ON LENGTH FUNCTIONS, TRIVIALIZABLE SUBGROUPS
AND CENTRES OF GROUPS

G. R. Chapman and D. L. Wilkens

Introduction. Conditions are given in [4] for a length function / on a group G
to be an extension of a length function /; on K, a normal subgroup of G, by a
length function /;, on G/K. The length function /; is necessarily non-Archimedean,
and so its structure is known by [3]. In this paper we consider possibilities for the
normal subgroup K which appears in such a decomposition.

In Section 1 an /-trivializable subgroup of G is defined, and it is shown that the
maximal /-trivializable subgroup, which we denote by T, consists of elements a
with /(ax)=1[(x) for all Archimedean elements x. It is shown that the restriction
of the length function to any /-trivializable subgroup K can be replaced by any
length function on K, subject only to a bound condition. Two length functions
on G are then defined to be equivalent if their maximal trivializable subgroups
coincide, and if they agree on elements outside of this subgroup. It follows that
any length function is equivalent to an extension of a length function /; by a
length function /, on H, such that 7},, the maximal /;-trivializable subgroup of
H, contains no non-trivial normal subgroup of H. In Section 2 these results are
applied to the centre of a group, and it is shown that a length function is equiva-
lent to an extension of a length function /; by a length function /;, on a group with
trivial centre, or is an extension of a length function /; by a length function /, on
an abelian group.

1. [-trivializable subgroups and equivalent length functions. A length function
/ on a group G assigns to each element x € G a real number /(x) such that, if

d(x,y)=3(1(x)+1(y)=1(xy 1)),
then /(x) and d(x, y) satisfy the following axioms for all x, y,z€G:
Al’. [(1)=0,
A2, I(x)=I(x"hH,
Ad. d(x,y)<d(x,z)implies d(y,z)=d(x,»).

The numbering of the axioms is that of Lyndon [2]. A4 states that of the three
numbers d(x, y), d(x, z), d(y, z), two are equal with the third no smaller. It fol-
lows from A1’ and A2 that d(x, 1)=d(1,y)=0, so that by A2 and A4, d(x,y)=
d(y,x) =20, and putting y=x, /(x)=d(x,x)=0.
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An element x €G is Archimedean if I(x*)>1I(x), and is non-Archimedean
otherwise. The set of non-Archimedean elements of G is denoted by N, and a
length function is said to be Archimedean if N={1}, and non-Archimedean if
N=QG. It follows from Propositions 2.1 and 3.4 of [4] that N is a normal subset
of G, and x €N if and only if the set {/(x"); n an integer} is bounded. We will
also make frequent use of the following result.

LEMMA 1.1 [4, Proposition 3.3). If a, b,ab €N, then two of l(a), I(b), I(ab)
are equal, with the third no greater.

A proper subgroup K of G is I-minimal if [(a) <I(x) for all a €K, x ¢ K. Since
the lengths of powers of Archimedean elements are unbounded, it follows that
any /-minimal subgroup is contained in N.

A proper subgroup K of G is I-trivializable if [(ax)=1I(x) foralla€K,x ¢ K. It
follows from Axiom A2 that /(xa)=1I(x) for all a €K, x ¢ K.

When X is a normal subgroup of G then by Theorem 4.2 of [4], K is /-trivial-
izable if and only if it is /-minimal. An arbitrary subgroup K may be /-minimal
but not /-trivializable. For example if G= G, * G,, the free product of groups G,
and G5, and / is the associated length function as described by Lyndon [2], then
G, and G, are both /-minimal, but neither is /-trivializable. However the follow-
ing result is still valid.

LEMMA 1.2. If a subgroup K is I-trivializable then it is I-minimal.
Proof. Let a€K,x¢K. Then x !, x la~'¢K, and
2d(a,x)=I(a)+I(x)—Il(ax ") =1(a),
2d(a, ax)=1I(a)+I(ax)—Il(ax"'a ") =l(a),

so that by Axiom A4, 2d(x,ax)=I[(x)+{(ax)—I(a)=2I(x)—I(a)=!(a). Hence
l(x)2[(a), and K is /-minimal. O

PROPOSITION 1.3. Let [ be a length function on G, and let K be an Il-trivializ-
able subgroup of G. Then l’ defined by

I (x) = Li(x) if xek
=1 100 if xeK

is a length function on G if and only if |, is a length function on K with the prop-
erties

() 2d(x,y)=l(a) foralla€K, x,y &K with xy 'K,

() /(x)=l(a) forallaeK,x¢K.

We note that Condition (i) implies Condition (ii), unless K is of index 2 in G, in
which case (i) is vacuous. If K has index greater than 2, then for x € K, there
exists y € K with xy "'¢ K. Also x ™!, yx "'¢ K and we have

2d(x,y)=1(x)+ ()~ 1(xy "),
2d(x 7L yx N =1(x)— (I(y)— I(xy ~")).
Thus either 2d(x, y) or 2d(x !, yx ') is <I(x), and (i) implies (ii).
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Proposition 1.3 may be considered an extension of Proposition 4.1 of [4],
although the proofs of the two results are essentially the same. Proposition 4.1
states that if K is a normal subgroup of G, and /; and /, are length functions on K
and H=G/K, respectively, with f: G — H the projection homomorphism, then a
length function /” on G is defined by

pono [ it xek
D=1 Ly if €K,

if and only if (i) 2d,(u,v) =/ (a), (ii) L(u)=!(a) for all a€K, u,v€ H with
u,v#1. It is easy to show that a length function / on G is defined by /(x)=0 if
x €K, with I(x)=L(f(x)) if x¢K.

For the proof of Proposition 1.3, if /| is a length function on K, then Axioms
Al’ and A2 are easily shown to be satisfied for /’. It remains to show that Axiom
Ad is satisfied if and only if Conditions (i) and (ii) hold. )

We denote elements of G by a, b, c if they are in K, and by x, y, z if they are
not. Writing functions d’ and d, to correspond to /” and /;, the possibilities for d’
for pairs of elements of G are as follows.

2d’(a,b)=2d,(a, D).
2d’ (a,x)=1(a)+1(x)—1(ax )=l (a).
If xy '¢K, 2d’"(x,y)=2d(x,y).
If xy~'=a€K, 2d' (x,y)=l(x)+1(y)—1(a)
=I(x)+1l(xa Y=l (a)=2I(x) =1 (a).

For Axiom A4 all possible combinations of three elements of G need to be
considered, and these can be split into seven cases. To complete the proof of
Proposition 1.3 we refer to the proof of Proposition 4.1 of [4], since the cases,
and the arguments for each case, are exactly as appear there.

If /” is a length function on G defined as in Proposition 1.3, then it follows
that K is /’-trivializable, and that N’, the set of non-Archimedean elements for /’,
is equal to N, the set of non-Archimedean elements for /.

Given a length function / on G, we wish to construct a subgroup which is /-
trivializable, and which is maximal with respect to this property.

Define the subset 7 of G by

T={a€G;l(ax)=I(x) for all x¢N}.

If x¢N, then /(x?)>/(x) and so x¢T, showing that TCN. Clearly if N=G,
then T=G.

THEOREM 1.4. If N#G, then T is the maximal I-trivializable subgroup of G.

Before proving the theorem we establish three lemmas, again under the
assumption that N#G.

LEMMA 1.5. Ifa€T and x €N, then l(a) <I(x).
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Proof. By Proposition 3.1 of [4], two of I(ax)=I(x"'a™ "), l(ax V) =l(xa™ ")
and /(a) +1(x*)—I(x) are equal, with the third no greater. Since /(x)=/(xa ') =
I(x"la™"), we have I(x) 2 l(a) + I(x?)—I(x). Asx &N, [(x%)>I(x) and so I(x)>
2/(x)—1(x*)=1(a). O

LEMMA 1.6. Ifa€T, thena™'€T.

Proof. We need to show /(a~'x)=I(x), for all x¢ N, which, by Axiom A2, is
equivalent to /(xa) =1(x), for all x¢&N.

If x € N, then, since N is a normal subset of G, a "'xa, a "'x "'a ¢ N, and by
A2, I(a " 'xa)=1(a"'x'a). Thus, since a €T,

[(xa)=Il(aa 'xa)=1(a xa)=1(a 'x 'a)=1l(aa " 'x"'a)=1(x""a).

There are now three cases.

If xa¢ N, then I(xa)=Il(a " 'x Y=l(aa " xY)Y=l(x"YH=1(x).

If x“'a¢N, then l(xa)=[(x"'a)=1(a"'x)=1(aa "'x)=(x).

If xa,x'a €N, then the conjugate ax '=a(x'a)a '€N. So ax~!, xa and
a’€N, when by Lemma 1.1 two of /(ax™!), /(xa) and /(a?) are equal, with the
third no greater. By Lemma 1.5 /(ax ~')=1(x)>{(a) = I(a?), and hence /(xa) =
l(ax "y =1(x).

In each of the cases /(xa)=/(x), and so a "' €T, proving the lemma. O

1

LEMMA 1.7. T is an I-minimal subgroup of G.

Proof. We first show that T is a subgroup of G. For a,b €T, x¢ N there are
three cases.

If bx ¢ N, then I(abx)=I(bx)=1(x).

If abx ¢ N, then a~'€T by Lemma 1.6, and so /(abx)=I(a "labx)=1(bx)=
I(x).

If bx,abx € N, then by Lemma 1.1, since a €N, two of /(a), I(bx), I[(abx) are
equal, with the third no greater. By Lemma 1.5 /(bx)=1[(x)>[/(a), and hence
I[(abx)=1(bx)=1I(x).

In each of the cases above /(abx)=1[(x), and so ab €T, showing that T'is a sub-
group of G.

To prove T is /-minimal we need to show that /(a)</(x) for all a €T, x&¢T,
which is equivalent to showing that b€ T if /(b) <I(a) for some a €T.

Let a €T, and suppose /(b) </(a). By Lemma 1.5 /(b~')=1(b) <i(x) for all
x¢N, and so b~'€N. Furthermore ab~' €N, since if not, a~'€T by Lemma
1.6, and so /(b Y)=I(a 'ab~')=I(ab~!), contradicting the fact that /(b ') <
I(x) for all x¢N. Thus a,b~', ab~'€N with I(b)<I(a), and it follows by
Lemma 1.1 that /(ab~')=I(a). Then if x¢ N,

2d(a,x YY=I(a)>1(b)=2d(a,b).

Axiom A4 implies 2d(b,x")=1(b)+1(x)—I(bx)=1(b), giving I(bx)=1(x).
Thus b €T completing the proof of Lemma 1.7. O

Proof of Theorem 1.4. T is a subgroup of G by Lemma 1.7, and /(ax)=1[/(x)
for all a €T, x ¢ N, by definition. To prove that T is /-trivializable it remains to
show that /(ax)=1I(x) for all a€T,x € N\T. If ax¢ N then /(ax)=I(a lax)=
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I(x). If ax €N then a,x,ax €N and by Lemma 1.1 two of /(a), /(x), I(ax) are
equal with the third no greater. Since T is a subgroup ax €7, and by Lemma 1.7
T is I-minimal, so that /(a) </(x), /(ax). Thus we must have /(a) </(x)=I(ax),
showing that T is /-trivializable.

For K an /-trivializable subgroup of G, then KC N, so a necessary requirement
is that /(ax)=/(x) for all a €K, x € N. It follows that K C T, and 7T is the maximal
I-trivializable subgroup of G; completing the proof of Theorem 1.4. O

For [/ a length function on G, then by Proposition 1.3 the restriction of /to T’
can be replaced by any length function, subject only to the bound conditions (i)
and (ii). Any such length function on 7" will therefore be non-Archimedean, and
so its structure will be given by a chain of subgroups, as described in [3]. This
suggests the following definition. Where two length functions on a group are
being considered or where confusion may arise, we will use the symbol 7; to
denote the maximal trivializable subgroup associated with a length function /.

Two length functions /,/” on G are equivalent if T;=T; and I{x)=1{'(x) for all
x ¢ T,=T,. This is clearly an equivalence relation.

To conclude this section we consider extensions of length functions. If K is a
normal subgroup of G, and f: G—> H=G/K is the projection homomorphism,
then a length function / on G is an extension of a length function /; on K by a
length function /, on H if

D= Le)) if XK.

By Theorem 4.2 of [4], this occurs precisely when the normal subgroup K is /-
minimal, or, equivalently, /-trivializable. Thus K C 7; and the length function /; is
non-Archimedean. It is easy to see that f(7})=17),, the maximal /-trivializable
subgroup of H.

If / is any length function of G, then /; defined by

I (x) = 0 if xeT;
T ) if x¢T,

is a length function which is equivalent to /. Any proper normal subgroup of G,
contained in T; =Tj, is [-minimal and so satisfies the conditions of Theorem 4.2
of [4] for an extension. In particular the core C=N{xT;x ~';x € G} is the maxi-
mal normal subgroup of G, contained in 7;. Thus /y is an extension of /; on C by
l, on H=G/C. Since C is the maximal normal subgroup of G, contained in 7, it
follows that 1,= f(T;) contains no non-trivial normal subgroup of H. Thus we
have proved

THEOREM 1.8. Any length function [ on G is equivalent to a length function
which is an extension of a non-Archimedean length function |, on C by a length
Sunction l, on H=G/C, where T;, contains no non-trivial normal subgroup of H.

2. Length functions and groups with trivial centres. In this section we prove
the following theorem, where 7 is the maximal /-trivializable subgroup of G, and
Z is the centre of G.
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THEOREM 2.1. Let | be a length function on G.
(i) If ZE N, then |l is an extension of a non-Archimedean length function I, on

N by an Archimedean length function I, on H=G/N, an abelian group.

(ii) If ZCN=T, then lis an extension of a non-Archimedean length function I,
on N by an Archimedean length function l, on H= G/N, where H has trivial
centre or is an abelian group.

(i) If ZCN#T, then | is equivalent to an extension of a non-Archimedean
length function I, on C, the core of T, by a length function l, on H=G/C, a
group with trivial centre.

By Theorem 5.3 of [4], assuming N# G, N=T if and only if the lengths of ele-
ments of N are bounded. The structure of non-Archimedean length functions is
given in [3], and the structure of Archimedean length functions on abelian
groups is given in [1].

Some preliminary results are necessary before proving the theorem.

LEMMA 2.2 [4, Lemma 5.2]. Let a € N,x ¢ N. If the set {I(x "ax™); n an inte-
ger} is bounded, then l(ax)=1[(x).

LEMMA 2.3. If ZCN, then ZCC, the core of T.

Proof. If a€Z,x¢ N, then I(x "ax")=I(a). So the lengths /(x "ax") are
bounded, and it follows by Lemma 2.2 that /(ax)=/(x) and e €T. Thus ZCT,
and since Z is a normal subgroup of G, it follows that ZC C. O

LEMMA 2.4. If Z¢ N, then the lengths of the elements of N are bounded.

Proof. If aeN,x€ Z\N, then [(x "ax")=I(a). The lengths /(x "ax") are
therefore bounded, and so by Lemma 2.2, /(ax)=I(x)=I(ax"'). Axiom A2
implies /(x)=/(xa~")=1I1(x"'a~"), and since Proposition 3.1 of [4] states that
two of I(xa™Y), I(x~'a™"), and I(a) +I(x?)—I(x) are equal with the third no
greater, it follows that /(x) = I(xa™") = I(x'a™ ') = l(a) + I(x?*) — I(x). Hence
I(a) < 2l(x)—I(x?), and the lengths of the elements of N are bounded by
21(x) —1(x?). a

LEMMA 2.5. If xy=yx and I(x)>1(y) then I(xy) +I[(xy ~')=2I(x). Moreover
ify EN, then I(xy)=1(xy ) =I(x), and if y &N, then x &€ N and [(xy) #l(xy ")
with max(I(xy), {(xy ™)) =1(x) +1(p*) = 1(y)=1(y) + I(x?) = (x).

Proof. Consider
2d(xy,x)=Il(xy)+I(x)—1(y),
2d(xy,y)=1l(xy) +1(y)—I(x).
Since /(x) > [(y) we have 2d(xy, x) >2d(xy, y), and so by Axiom A4, 2d(xy,y)=
2d(x,y)=1(x)+1(y)—1(xy "), giving I(xy) +1(xy ") =2I(x).
By Proposition 3.1 of [4], two of
Iyx)=1(xp), Iy~ x)=1(xy™"), I(x)+1(y*)-1(»)

are equal with the third no greater. Thus if y€N and I(xy)#I(xy~Y), then
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max(/(xy), [(xy 1)) = I(x) +I(y?) —I(y) < I(x), contradicting the fact that
[(xy)+1(xy~H=21I(x). Hence I(xy)=I(xy 1) =1(x).

If y€N and I(xy)=I(xy™"), then I(xy)=I(xy )= I(x)+I(y?) —1(y)>I(x),
contradicting the fact that /(xy)+I(xy ~')=2/(x). Hence /(xy)#Il(xy ') with
max (/(x»), [(xy =) =1(x)+1(»*)—I(y). Now I(xy~")=I(y~'x)=U(x""y) by
Axiom A2. Thus /(xy)#I(x~"y), whence by Proposition 3.1 of [4],

max(/(xp), [(x~'y)=1(xy ™)) =1(y) +(x*) - [(x).
Now I(x)+1(y?)—1(»)=1(y) +1(x*)—I(x), and since y &N,
I(x)+1(y*) =1(y)>I(x).

Thus, as /(x)>1(y), it follows that /(x?)>/(x) and x € N, completing the proof
of the lemma. a

The following proposition has been proved by Nancy Harrison in [1], in the
special case where N={(1}.

PROPOSITION 2.6. Let x, y,z &€ N. If xy=yx and xz=zx then yzy ~'z '€N.

Proof. Since x¢ N, the lengths /(x") are unbounded. We may therefore
assume, without loss of generality, that /(x)>2/(»), 2/(z), since if x does not
satisfy this condition then it could be replaced by a suitable power x".

Since y, z & N and xy =yx, xz=zx it follows by Lemma 2.5 that /(xy) #/(xy 1)
and [(xz)#/(xz~'). We suppose that /(xy)>I/(xy~') and /(xz)>I(xz~"), and
consider the other possibilities later. By Lemma 2.5,

I(xy)=1(x)+1(»*) = 1) =1(y) +1(x?) = (x),
I(xz)=1(x)+1(z®)—1(z) =I(z) + (x?) = (x),
I(xy ) =1x)+1(y)-1(¥?),
I(xz Yy=1(x)+1(2)—1(z?).

Thus 2/(x)—I(x*) =21(y) —1(y*) =21(z) — I(z?).
Consider

2d(x,y)=1(x)+1(y)—I(xy ~1)=1(»?),
2d(x, 27 Y =1(x)+ (z) = I(xz) =21(x) = I(x?).

Now 2/(x)—1(x%)=2I(y)—1I(»?), and so, since y&N, 2d(x,y)>2d(x,z7").
Hence by A4

2d(y,z7 ) =2d(x,z ")y =21(x) - I(x?).
Interchanging the roles of y and z above gives
2d(z,y ) =2d(x,y ")y =21(x) = I(x?).

Thus 2d(y,z ') =2d(z,y ~')=2/(x) — I(x?), showing that /(yz)=I(zy).
Consider

2d(xy,y)=1(xy) +1(y) = l(x)=1(y?).
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Now 2d(y,z7 ") =2/(y) —I(y*) <l(y*)=2d(xy,y), and so by A4, 2d(xy,z ") =
2d(y,z'). By interchanging the roles of y and z, 2d(xz,y ~')=2d(z,y~").
From above, 2d(y,z7') =2d(z,y ") = 21(x) — I(x?), and so 2d(xy,z7') =
2d(xz,y ). Since

I(xp) +1(z) =1(x2) + () =1(¥) + U(z) + [(x*) = (x),
it follows that /(xyz) = I(xzy). Moreover
2d(xy,z VY =21(x)—I(x>)=2I(z) - (z?),

and since z €N, 2/(z)—I(z%)<l(z). Thus I(xy)+I(z)—I(xyz)<l(z), giving
l(xyz)>Il(xy). Now I(xy)>I(x), and so I(xyz) > I(x).

The element x commutes with yz and zy, and I(yz) =/(zy) <I(y) +1(z) <I(x).
Lemma 2.5 may therefore be applied to x and yz, and to x and zy. Thus, since
I(xyz)=I(xzy)>I(x) we have yz, zy € N with

20(x) = 1(x*)=21(yz) — I((y2)*) =21(zp) — I((2)).
Since /(yz) =I(zy), we therefore have /((yz)?)=1((zy)?). Also by Lemma 2.5,
I(xyz) =1(xzy)=1(x)+1((¥2)*) — 1(y2),
I(x(y2) ") =1(x(zp) ") =1(x) +I(yz) — [((y2)?).
Now,
2d(x,yz) =2d(x,zy) =l(x) +1(yz) = (x(yz) ") =1((yz)?),
2d(x, (y2) "h)=2d(x, (zp) ) =1(x) +1(yz) — l(xpz) =21(yz) = 1((¥2)?).

Thus by A4, 2d(yz,zy) 21((yz)?), and 2d((yz) ), (zy) ") =2l(yz) = I((¥2)?).
So d(yz,zy) +d((¥z) "}, (zv) "= l(yz)=I(zy), and it follows by Proposition
2.4 of [2] that yz(zy) '=yzy "1z 1€eN. )

In the above argument we assumed that /(xy)>I(xy ~!) and /(xz) > I(xz7)). If
one or the other of these inequalities were reversed, then the argument would pro-
ceed as before with y replaced by y ! or z replaced by z ~!. Thus the conclusion
would be that one of y “'zyz ™!, yz=!y "'z, y~'z7!yz is in N. Since inverses and
conjugates of elements of N are again in N, it follows that yzy ~'z ' €N, since

1 1 —-1,,-1

! = () ("2 yz)(2y) 7"

yzy Tz =y Tz ) Ty T =227y ) T2

Proof of Theorem 2.1. In (i) Z¢ N, and so by Lemma 2.4 the lengths of ele-
ments of NV are bounded. By Theorem 5.3 of [4], T=/N and / is an extension of a
non-Archimedean length function /; on N, by an Archimedean length function /,
on H=G/N. For two elements y, z € N, there exists x € Z\N, and so by Proposi-
tion 2.6, the element yzy ~'z~!€N. The projections of y and z therefore com-
mute in = G/N, which is thus an abelian group.

In (ii), N=T and so by Theorem 5.3 of [4], / is an extension of a non-Archi-
medean length function /; on N, by an Archimedean length function /, on H=

G/N. If H has non-trivial centre Z,, then Proposition 2.6 may be applied to non-
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trivial elements x € Z,, y, z € H, giving yzy 'z ~'=1, the single non-Archimedean

element of H. Thus yz=zy and H is an abelian group.

In (iii), ZCN#T, and so T is a proper subgroup of N. By Theorem 1.8, / is
equivalent to an extension of a non-Archimedean length function /; on C, the
core of T, by a length function /, on H=G/C. Let Z, be the centre, N, the set of
non-Archimedean elements, and 7, the maximal /,-trivializable subgroup of H.
Since CCT#N, we have f(T)=T,#N,=f(N), where f: G— H is the projec-
tion homomorphism. If Z, & N, then by Lemma 2.4 the lengths of elements of N,
are bounded, and so by Theorem 5.3 of [4], N;=1T,, which is false. Thus Z,C N,
and by Lemma 2.3, Z,C C,, the core of 75. But by Theorem 1.8, 7; contains no
non-trivial normal subgroup of H, and so Z,=C,= {1}, completing the proof of
Theorem 2.1. O
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