-
bolic, i.e., H,(X)=B®e!(B), where e'(B) =Ext} (B, A) =~ Hom, (B, Q(A)/A)
and the Blanchfield pairing is the obvious one (see [7], [18])—B is a Z-torsion
free A-module of type K. To realize such a module by a double of a disk knot it
will suffice to construct a (2q —1)-disk knot with complement X, such that

~ B i=q
H;(Xy) =
(Xo) {0 i#0,q.
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The construction of X, follows from [11: Proposition 12.5]. To most easily
achieve the desired Blanchfield pairing on X, we should specify it to be zero
on X,. To see that X, is the complement of a disk knot, observe that X is a
homology circle and 3.X, is a homology S!x $29~!; if we attach a handle of index
2 to X, along a generator of 7;(0Xp), the result is a (2g+1)-disk and the desired
disk knot is the transverse disk of the handle.

3. We note several questions raised by our results.

1) Find examples of knots of dimensions n>2 satisfying the middle-dimen-
sional hyperbolic properties of Sumners or Stoltzfus, such that H*(X) is not
hyperbolic. For example, one can hope for such examples among CS knots
(although, as noted, this is impossible for n=3). This would require the con-
struction of (n+1) X (n+1) matrices M satisfying (i), (ii) of B-2 such that AYM is
hyperbolic when n=2g—1.

2) Is the hyperbolic property of Theorem A a condition for stably doubly
sliced? A knot X is stably doubly sliced if there exists a doubly sliced knot L such
that the connected sum K #L is doubly sliced. Stably doubly sliced knots make
up the zero class in the Stoltzfus double null-cobordism group ([18], [19]).

This question is related to the purely algebraic question of whether the hyper-
bolic property of Theorem A is stable, i.e., if H and H' are algebras of the sort
we are considering and H' and H@®H' are hyperbolic, must H be hyperbolic?

3) Are there doubly sliced knots of dimension >2 which are not doubles of
disk knots?

Are there ‘“‘1-simple’’ disk-knots (see introduction) which are not suspensions?
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