APPROXIMATION THEOREMS FOR
STRONGLY MIXING RANDOM VARIABLES

Richard C. Bradley

1. Introduction. As a technique for proving limit theorems for dependent ran-
dom variables, the direct approximation of dependent r.v.’s by independent ones
has been gaining popularity since it was introduced in articles by Berkes and
Philipp ([2], [3]). The idea is to carry out such an approximation in a manner that
permits limit theorems for the independent r.v.’s to carry over directly to the
dependent ones. Our purpose is to derive some sharp ““approximation theorems”’
for random sequences satisfying the ‘‘strong mixing’’ condition. Before we dis-
cuss some of the results in the literature that pertain to this problem, it will be
convenient to define some terminology.

First, a ‘“‘uniform-[0, 1]’’ random variable is simply a r.v. which is uniformly
distributed on the interval [0, 1].

A ‘‘Borel space’’ is a measurable space (8, D) which is (bimeasurably) iso-
morphic to a Borel subset of the real number line R. (No metric is needed in this
definition.) When we refer to an ‘“‘S-valued’’ r.v. X on a probability space
(2, &, P), the g-algebra D that accompanies 8 will usually be suppressed, but it is
implicitly understood that vD € D the set of sample points {w: X(w) €D} is an
element of &. The o-field of such events { X € D}, D € D, is denoted by B(X).
The Euclidian spaces R/, 1<J< o, are always accompanied by the usual
(J-dimensional) Borel o-algebra, and are well known to be Borel spaces.

Let (Q2,5F, P) be a probability space. For any two o-fields @ and & (CF)
define the following measures of dependence

a(Q, ®) =sup|P(ANB)-P(A)P(B))] AEQR, BE®

p(@, ) =sup|Corr(f,g)| fELHR), g€ LYR®)
I J
B(Q, B) =sup(1/2) E] Y. |P(A;N\B;)—P(A;)P(B))|
i=1j=1
where this latter sup is taken over all pairs of partitions {A4,,...,4;} and
{B1,...,B;} of @ such that each 4; €@ and each B; € ®. In the definition of
p(@, ®) it is understood that Corr(f, g) =0 if f or g is constant a.s. Obviously
a(@, B) <p(Q@, B) <1and a(Q@, B) <B(Q, B) <1, but there is no general com-
parison either way between p(Q, ®) and B(Q&, ®).
The following approximation theorem comes from Berbee’s [1] book.

THEOREM A ([1, Corollary 4.2.5]). Suppose X and Y are r.v.’s taking their
values in Borel spaces 8, and 3, respectively, and suppose U is a uniform-[0, 1]
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1.v. independent of (X,Y). Then there exists an $,-valuedr.v. Y*=f(X, Y, U)
where [ is a measurable function from 8; X 8, x [0,1] into 8,, such that

(1) Y™ isindependent of X,

(ii) the probability distributions of Y* and Y on 8, are identical, and

(iil)) P(Y*#Y)=B(B(X),B(Y)).

This theorem is proved on pp. 91-95 of Berbee [1] and extends an earlier simi-
lar result of Schwarz [17]. (The publication of Schwarz’ article was delayed.) We
have simply restated [1, p. 94, Corollary 4.2.5] in a more explicit manner (consis-
tent with Berbee’s proof). Theorem A is sharp in the sense that one cannot have
P(Y*#Y)<B(®B(X),B(Y)) and still retain (i) and (ii); see for example [1,
p. 92, Proposition 4.2.2] (Schwarz’ result). The use of a-uniform-[0, 1] r.v. here
(and in similar theorems to be given below) is purely a matter of taste; U could be
replaced by any continuous r.v. Bryc [7] gives a further extension of Theorem A.

In the case where 8, and 8, are finite-dimensional Euclidian spaces one has, as
a special case of Theorem 1 of Berkes and Philipp [3], a result like Theorem A
but with (iii) replaced by an inequality of the form P(d(Y*,Y) > c¢) <c where d
denotes Euclidian distance on 8, and c is a positive quantity that depends partly
on a(®(X),®B(Y)). (See the remarks on p. 31 of [3].) Dehling [11] showed with
a counterexample that a nontrivial general result of this kind does not exist for
a(®(X),B(Y)) oreven p(®B(X),B(Y)) when 8, and $, are permitted to be ar-
bitrary metric spaces; his counterexample is discussed in terms of «( , ) but car-
ries over verbatim to p( , ). We will seek fairly sharp approximation theorems
for a( , ) and p( , ) of a certain specific nature; our main tools will be
Theorem A and the following statement:

THEOREM 1. Suppose @ and ® are o-fields, with & being purely atomic with
exactly N atoms. Then B(Q, B) < (8N)2a(@, ®B).

Our study of approximation theorems will follow lines similar to work done by
W. Bryc [6, 7, 8]. Under the hypothesis of Theorem 1 the inequality S(Q, B) <
N-a(Q@, ®) is easy to establish, and one approach used by Bryc in [6] was to
combine this inequality with Theorem A in order to derive a new approximation
theorem under strong mixing, similar to [3, Theorem 1]. In deriving our new ap-
proximation theorems (Theorems 2 and 3 below) we will essentially follow Bryc’s
argumenf, except that Theorem A will be combined with Theorem 1 rather than
with the inequality (@&, B) < N-a(Q®, &). Using a construction in [8], we will
show later on that Theorem 1 is sharp up to a constant factor, even if a(Q, @) is
replaced by p(Q@, ®).

Our first approximation theorem is as follows:

THEOREM 2. Suppose X and Y are1.v.’s taking their values in Borel spaces 8,
and 8, respectively; and suppose U is a uniform-[0,1] r.v. independent of
(X, Y). Suppose N is a positive integer and 3C={H,,H,,...,Hy) is a measur-
able partition of 8,. Then there exists an 8,-valuedr.v. Y*=f(X, Y, U) where f
is a measurable function from 8, X 8, X [0, 1] into 8,, such that
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(1) . Y* is independent of X,
(ii) the probability distributions of Y* and Y on 8, are identical, and
(iii) P(Y*and Y are not elements of the same H; € 3C) < (8N ) 2a(®(X), B(Y)).

In Theorem 2 the terminology ‘‘JC is a measurable partition of S,’’ means of
course that each H; is an element of the o-algebra that accompanies $,. Condi-
tion (ii) here is a matter of convenience; it will become clear from the proof that
Y* can have any preassigned distribution such that P(Y*€H;)=P(Y € H;)
would hold for all i. If one wants to have P(Y* € H;) # P(Y € H;) for some i
but retain (i), then another term may be needed on the right-hand side of (iii).
The next statement is a corollary of Theorem 2.

THEOREM 3. Suppose X and Y are r.v.’s taking their values on 8§, and R,
respectively, where 8, is a Borel space; suppose U is a uniform-[0,1] r.v. inde-
pendent of (X,Y),; and suppose q and vy are positive numbers such that q <
| Y|, <o. Then there exists a real-valued r.v. Y*= f(X,Y,U) where f is a
measurable function from 8; X RX [0, 1] into R, such that
(i) Y* isindependent of X,

(ii) the probability distributions of Y* and Y are identical, and
(i) P(Y*—Y|>q) <18(| Y[l,/g)" PV [a(B(X), B(Y)]P/*7*D,

In Theorem 3 and in the rest of this article, || Y|, = (E|Y|")"/". The proof of
Theorem 3 (to be given later) is simple and can be adapted to cases where Y takes
its values on a finite-dimensional Euclidian space or—under rather stringent con-
ditions on the distribution of Y—on more general metric spaces; the inequality in
Theorem 3(iii) has to be revised accordingly. One can also derive Theorem 3 for
the case y = o (i.e. if | Y || =esssup|Y|< ) and then apply that to truncations
of r.v.’s to get bounds similar to those in [3, Theorem 1]; here the r.h.s. of
Theorem 3(iii) is interpreted to be 18(|| Y || /g)"20(®B(X), B(Y)).

To illustrate the use of Theorem 3 (although [3, Theorem 1] can be used
for the same purpose) we will prove an ‘‘almost sure invariance principle’’
under the strong mixing condition with a logarithmic mixing rate. Suppose
(X, k=...,—1,0,1,...) is a strictly stationary sequence of real-valued r.v.’s.
For each real number ¢ >0 define S(#) = Y << Xx (With S(#)=0if 0 <2 <1).
For each positive integer n define S, =X+ X3+ -+ X,=S(n) and a(n)=
a(B( Xy, k<0), B(Xg,k=n)). In what follows, ‘‘log’’ will mean the natural
logarithm.

THEOREM 4. Suppose (X} ) is a strictly stationary sequence of real-valued
r.v.’s with EX; =0, EX? <o, and Var S, — o as n — . Suppose 6> 0 and
A>143/6 are real numbers, o(n) = o((logn)”)‘) as n —> oo, and

(1.1) sup E|S,|>*%/(Var §,,) ?+9/2 < w0,
n

Then there exists 62, 0<a%<oo, such that lim,_, . n~'VarS, = o2 Without
changing its probability distribution the process (S(t), t 20) can be redefined on



72 RICHARD C. BRADLEY

another probability space, together with a standard Wiener process (W (t),t 20),
such that

(1.2) P(S(t)—W(a2t)|=0(t"*(loglogt)™?) as t > ) =1.

This result is motivated by two a.s. invariance principles that have been proved
under ¢-mixing with a logarithmic mixing rate: the first by Berkes and Philipp
[3, Theorem 4] and the second by Dabrowski [9]. The result in [9] was obtained
with a sharp treatment of the basic approach of Berkes and Philipp; the mixing
rate was thereby considerably relaxed, at the expense of a larger error term. The
quantity o2 =lim n~! Var S,, played the same role in [9] as in Theorem 4 here.
The proof of Theorem 4 will follow Dabrowski’s argument rather closely, but
will be given in detail because of several necessary minor modifications. In
Theorem 4, in exchange for the use of the ‘‘strong mixing’’ condition a(n) = 0
(which is weaker than ¢-mixing), a faster mixing rate than Dabrowski’s is
imposed (in our language, he used A > 1+2/8 where E| X |** % < 0), along with
the rather stringent condition (1.1). If (1.1) were replaced by the weaker condi-
tion E| X, k|2+5 < oo used in both [3, Theorem 4] and [9], then Theorem 4 would
fail badly; see for example Davydov’s [10, pp. 320-324] counterexamples to the
central limit theorem. This can be remedied either by imposing a polynomial
mixing rate on a(n) as in Theorem 4 of Kuelbs and Philipp [15], or else by
imposing, say, an additional condition on the maximal correlation coefficients
p(n)=p(B (X, k<0), B(Xy, k= n)) to insure that (1.1) holds, as in the central
limit theorems [12, Theorem 2.1] (where p(n) — 0 is assumed) and [4, Theorem
5] (i.e. assuming é < 1 and a small positive limit for p(n)).

Section 2 will deal with the question of ‘‘sharpness’’ for Theorem 1; Section 3
will give the proofs of Theorems 1, 2, and 3; and Section 4 will give the proof of
Theorem 4. The following notations will be used:

(1) Ir denotes the indicator function of a set F.
(i) f(2)=g(¢t) means lim,, , f(¢)/g(t)=1.
(iii) g(¢) < h(t) will mean g(¢)=0O(h(t)) ast — oo, (asin [3, 9, 15]).
(iv) To avoid subscripts of subscripts, terms like @, will often be written as a(b).

2. An example for Theorem 1. It was mentioned above that Theorem 1 is
sharp up to a constant factor, even if (@, ®) is replaced by p(Q@, B). We will
give an example to show this for even integers N; with trivial modifications the
same example will work to show this for odd N.

Let N be an arbitrary positive even integer. We will construct a probability
space with g-fields @ and ® such that ® is purely atomic with exactly N atoms and

2.1) B(R, B)=1/2
(2.2) p(@, B) < (2/N)1/2

The same construction was used in [8] for a related purpose.
Let Q; be the interval [0, 1], let &, be the g-algebra of Borel subsets of {2;, and
let P; be Lebesgue measure on (£, 5,).
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Let Q,={1,2,...,N}, let &, be the o-algebra of all subsets of Q,, and let P, be
the ‘““uniform’’ probability measure on (,, F,) given by P,({j}) =1/N Vj €Q,.

Let m= N/2; let hi(x), h,(x),..., h,,(x) denote the first m Rademacher func-
tions on [0, 1]; and define the probability measure P on (2; X Q,, F; X F,) by

dP(x, j) = (1+hi(x))d(PyxPy)(x,j) if x€[0,1] and 1<j<m

LU =H_p(x))d(Pyx Py)(x,j) if x€[0,1] and m+1<j<N.
We are taking the liberty of using the same letter P here as in the rest of the
article; for this example the probability space is (2; X Q,, F; X F,, P). Note that
the marginals of P are P, and P, respectively.

Define the o-fields R={FXQ,: FETF,} and B={Q, X F: FE€J,]}. Since Pis
absolutely continuous with respect to P; X P, we have that

43((1,63):(1/2)&9 _|dP/d(Pyx Py)=1d(Py X Py)
1 X i

=(1/2)§ 1d(P,x Py) =1/2
QIXQZ

since h;(x) = +1 Vvj, x. That is, (2.1) holds.

Let f be an arbitrary Borel function on [0,1] with SO f(x)dx=0 and 0<
f [f(x)]?dx< . Let g be an arbitrary function on {1,2,...,N}. Now fand g
can each be regarded naturally as a r.v. on 2, X{,. To show (2.2) it suffices to
show |Corr(f, g)| < (2/N)V2,

Now g = g, + g, where the functions g; and g, satisfy g,(j+m)= —g;(j) and
&(j+m)=g,(j) forall j=1,..., m. With some simple calculations and the fact
Ef=0 one has

Varg > Var g, +2(FEg,8,— Eg,Eg,) =Varg; +2(0—0Eg,)
Cov(f,8) =Efg=Efg\+Efg, =Efgi+0=Cov(/f, &)
and hence |Corr(f, g)| < |Corr(f, g)|. To show (2.2) it suffices to show
|Corr(f, g1)| < (2/N)'2.
For each j=1,...,m let ¢;=g/(j)=—g (j+m). Since Ef=FEg =0 and
o hi(x) e (x) dx= 0 forj¢kwe have

|Cov(f, &1)|=|Efg|=

‘El Efgi(Lio,1x 1y o, 1x (j+m) )
Jj= ‘

m 1
¥ [SO ¢; f(X)[1+4 h;(x)1(1/N) dx

Jj=1

1
+ SO (=€) f(xX)[1=h;(X)](1/N) dX]

1 m

= !(2/N) SO L ¢y (0)/(x) dx| <
f=
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\( 1y m 2 172 .1 172
< (2/N) S [ c,-hj(x)] dx] B [f(x)]zdx]
Jj=1 0

0

1 m

( 172
=@/ | Ecjzhjz(x)dx] (Var f)!”2
0/j=1

[ m

1/2
= (2/N) zc}] (Var f)'/?
Lj=1

= (2/N)[(N/2) Var g,1"2(Var f)/2.
Hence |Corr(f, g;)| < (2/N)"2, and hence (2.2) holds.

3. Proofs of Theorems 1-3. For the proof of Theorem 1 we will need a couple
of technical lemmas.

LEMMA 1. Suppose Z,,2Z,,2Z;,... arei.i.d. r.v.’s with
P(Z,=1)=P(Z,=—-1)=1/2.

Then for any positive integer N and any real numbers a,,a,,...,ay one has
ElgZ\+ @, Zy+ - - - +anZy| 2 N) V2 (|ay|+ ||+ - - - + |an)).

Proof. This is an immediate consequence of Szarek’s bound [19, p. 198,
Theorem 1] for the Khinchin inequality. We may take our probability space to be
the unit interval [0, 1] with P being Lebesgue measure, and we may assume that
for each k the r.v. Z is the kth Rademacher function, which Szarek calls r¢ (7).
Then by [19, Theorem 1] and the Cauchy-Schwarz inequality we have

N 1| N N 172 N
_E|Y a7, =S a,re(t) dt>2-1/2( > a,%) 22712N712 7 gy
k=1 0lk=1 k=1 k=1
and Lemma 1 is verified. a

LEMMA 2. Suppose A= (a;;, 1<i<M, 1<j<N) is an MXN matrix (of
real numbers). Then there exists a subset SC{1,2,...,M} and a subset T C
{1,2,...,N} such that

M N
2 (32-min{M,N})~ 2. ¥ ¥ |a;l.
i=1j=1

EE“U

ieS jeT

Proof. Without loss of generality we assume M > N.

Let Z,,7Z,,...,Zy bei.i.d. random variables (on some probability space) such
that P(Z,=1)=P(Zy=—1)=1 vk.

Define the random variable X= LM, |2 a;Z;|. Letting a= XX, TN, |a;]|
we have by Lemma 1, EX =Y, E|LN. | a;Z;| 2 (2N)2a.

Hence there exists an N-tuple (z;,..., zy) of fixed numbers € {—1, +1} such
that XX\ XN a;z;| = (2N)™V2a.

Define the sets
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N N

S(I)E{i: Eaiij>Oz S(Z)E{f: Ea,-,-zj<0}.
j=1 j=1

Also define the number b= (2N)~!2a. Then either

N N
Y Yajzizb/2 or — Y Y a;z;2b/2.
ies(1) j=1 i€S(2) j=1
In either case we have a subset SC {1,2,..., M} such that | ;e s L, a;z;| 2 b/2.
Define the sets T(1) ={/j:z;=+1} and T(2)={j: z;= —1}. Then either

i€ES JET(2)

Y XY aj|=b/4 or

i€ES jET(1)

In either case we have a subset TC{1,2,...,N} such that |T;es Xjer ;| =
b/4=(32N)"12q, and Lemma 2 is proved. O

Proof of Theorem 1: Let B, B,,...,By denote the atoms of ®. Let
{A,,A,,...,A)] be an arbitrary finite partition of our probability space 2 such
that A; € @ Vi. It suffices to prove

M N
3.1 Y Y |P(AiNB;)—P(A)P(B)) < (32N) (@, B).
i=1j=1
For each pair (i,/) let a;; =P(A;NB;)—P(A;)P(B}). Then by Lemma 2, for
some subsets SC{1,...,M}and TC{l1,..., N} we have

DY aij
i€S jeT

Define the events A= U;esA4; and B=Uecr B;. Then A€Q® and BE®
and hence

a(@®, B) > |P(ANB)—P(A)P(B)|=

M N
2(32N)2 8 ¥ |ayl.

i=1j=1

M N
2 (32N)"12 Y ¥ |aj

i=1 j=1

) Eat‘j

i€eS jeT

and we have (3.1). This completes the proof of Theorem 1. a

Proof of Theorem 2. Without losing generality we assume that $, =R (for
otherwise we could simply employ a one-to-one bimeasurable mapping from §,
into R) and that P(Y € H;) > 0 vi. For each i let y; be an element of H;. Define
the r.v. Y; by Y1 = XN yiliyenay-

Let U; and U, be independent uniform-[0, 1] r.v.’s which are each a measur-
able function of U. (For example let the binary expansions of U; and U, consist
of alternating digits in the binary expansion of U.)

Using Theorem A let Y* be defined as a measurable function of (X, Y;, U;)
such that Y} is independent of X and has the same distribution as Y; and such that

P(Yt#Y)) =B(B(X), B(1})) < (8N) (B (X), B(Y7))

G.2) 172
< (BN)Y “a(®B(X),B(Y)).
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The inequalities here come respectively from Theorem 1 and the fact
B(Y)C®B(Y).

Now one can define a r.v. Y* as a measurable function of (Y}, U,) such that
Y* has the same distribution as Y and Y} = YN, Yil{y*eny a.s. (For example,
for each i, within the event { Y] = y;} simply define Y* to be the U,-th quantile of
the conditional distribution of Y given Y, =y;.) Since U, is independent of
(X, Y{) and Y} is independent of X, we have that Y* is independent of X. Also
Theorem 2(iii) holds by (3.2), and the proof of Theorem 2 is complete. O

Proof of Theorem 3. We assume a(®(X),®B(Y))>0, f(;; otherwise
Theorem 3 would hold trivially with Y*=Y. Let

M=|Y|, a=a(BX),B(Y))

3.3
G- x=[(1/a)(M/q)? max{~y,1}]¥G7+D

Since M/q 21 by hypothesis, we have x > 1. Let m be an integer that satisfies
x<m<2x.

For —m <j<m let H; denote the half-open interval (jg—q/2,jq+q/2].
Define the half-lines H,, = (mg+q/2,©) and H_,,_=(—%, —mg—q/2].
Then {H;: —m—1<j <m+1} is a partition of R.

Applying Theorem 2, let Y* be defined as a measurable function of (X, Y, U)
such that Y* is independent of X and has the same distribution as Y and such
that P(Y* and Y belong to different H,’s) < [8(2m +3)]'2a. Then using (3.3),
the definition of m, and Markov’s inequality at the appropriate places, we get

P(Y*—Y|2q) < [8(2m+3)]"?a+P(Y*|2mg+q/2)+P(Y|=mq+q/2)
< (56x) 20+ 2P(|Y| 2 xq) < (56x) 20+ 2(M/q)'x ™"
< C‘Y(M/q)’Y/(Z’Y+1)a2'Y/(2‘y+l)

where C,=2+8[max{y,1}]"®*D. Now C, <max{10,2+8v'"} and as a
simple exercise in calculus one has that Vx>0, x!”* <e!/¢ <32 <2 and hence
C, <18. Theorem 3 is proved. O

4. Proof of Theorem 4. Throughout this proof we follow the arguments in [3,
Theorem 4] and [9]; several sections of our proof are taken directly from [9].

We will first prove the existence of the quantity o2 by applying [5, p. 587,
Theorem 1(3)]. If 7 >0 and » > 1 are integers, then letting

0 n+1
Wi= Y Xi/(VarS;y )2 and W= Y X;/(VarS;y )2
k=—1 k

=n

we have, by [13, p. 307, Theorem 17.2.2], that

0 n+l1
Corr( Y X, X Xk>
k=n

k=-—1I

= |COV(Wl, W2)|

@4.1)
<10D[a(n)]?*® « (log n) M/ (2+9)

where D = sup,, E|S,|**%/(Var S, )?*%2, Hence by [5, Theorem 1(i)] there exists
02, 0<0? < o, such that lim, -« 7~ Var S, =02 (since N6/(2+68) > 1).
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For the remainder of the proof of Theorem 4 we assume without loss of gener-
ality that

(4.2) o= lim n~!'VarS, =1

n— oo

By [5, Theorem 1(ii)] (use any vy € (0,1) there) along with (4.1) and some
routine calculations we have

4.3) |1—n~'Var S, | < (logn)! ~M/2+8)

We also have

2486
(4.4) E|S,[**® sE[ max |Sm|] <« pt2
Il<sm<n

by (1.1), (4.2), and [18, p. 1231, Theorem B}. (In that Theorem B let g(n)=Cn
where E|S,|>*° < (Cn)?*%/2 ysing (1.1) and (4.2).)

We will refer to (4.2), (4.3), and (4.4) again when we need to. Now we start the
task of constructing the Wiener process (W (¢)).

We first need to define some parameters and sequences of numbers. First
define the function

4.5) a(x,y)=[(2+6)/(5+26)]-[(1/2)(1 —x) —2Ny]

where 6 and A are as in the hypothesis of Theorem 4. Since A >1+3/6 we get
a(6/(2+06),6/(2+06)) < —1 after some arithmetic. Let z, 0<z<6/(2+6), be
such that a(x,y)<—1 vx, y€[z,6/(2+6)]. Choose numbers v, 5, 7, and »
such that

Z2<7<n<y<6/(2+6)
4.6)
v+a(y, 7)< —1 o0<vr<l1/2.

Define the numbers g;, #;, and q;, /=1, 2,... as follows:
gr=[[v!"""exp(IM)]]
4.7 hy=[[n!"""exp(I")]]
qr=[(1/2)y1""" " =yl 7" exp[(1/2)17]
where in the definition of g; and A;, [[x]] =the greatest integer <x if x =1 and

(to avoid some trivial technicalities) [[x]] =1 if x <1. The numbers g, need not
be integers, but they are clearly positive. It is easily seen that as / — oo, '

) /
hj=exp(I"), ¥ g;=I1"""exp[(1/2)I"].

[ .
(4.8) Y gi=~exp(l"),
j=1
Now we define blocks G; and H; of consecutive positive integers, leaving no gaps
between the blocks. The order is Gy, H,, G,, H,, G,, H;3,... (with 1 € G,). The
lengths of the blocks are defined by card Gy = g, and card Hy, = A,
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For each j 21 define the r.v.’s

Yj = Y X Zj = L X
k€G(j) keH(j)
and define the positive number y; = Var Y.

Next, enlarging the probability space if necessary, we introduce a sequence
(U, U,,U;,...) of independent uniform-[0,1] r.v.’s, this random sequence
being independent of our given sequence (X}).

By (4.2) and (4.7) there is an integer J > 2 such that Vj 2 J, | Y} |2+s = | ¥i |2 =
g;j. By Theorem 3 there is, for each j2>J, a r.v. Y which is a measurable
function of (Y),...,Y;_;, ¥;, U;) such that Y} is independent of (Y),...,Y;_;),
has the same distribution as ¥;, and satisfies

(49) P(in*_ le > Qj) < 18(” YJ ”2+6/qj)(2+6)/(5+26) [a(hj—l )](4+26)/(5+26).

For 1< j<J define Y} as a function of U; so that it has the same distribution
as Y;. (This is purely a technicality.) It is easily seen that for each j 22, Y} is
independent of (Yy,...,Y%,;). Hence (Y7, Y7, Y7,...) is a sequence of inde-
pendent r.v.’s.

We will now approximate the sequence (Y}, j=1,2,...) by a Wiener process
by applying Theorem 3.1 on pp. 122-123 of Jain, Jogdeo, and Stout [14]. In that
theorem we will take =2 (and hence f,(#)=¢-(loglog¢)~2 there) and the
quantity V,, there is given by

(410) VnE}’l"f""'*')’nzgl'i-"-+gnzexp(n7)
by (4.2) and (4.8). For each fixed ¢> 0 one has by (4.4), (4.7), (4.8), and (4.10),
E(“/J‘*I'I[Yj*z zcfu (Vi) <E(| Y}-*|2+‘5/(cfa(Vj))“+‘5)/2)

<gfHOR(f (W)

< le/l,j(7—1)(2+5)/2(10gj)1+6,
E(YP2- 11V 2 cfu (VD) < V- j 07D@H 2 (log ) (similarly),

E(Y* 1Y < cfu (VD) S E((cfu (V) B2 Y7 2*0)
< I/jZ_j(7—1)(2+5)/2(10gj)5—2.
Since (y—1)(2+48)/2<—1 by (4.6), all conditions in [14, Theorem 3.1] (for
a = 2) are satisfied for our r.v.’s Y}*. Hence by that theorem we can redefine the
process (Y}, j > 1) on another probability space, together with a standard Wiener
process (W (t),t 2 0) on the same space, such that

4.11) =o(V}?(loglogV,) Y?)a.s. as n— .

n
LY —W(Vy)
Jj=1

Using [3, p. 53, Lemma Al] we redefine the three processes

(Xk! _w<k<w; )’[,Z],l?l; S(t),t?O), (Y*’l=1929"°)s
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and (W(t),t > 0) together on a new probability space so that the joint distribu-
tion of the first two processes remains unchanged and the joint distribution of
the second and third processes remains unchanged.

Define r(0) =0and for /=1, 2,... define the integer r(/) = Ej-:l (gj+h;). For
each ¢ 2 0let /(¢) denote the integer / such that r(/) <t <r(/+1). To prove (1.2)
in Theorem 4 it suffices to prove that each of statements A-E below is valid; here
V,=y;+-:-++y,asin (4.10) and (4.11):

A. |S(2) =S,y | =0(*(loglog t) /%) a.s.
I(t)
B. Sraey — & Y| =o0(t?(loglogt)™"?) a.s.
Jj=1
(1) (1)
C. L Y,— ¥ Y| =o(t"*(loglogt)"?)a.s.
ji=1 Jj=1
()
D. L Y*—W (V)| =0(t2(loglogt)~1?) a.s.
Jj=1
E. |W(Vigy)—W(t)|=o(t"*(loglogt)~"?) a.s.

In the proofs of these statements we will use the functions b, (¢) = t"/?(logt)™*
for £>1 and p > 0, and will sometimes refer to these trivial facts:
I
r()= Y gi=exp(I")=V,
4.12) J=1
r((8) <t<r{(t)+1) t=r(l(1)).

Proof of A. It suffices to prove |S(¢)—S,qy)| << b,(r(I(t))) a.s. for some
(positive) u sufficiently small.

For each /=1,2,... define the r.v. Ty=max{|S;—S,)|: r(/) <k <r(l+1)}.
It suffices to prove T; < b, (r(l)) a.s. as | = o,

By stationarity, (4.4), and (4.7) we have

ET12+6 < [r([+l)_r(l)](2+5)/2 = (g4 +hl+l)(2+5)/2 zgl(2+6)/2-
Using (4.7), (4.12), and Markov’s inequality we get
PIT;> b, (r()] SET?¥/[b, (r(1))PF 1= DC+O24py(240)

By (4.6), (y—1)(2+6)/2+ py(2+6) < —1 for sufficiently small u. By the Borel-
Cantelli Lemma, P(7;> b,(r(/))i.o.) =0 and we have verified Statement A.

Proof of B. 1t suffices to prove |E§=1 Z;| << b, (r(l))a.s. for p sufficiently
small.
Let e= (y—17)/2. Then by (4.4), (4.7), and Minkowski’s inequality we have

!
El Z;

/ I
< L Zillass << X A7
j 246 j=1 i=1

!
< Y [(172)(n+e)jm < Lexp((1/2)77€)] = exp[(1/2)17%¢]
j=1
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and hence by Markov’s inequality,

! !
P[ Y Z; Y Z;
Jj=1 ji=1

By the Borel-Cantelli Lemma, P(] Ej’~=1 Z;i|>b,(r(l))i.0o.) =0 and Statement B
has been verified.

Proof of C. For each j 21 define the event E; = {| Y —Y;|> g;}. By (4.8) and
(4.12) we have Z, 19; << b,(r(l)) asl = o, so to prove C it suffices to prove
P(E;i.0.)=0.

Now | ¥; ||2+5 < g}’? by (4.4) and exp(j7) << h;_, by (4.6) and (4.7), and hence

P(E'j) < [(g}/Z/qj)(2+6)/(5+25)] . [j‘r(—)\)(4+26)/(5+26)] <<jv+a('y,'r)

by (4.9), (4.7), and (4.5). Now by (4.6) and the Borel-Cantelli Lemma,
P(E;i.0.)=0 and Statement C is proved.

Proof of D. Apply (4.10), (4.11), and (4.12).

Proof of E. We will first get a bound on |#— V) |. Let >0 satisfy 8<
min{1—-+, y(—1+A6/(2+6))} (both numbers are positive). Then by (4.3), (4.7),
(4.8), (4.10), and (4.12),

246
>b“(r(1))]<E /[bﬂ(r(l))]“’s<<exp(—l7).

0
r(l(8)— X g+

Jj=1

i(t) (1)
<< [gl(t)+1 +h,(,)+1 + El hj] +[ v gj(loggj)l—k5/(2+6)]
Jj= j=1

=0 (Vi) (log Vi()) ™).

The rest is routine. For numbers 0 <a<b <o define the r.v. R(a,b)=
max(|W(u)—W(v)|:a<u,v<b}. For all positive integers / such that ¥;>3
define the numbers ¢; = V;(1 — (log ¥;) *) and d;=V,(1+ (log V;)~®). To prove
Statement E it suffices to prove that with probability 1, R(c;,d;) > bg4(V})
for at most finitely many /. By the Borel-Cantelli Lemma it suffices to prove
P[R(c;,d)) > bg (VDI /=2, But by [14, pp. 121-122, Lemma 2.2] and (4.10),

P[R(c;,d))> bga(V))1=P[R(0,1)>27"2(log V)P4
< exp[—(log V))#/2/41 <« ]~2

(1)
L (g—y)

Jj=1

[t =V | < |t=r((2))|+

Statement E is proved, and this completes the proof of Theorem 1. O
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