SMOOTH FREE INVOLUTIONS ON
HOMOTOPY 4k-SPHERES

Ronald Fintushel and Ronald J. Stern

1. Introduction. In [7] we constructed a homotopy real projective 4-space Q4
not s-cobordant to the standard real projective 4-space RP* with the property
that the 2-fold cover of Q was diffeomorphic to the 4-sphere S*, thereby con-
structing a smooth exotic involution on S*. In order to determine that Q was not
s-cobordant to RP* we introduced an invariant which was a Q/Z-linear combin-
nation of the p-invariant of an almost-framed characteristic homology RP* and
the a-invariant of its 2-fold cover. In this paper we generalize this invariant to
study smooth manifolds of the homotopy type of RP* k> 1, or equivalently to
study smooth free involutions on homotopy 4k-spheres. This invariant, defined
in §2 and called p, is again essentially a Q/Z-linear combination of the Eells-
Kuiper p-invariant of a spin structure on a characteristic homotopy projective
space and the Atiyah-Singer «-invariant of its double cover.

In §3 we show that (except for a single exceptional case p =1/4), every normal
cobordism class of homotopy RP*~Ds which contains a representative whose
double cover is the standard sphere S* ! gives rise to at least two homotopy
RP*’s which are distinguished by p. In §4 we construct normal cobordism
classes of homotopy RP*~1s which contain representatives whose double cover
is S**~1 and we distinguish these normal cobordism classes by a difference in-
variant, essentially 2p, introduced in §2. This then yields twice as many homo-
topy RP*s.

In Appendix I we give an explicit calculation of the u-invariants of RP-1
which is used in §3 and §4.

We obtain no more smooth homotopy RP*’s than claimed earlier by, for
instance, Giffen [8] or Loffler [12]. The strength of our approach lies in the
simplicity of the invariant p and its utility in distinguishing specific examples.
This is exemplified by the explicit construction of all the homotopy RP¥s and
homotopy RP!?’s in Appendix II.

Finally, we thank Paul Melvin for asking us if we knew how to construct any
exotic smooth involutions on S®. We also wish to thank Terry Lawson and the
referee for their interest and for useful advice.

2. The invariants. Given a~closed manifold Q‘”‘_1 of the homotopy type of
RP*~1! whose double cover O is diffeomorphic to S*~! we construct a homo-
topy RP* as follows. Identify O with the boundary of the 4k-ball B* and let
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y4 = g4k U, B*¥ where ¢ is the free involution on O given by the covering trans-
lation. Let 7 be the involution on the homotopy sphere T4k which sends a point x
in one copy of B* to the point x in the other copy. (This is compatible with the
involution ¢ on (.) The pair (2%, T") will be called a suspension of (0, t) with O
a characteristic sphere for T. The quotiént L*/T is homotopy equivalent to
RP* and will be called a suspension of Q*~! with Q*~'c %/ T a character-
istic homotopy RP*~!. Every involution on a homotopy 4k-sphere, k> 1, has
characteristic homotopy spheres (see [13]).

Given a (Z*, T') as above we shall define an invariant of £*%/T which is a
Q/Z-linear combination of the Eells-Kuiper p-invariant of Q%! and the
Atiyah-Singer «-invariant (or equivalently the Browder-Livesay invariant) of
the involution £ on Q. We first digress to recall the definitions of these invariants.

Let X **~! be a spin 4k — 1 manifold with a given spin structure s. The u-invari-
ant of (X! s) as defined by Eells and Kuiper [6] and generalized by Milnor
[14] is given as follows. The spin cobordism group Q?}:‘_Nl =0 since QEP’N - QEO
has kernel only in dimensions 8k+1 and 84+2, and Q3¢_, =0 (see [17]). So
(X*=1 5)=9(W* S) where S is a spin structure on W**. We are interested in
the case where X*~! is a rational homology sphere (e.g. X is a homotopy
RP* =1 Then the inclusion induced homomorphisms

JHHYM(W,X;Q)> H**(W;Q) (0<g<k) and
JH* (W, Xx;Q) - H*(W; Q)

are isomorphisms.

_Let Li(py, ..., pk) denote the kth polynomial associated with z!/2/tanh(z!/?),
Ax(py,...,pr) the kth polynomial associated with %z“zlsinh(%z”z), b =
—1/(2%*1(22¥=1-1)), and

Nk(pls'"’pk—l)=12ik(pl,°'-’pk—l90)—tkLk(pli'",pk—lao)'

Let p; (W) be the jth rational Pontrjagin class of W and consider the rational
number

Ny (W) =N (G* o)), oo o (), [W, X D).

If o(W) denotes the signature of W and a,=4/(3+ (=1)%), then define
p(X,s)= (Ny(W)+t,0(W))/a, (mod 1), which depends only on (X, s).

The other invariant which we shall need is the a-invariant of Atiyah and
Singer [2]. Suppose that (M 4-1 ¢y is an oriented (4k—1)-manifold with an
orientation-preserving free involution ¢ such that (M*~1, ¢) is the oriented equi-
‘'variant boundary of (Y**, T') where T is not necessarily free. Then o(M, 1) =
sign(Y*¥, T)y—YT- Y7 where sign(Y*,T) is the equivariant signature and
Y7T. YT is the self-intersection number of the fixed point set. When M*~! is a
homotopy (4k —1)-sphere, « is just 8 times the Browder-Livesay invariant of ¢
(see [13]). In this case we usually write a(M*~1/t) to mean a (M ¥~ 1).

We are now prepared to define our first invariant. Let Q*~! be a smooth
homotopy RP*~! (k = 2) with double cover O, and let s, and s, be the two dis-
tinct spin structures of Q% ~!. Define
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t 1 -
FO¥ 1 s) =p(Q¥ L si) - f—a(g)— ~u(Q) (mod 1).
ay 2

THEOREM 2.1. If Q and Q' are normally cobordant homotopy RP*~1s
(k=2 2) the pairs of (modl) rational numbers {2p(Q,s),26(Q,s1)} and
{26(Q",50),26(Q’,s{)} are equal.

Proof. The homotopy equivalences f: Q — RP*~! and f’: 9’ > RP*~!
extend to a normal map F: W* — RP*~! where W is a normal cobordism
from Q to Q’. Performing surgery if necessary, we may assume (W) =12Z,.
Since RP* ! is spin it follows that W is a spin manifold. Further, since F is a
normal map the rational Pontryagin classes p, (v(W)) of the stable normal
bundle of W are pulled back from a bundle over RP* =1 (This is actually the
stable normal bundle of RP*~!, see [3], p. 215.) Since H*(RP*~1; Q) =0 for
g >0 we have p, (v(W)) =0 for ¢ >0, and so p, (W) =0.

Now choose a spin structure Sy for W and let 5o =S| Q and s§ =S, | Q’. We
have

{
u(Q’s")—u(Q,s)=pn(dW,S|oW) = fc(W} (mod 1).

Since F lifts to a normal cobordism F: W — S*~! of double covers O and ', a
similar argument shows

- ~ { -
n(0)—p(Q) = f"‘w) (mod 1).
However 20(W)—a(W)=a(Q’)—a(Q) (see [18], p. 198), hence

< <t
2p(Q",50) =2p(Q,50) —p(Q")+r(Q) = a—i(a(Q')—a(Q)) (mod 1).

That is, 25 (Qg, S¢) =25 (o, So) (mod 1).
Since (W) =127, we have H (W;Z,)=1Z, so W has exactly two spin struc-
tures, and the diagram
HYRP¥%-1,27,)
F* ~ f*

HY\W;Zy) : HY(Q; Z,)

shows that i * is onto. Thus each spin structure on Q is the restriction of some
spin structure on W. The same is true for each spin structure on Q’. Since W has
exactly two spin structures, say Sy and Sy, the restriction of S; to Q and Q' must
give the other spin structures s; and s; of Q and Q’. So the above argument
shows that 26(Q’,s{)=256(Q, s1) (mod 1). O

Notice in the above proof that if u(Q), u(Q’) and o(W) were all equal to
zero, the proof would show that 6(Q’,s/) =6(Q,s;) (mod 1), i=0, 1.

PROPOSITION 2.2. Let £*% be a homotopy 4k-sphere (k =2 2) with a free invo-
lution T. Let Q and Q' be characteristic homotopy RP*~Vs for T*/T. Then
{6(Q,50),6(Q0,5)} ={p(Q",50),6(Q",s{)} (mod 1).
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Proof. Let W*k be a characteristic cobordism from Q to Q’; so W is a normal
cobordism. Consider the double cover W C % x I with a9 = QU O’. Note that
O=(0’'=5%*"1, Now O bounds a ball U in Z* x 0 and O’ bounds a ball U’ in
L4 x I so that the manifold UU WU U’ bounds a codimension 0 submanifold of
4% xI. In particular o(W)=0(UUWUU’)=0. So the proposition follows
from the comment above. O

Proposition 2.2 shows that the pair of (mod 1) rational numbers

[ﬁ(Q)SO)’ﬁ(Q:Sl)}

is an invariant of the involution 7" of £*. Our goal for the remainder of this sec-
tion is to prove that 5 (Q, s1) = —6(Q, o) (mod 1) for a characteristic homotopy
RP*~1: 50 we can reduce the invariant to a single number.

We shall next need the Dold construction. Let Q‘”‘ ~! be a smooth homotopy
RP*~! and let f: Q— RP*~! be a homotopy equivalence with V*#~2=
S YRP*~2) a transverse preimage. The normal bundle E of V=2 in Q*~1 s
a line bundle and so has a unique fiber-preserving involution J fixing ¥*~2. The
Dold construction is H(Q)=Q0x1U,. E—E QO X1 where E is viewed as a sub-
manifold of O x 1. Notice that 3D(Q) = O —20. Since f is transverse to RP** 1
f|E maps E onto the normal bundle of RP*~2 in RP*~! via a bundle map,
and so f | E is equivariant with respect to the involutions used to paste together
the Dold constructions. Hence F extends to D (f): D(Q) — iD(RP‘”"l ).

Now f: QO — RP*~1is covered by a map of stable tangent bundles

f:7(Q) = r(RP*~1y

([11). If f is transverse to RP*~2 then f is transverse to T(RP4k"I)|Rp4k-z.
Therefore the Dold construction can be applied to the manifolds 7(Q) and
7(RP*~1) giving D(f): D(7(Q)) = D(r(RP*~1)). But D(7(Q)) =7(D(Q))
and D(r(RP*1)) =T(S)(RP4k_l)) because the gluing map used in the con-
struction of D (7(Q)) from two copies of 7(Q) X I can be thought of as the differ-
ential of the gluing map used to construct D (Q) from two copies of Q x I. Hence
D(f): D(Q) = D(RP*1) is covered by D(f): 7(D(Q)) = 7(D(RPH 1Y),
Notice that iD(f) is the same map over the two copies of @ X0 in D(Q).

PROPOSITION 2.3. Let Q* =1 be a homotopy RP*~1 (k > 2) with «(Q) =0.
Then p(Q,s1)=—p(Q,s0) (mod1).

Proof. Since o (Q) = 0 there is a homotopy equivalence f: Q = RP*~! trans-
verse to RP*~2 such that f | f~Y(RP* %)=V — RP*~2 is also a homotopy
equivalence. Let D =D(Q) and D = D(RP*~1). There is an extension F =
D(f): D — Dy covered by b=D(f): 7— 75. Because Q and RP*~! are spin
manifolds a Mayer-Vietoris sequence argument shows that $ and Dy are also
spin manifolds. Choose a spin structure 8 for . If we can show that $ | QUQ =
soUs; where QU Q is the union of the two copies of Q in 3D then

- - {
p (0D, $10D)=pu(0)—u(0,50)—n(Q,s) = f"“’m (mod 1)
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becauseH‘“’(ﬁ);Q)=0forq?l,sopq(iD)=0forq21. But D has the property
that (D) = —a(Q) (see [13]). So

- —1
w(0)—u(Q,50) —p(Q,s1) = a—kka(Q) (mod 1)

and the result follows.

We must now show that | QUQ =s,Us; for some spin structure $ on .
Spin structures on N and Dy correspond uniquely to spin structures on 7 and 75
(see [14], Lemma 3). Let P¢ denote the total space of the principal SO (#)-bundle
associated with an orientable n-plane bundle £. Fix a spin structure & on 7, i.e.
® € H'(P7g;Z,). Then b: 7 — 75 induces b: Pt — P7g; 50

S=b*Re H(Pr;Z,)
is an induced spin structure on 7.
Now & | RP*-TURP*-1c 9Dy is roUr, with ry # ry; for if ry =r; we would
have

—t
2u(RP¥-! poy = a—ka(RP4k_1)EO(mod 1)
k

which is not the case. (See Appendix I for a computation of ,u(RP4k_1, ro).)
Consider the commutative diagram
H'(Pr(RP*™'); Z,)=—— H'(Prg; Z,)——H"'(PT(RP¥*™"), Z,)
5 | | & | 5
H'(P7(Q); Z) H'(P1;Z,) H'(P7(Q); Zy).

By construction by = by ; so b§ = b}. Since ry #r; it follows easily that § | QUQ =
So US] . O

COROLLARY 2.4. Let Q%' be any homotopy RP*~! (k=2). Then
26(Q,s0)=—2p(Q,s;) (mod 1).

Proof. Q is normally cobordant to another homotopy RP* -1 Q’, satisfying
a(Q’) =0 ([13], V.2.1). So the result follows from (2.3) and (2.1).

THEOREM 2.5. Let Q*~! be a homotopy RP*~' with double cover O =
S*=1. Then $5(Q,51) = —5(Q,50) (mod 1).

Proof. As in the proof of (2.3) it suffices to show that for the Dold construc-
tion D(Q) all p, (H(Q)) =0, g >0, and that there is a spin structure S for D(Q)
restricting to the two different spin structures sy and s; on the two copies of Q
in a9 (Q).

To prove that the rational Pontryagin classes of D(Q) are trivial let P*¥ be a
suspension of Q. (P** exists because O = S**~1). Let f: P* — RP* be a homo-
topy equivalence transverse to RP* ~! which restricts to a homotopy equivalence
QO — RP*~! Now let RP§*~! be a cross section of the normal bundle of RP*~!
in RP* such that RP$* ~! meets RP**~! transversely in RP* 2, Then fis trans-
verse to RPg¥~! and f Y (RP§*~!)=0Q, is a cross section of the normal bundle
of Qin P (s0 Qp=0Q) and f{(RP¥~2)=0Q,NQO=V**"2, Let D(Q) be the
Dold construction corresponding to the homotopy equivalence f: Q — RP*~!,

a
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Even though the involution on P is orientation-reversing, we can form the
nonorientable (4k+1)-manifold

DP)y=PxI U PxI
Jo:Eg — E,
where E is the normal bundle of Qg in P X1 and the gluing map J, is a fiber-
preserving involution of Ej fixing Q. Since Q and Q, intersect transversely in V
we have E=EyNQ and J=J, | E; so D(Q) is a codimension 1 submanifold of
D(P). A Mayer-Vietoris argument shows that H*(D(P); Q) =0 for 0< g <k;
50 pg (D(P)) =0 for 0<g <k. Thus 0=i*p, (D(P)) =p, (D(Q)).

Next let Q' be a homotopy RP*~! normally cobordant to QO witha(Q’) =0,
and let F: W* — RP*~! be a normal cobordism between the homotopy equiv-
alences f: Q — RP*~1 and f: Q' > RP*-1 we may assume that F is trans-
verse to RP*~2 and that V'=F~!(RP*~2) has gV =V UV’ where V'C Q’
is homotopy equivalent to RP*~2, Let £ be a tubular neighborhood of V
and form the Dold construction D(W)=W xIUj.g_, g WxI. Then dD(W) =
W—2W+D(Q)—D(Q’). After performing surgery on W, V, and V we may
suppose that HY(W;Z,)=Z, and that

H\V; 2y)~—— H\(V; 2, —X—~H\(V"; Z,) = Z,

are isomorphisms. Hence each (inclusion induced) map in the commutative
diagram

HY D(W); Z,) H\(V;Z,)

!

HYD(Q'); Z,)——H (V"5 Z,)

is an isomorphism.

It follows that each spin structure of H(Q’) is induced from some spin struc-
ture on H(W). Let S’ be a spin structure on D(Q’) and let 8 be an extension
over D(W) with $|D(Q)=S. Since H(W;Z,)=17Z,, W has exactly two spin
structures. We know from the proof of (2.3) that the restriction of S’ to the two
copies of Q' in dD(Q’) gives sgUs{ where sg#s{. Hence § restricts to the two
distinct spin structures og # o; of W on the two copies of W in 9D (W). Since
HY(W;Z,) > H(Q;Z,)=1Z, is an isomorphism, each spin structure on Q
extends over W; so sg=09| Q#s,=0;|Q. So the spin structure S on D(Q)
restricts to soUs, on QU Q €D (Q) as required. ]

Theorem 2.5 can also be proved for any homotopy RP*~! with k odd.
For we can ambiently surger a characteristic submanifold V*~2 until all
H (V*%*-2)=0 except for i=2k—1,4k—2. But H'*Y(D(Q); Q)=H(V; Q).
So if 2k #0 (mod 4) i.e. if k is odd then p, (D(Q)) =0 for g> 0.

DEFINITION 2.6. If £% is a homotopy 4k-sphere with a free involution 7 de-
fine p (Z*/T) = |5 (Q* 1, 5)| (mod 1) for Q a characteristic homotopy RP*~!
and spin structure s on Q.
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Theorem 2.5 and Proposition 2.2 show that p is well defined. However we
wish to emphasize that even though we write p as a rational number (mod 1), p is
really only defined up to the involution of Q/Z given by absolute value.

We shall need another invariant which is related to p. Consider the portion of
the surgery exact sequence:

7

S(RP*-1) [RP*~!, G/0]——>Lat_1(Zs, +) = Zy.

Let M *~1 be a smooth closed manifold and f: M*~! - RP*~! 3 normal map.
Then f is covered by a bundle map v(M‘”‘_') - V(RP4k_l) of stable normal
bundles ([1]). Let ry and r; denote the two distinct spin structures on RP* 1. If
fis degree 1 it induces an injection on cohomology; so ry and r; induce distinct
spin structures sy, and s; on M.

DEFINITION 2.7. The difference invariant of a degree 1 normal map
f:M —> RP*=Vis d(M) = |u(M,sy)—p(M,s;)| (mod 1).

Of course d (M) is also defined only up to the involution of Q/Z by absolute
value. More apt notation for d(M) would include the normal map f; however
this will usually be understood. In any case if f is a homotopy equivalence
M — RP*~1 it is unique up to homotopy ([3], (5.1)).

PROPOSITION 2.8. Let Z** be a homotopy 4k-sphere (kK =2 2) with a free invo-
lution T and let Q**~' be any characteristic homotopy RP*~! for L/T. Then
20(Z/T) =d(Q) (mod 1).

Proof. This follows immediately from the definitions and Theorem 2.5. O

PROPOSITION 2.9. Let f;: P! > RP*~1 =0, 1, be normally cobordant
degree | normal maps (and k 22). Then d(Py)=d(P;) (mod 1).

Proof. Let F: W* — RP*~! be a normal cobordism between f, and f;.
We have seen above that F is covered by a bundle monomorphism
(W)= »(RP*~1) hence W is a spin manifold. Let So,S; be the spin struc-
tures on W induced by ry and r;. So by definition, SJ-|P,5”‘“l =Sj(i), the spin
structure on P; induced from r;. Using W to compute u-invariants we have

w (W, S | W) = (W, S, | aW) (mod 1).

So u(Py,s6")—n(Po,56”) = n(Py,s{V) —pn(Py,s5{”) (mod 1) and the result
follows. O

3. Suspending normal invariants. In §2 we defined an invariant for smooth
involutions on homotopy 4k-spheres and then showed in Proposition 2.9 that
twice this invariant is an invariant of the normal cobordism class of the orbit
space of any characteristic sphere. Our goal, then, is to realize normal cobordism
classes of homotopy RP*~"’s whose double cover is S* !, distinguish them by
the invariant d of §2, and for each such normal cobordism class construct two
smooth free involutions on a homotopy 4k-sphere distinguished by the invariant
o. In this section we make this process precise.
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Consider the surgery exact sequences

[RP*, G/0]
6 iy

0 S (RP%)

Z,

Z@®Z—S(RPH*1) [RP*~! G/0)]—— Z,

where i, is induced by the inclusion i : RP*~! — RP** and where 6 = in.

DEFINITION 3.1. Let Nyt_; C [RP*~! G/0] be the subset consisting of those
elements which are represented by a homotopy RP* ~! double covered by S 4k—1

LEMMA 3.2. The image of 6 =i, is exactly Ny _;.

Proof. Let P* pea homotopy RP* . Then P*f has a characteristic homotopy
RP*~1 say 0*~! unique up to characteristic cobordism (see [13]), hence up to
normal cobordism. Since the double cover Q of Q is characteristic in P, the
double cover of P, O bounds a contractible submanifold of P; so O =%~ 1. But
i,n(P)=n(Q).

Conversely, if 7(Q) € [RP* !, G/0] where O =5%"! then any suspension
P* of QO has the property that i g (P)=75(Q). O

LEMMA 3.3. Let 2%~ be the nontrivial element of bPy, with 22 =0. Then
p(X)y=1/2.

Proof. The group bPy4; of homotopy (4k —1)-spheres which bound paralleliz-
able manifolds is a cyclic group of order @;2*~2(2%*~!'—1)N where N=
numerator (By /4k), By the kth Bernoulli number, and N =1 (mod 2). (See [11].)
A generator X EbP4k has p(Xy) = 1/(22k 2(2%k-1 —1)ayg) (mod 1). Since 2X =
0, L =a, 22322k~ 11 )NZy; so u(Z)=N/2=1/2 (mod 1). a

Now consider an element of Ny _; represented by Q**~!, a homotopy RP*~!
with O diffeomorphic to S*~!. We would like to find two distinct homotopy
RP*s, say P and P’, such that § (P) = 6(P’)=7(Q). Todo thiswelet Q'=Q#YX
where X is the homotopy sphere of order 2 in bP,;. Then Q' = S*%*-1 and Q'is
normally cobordant to Q. Let P** and P’** be suspensions of Q and Q’. Then
6(P)=79(Q)=79(Q’)=6(P’). But by Lemma 3.3 p(P’)=p(P)+1/2 (mod 1).
Since p is well defined up to absolute value (mod 1) this means that P and P’ are
distinct provided p (P) is not congruent to 1/4 (or 3/4) (mod 1). It is easily seen
that p (P)=1/4 if and only if d(Q)=1/2. Hence we have:

THEOREM 3.4. Let k=2 and let 7(Q*~\YENy_,. If d(Q)#1/2 then
61 (Q)) contains at least two distinct RP* s distinguished by their p-
invariants. 0

We know of no example of a homotopy RP* ! with difference invariant 1/2.

LEMMA 3.5. If Pé“‘ and Pfk are homotopy equivalent to RP* and if Py and
P, have characteristic homotopy RP*=1>s which are diffeomorphic, then P, =
Py #X for some T € 6%,
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Proof. Let Q*f~! be the common characteristic homotopy RP*~!, Then P; =
D* U, Mapping cylinder (S**~!' — Q1) /=0, 1; so P; = Py # L where I cor-
responds to g;85! € Tyk. O

Let P** be a homotopy RP*F and let 7(P*) denote the subset of §%% consisting
of those homotopy 4k-spheres ¥ with Py = p*, je. I(P4k) is the inertia
group of P*.

THEOREM 3.6. Let k22 and Pg* € S(RP*) with p(Py)#1/4. Let T1=
[P € S(RP*) |20 (P)=2p (Py) (mod 1)}. Then & 1(8(P)) contains exactly two
elements for each P €11 if and only if I(P) =0* for each P €11.

Proof. Suppose that I(P)=0% for every P € $(RP*) satisfying 2p (P) =
2p (Py) (mod 1). Let Qg be a characteristic RP*~1 for Py. In the proof of Theo-
rem 3.4 we constructed P, € S(RP*) with p(P;)=p(Py)+1/2 (mod1) and
8(P;)=05(Py) =0(Qp). Let P, be another homotopy RP* with &(P,) =2(Qp).
Then p(P,)=p(Py) or p(P;) since 2p(P,) is a normal cobordism invariant of
the characteristic homotopy RP*~! by (2.8) and (2.9). Say p (P,) =p (Py).

Let O, be a characteristic homotopy RP*~! for P,; then 7(Q2)=1(Qp). By
([13], V.3) we have O, = O, #mX, where L, is a generator of bP,; and

m=1/8(a(Q)—a(Qp)) (mod2).

But both @, and Q, are diffeomorphic to S¥-lsom=0 (mod|bPy|) and thus
m=0(mod2). So (Q,)/8=a(Qp)/8 (mod2), and thus by ([13], IV.4.2) we
can find another characteristic homotopy RP*~! O3, for P, with a(Q;)=
a(Qg). Since Q7 and Q, are normally cobordant and have the same «-invariant,
Q; =Qg#X for some X € bPy; (see [13], IV.3, Theorem 2’).

Since p(P;) =p(Py) (mod1l) and «(Qj;) = a(Qy), we have u(Qj,s;) =
1(Qgp,50) (mod 1) for some spin structures s on Qp and s, on Q;. Now the
double covers of Qy and Q5 = Q, #L are both diffeomorphic to S**~!; so 2L
is also diffeomorphic to S*~!. But u(Q3,5)=n(Qo,s) +p(Z) (mod 1). If
s§=5p then p(Z)=0(mod1) so Z=S*"! by (3.3). If sg #Sy then d(Qgy) =
|1 (Qo, 56) — 1 (Qp, So)| =u (L) (mod 1). But our hypothesis is that p (Py)#1/4 or
equivalently that d(Qy) #1/2. So (3.3) again implies that £ =S*~!. Thus Q; =
Qo; so Lemma 3.5 implies that P, = Py #M*F for some M** € 8%, By hypothesis
I(Py) =0* so we have P, = P,. This shows that 6 “1(8(Py)) = {P,, P, } as de-
sired.

Conversely, suppose that & ~!(8(P)) contains exactly two elements for each
P € S(RP*) such that 2p (P) =2p (Pp) (mod 1). Consider such a P, If M* € g4*
then p(P)=p(P#M). Our construction in Theorem 3.4 gives a P’ € S(RP*)
with p(P’)=p(P)+1/2(mod2) and 6(P’)=6(P). So B—I(S(P)) ={P,P’}.
Since a characteristic homotopy RP*~! for P#M is also one for P we have
O(P#M)=6(P). Hence P#M is diffeomorphic to P or P’. But p(P)=
o(P#M)#p(P’). So P#M =P and M € I(P).

o

4. Realizing elements of Ny _;. In Appendix I we show that d(RP*~!) =
1/(a,2%*) (mod 1) where ax =4/(3+ (—1)).
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THEOREM 4.1. There are at least a;,2**=3 distinct elements of Nyr—1 (each
with difference invariant #1/2).

Proof. The indicated number of elements will be obtained by taking multiples
of RP*~1 and then determining which multiples are normally cobordant to
homotopy equivalences using [3].

Following Browder [3], let n = 2s+1 and let RP*~!(n) = nRP* 1Y —s§% !
and let £, : RP*~1(n) > RP*~! be the degree 1 normal map which is the iden-
tity on each copy of RP*~1 and the double covering map on each copy of S*~!.
It is shown in ([3], Theorem 4.8) that f, is normally cobordant to a homotopy
equivalence g, : M,, — RP*-1if and only if n = +1 (mod 8). Furthermore in the
proof of ([3], Prop. 4.18) it is shown that the double cover M, € bP,;. Now
d(M,)=d(RP*~Y(n)) = |n/(a;2%)| (mod 1); so (taking into account the invo-
lution of Q/Z by the absolute value function) there are ;2% 2 such M, with
distinct difference invariants d(M,), and d(M,) #1/2 for each such n. It re-
mains to show that we can find homotopy projective spaces Q% ~! normally co-
bordant to M, with double covers O, diffeomorphic to S**~!.

If M, €2bP,; let M,,=M,. Otherwise let M, be a homotopy RP*~! nor-
mally cobordant to M,, with a(M,)) =a (M, )+ 8 (Theorem V.2.1 of [13]). Then
by ([13], V.3) M, =M, #rL, where L, generates bP,; and r is odd. So in either
case M, =2mEX, for some integer m. Let Q*~1= M, # —mXy,. Then Q, is nor-
mally cobordant to M,, and O,, = S*~!. The Q*~!, n= +1 (mod 8) are a; 2% 3
distinct elements of Ny _; distinguished by their difference invariants (none of
which is 1/2). O

THEOREM 4.2. Suppose that there exists a degree 1 normal map
f. M4k—2 _’)S4k_2
with nonzero surgery obstruction, e.g. for k=2,4,8, or 16. Then there are at

least ay, 2%%=2 distinct elements of Ny, _ distinguished by their difference invari-
ants (all #1/2). i

Proof. Consider
ld#f. CPZk-—l #M4k—2 — CPZk—-l #S4k—2 — szk—l.

Let N*¥~! be the total space of the pull back of the Euler class 2 S'-bundle over
CP?*~1, We then obtain a degree 1 normal map g: N = RP*~!since RP* ! is
the total space of the Euler class 2 S'-bundle over CP3*~!. It is easy to see that a
transverse preimage of RP*~2 is id#f: RP¥~2#M — RP*~2; 50 g has non-
zero surgery obstruction. We claim that N admits an orientation-reversing dif-
feomorphism. For N = §% 3 Xz,D*U (M—D*~2)x S! with gluing map

J(S4 3 XZZDZ) — g¥-3y gl rxid S4k=3 5 gl

where r is reflection in $*~* and Z, acts on S*~3 x D? by antipodal x antipodal.
(Note that S‘”‘"3><ZZD2 is the tubular neighborhood of RP*~3 in RP*~!))
The orientation-reversing diffeomorphism of N is given by id Xz, reflection on
§k=3 Xz, D? and id x reflection on (M —D*~2)x S'.
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Now let £, be the total spaces of the Euler class 2 D?-bundles over Cp*-1
and let Wy, be the total spaces of their pull backs over CP*~1#M. Then
N=0W,and N= —N =9dW_,. Since id # f is a degree 1 stable tangential map, it
is covered by degree 1 stable tangential maps W,, = E.,. A Mayer-Vietoris
argument shows that ¢ (W) =0(E+,y). Since Pontryagin classes pull back,
Ni (W) =Ni(Es,). The two p-invariants of RP*~! are computed from E,;
so it follows that d(N) =d(RP*1),

Let n=2s+1 and let N(n) =nNU —sN and g,,: N(n) = RP*~! the degree 1
normal map which is g on each copy of N and on each copy of N is the
composition

N—> N—S—+Rp*-1,

Again Browder ([3], Theorem 4.8) shows that g, is normally cobordant to a
homotopy equivalence A, : P,fk_l — RP*~1ifand only if n= %3 (mod 8). Also
d(P,)=d(N(n)) En/(akZZk) (mod 1). As in the proof of (4.1) we can assume
that the double covers of P,, n= +3 (mod 8), are diffeomorphic to S*~!. The
P, yield a;2%¢3 distinct elements of Ny,_; which the difference invariant shows
are different from those obtained in (4.1). a

Combining (3.4), (4.1), and (4.2) (and [7] or [5] for Kk =1) we have:

COROLLARY 4.3. (Compare [8] and [12].) There are at least a,2**~? distinct
smooth homotopy RP*’s where a,=4/(3+ (—1)"). If k=2,4,8,0r 16 there
are at least a; 22~ distinct smooth homotopy RP* ’s. O

Appendix I. Computation of d(RP* 1), In this appendix we shall show that
d(RP*~") =1/(a,2%) (mod 1) where a; =4/(3+ (—1)¥).

Let W be the total space of the Euler class 2 D?-bundle £ over CP?*~!, Then
oW = RP* 1, Let s be the spin structure on RP**~! induced by the unique spin
structure on W, and let j: (W, ¢) = (W, W) be the inclusion. Since (W) =1
we have ,u(RP‘”‘_l,s) = (N (W)+t)/a, (mod 1) (see §2). It is easy to check
(e.g. in [9]) that the coefficient of p, in (fik — 4L )(D1y.- -y Prk—1,Pr)1s 0. Hence
for any py,

(A=t L) (D1 - s Pre1>P8) = (A =t L) (P15 - < o Pk—1,0) = Ni (D1, -, Pi—1)-
Now p(W)=p(CP¥* " HYp(t)=(1+a*)*(1+4a?) where a is the image in
H?*(W;Q) of a generator of H*(W;Z)=H?*(CP*~1;Z). So j* \p(W)=
(1+ (b/Z)i)Zk(l + b?) where b is a generator of H*(W, dW; Q) such that j*(b) =
2a. Since A is the multiplicative sequence associated with the function
f(z) — %zl/z/Sinh(%lez)
we obtain

o bra ¥ b/2
A sy —1 %4 e sy —1 AW = < ) ( >
k(U D (W), T Dk (W), Die) sinh(5/4) sinh(b/2)

where p, is the 4k-component of (1+ (b/2)2)2k(1 +b?).
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But if x € HP(W, dW; Q) and y € H*~P(W, oW; Q), by definition
Uy, [W,0W ]y =<(xUj*(y), [W, W ]).

It follows that (Ax (j* 'py(W),...,Ji* Dkt (W), pi), [W, dW 1) is the coeffi-
cient of z2* in (z/(2sinh(z/2)))*(z/2sinh z). By the Cauchy integral formula
this is obtained by dividing by 27iz?**! and integrating around the origin. Hence

ArG* D W), e J* Dk (W), pi), TW, OW 1)

1 1 (§ dz
2%+ oxi T sinh®*(z/2) sinhz

_ 1 1 (& dz
T 2%*2 i T sinh®*1(z/2) cosh(z/2)

| 1 du L )
=T 5 <§> T 0 (substituting # = sinh(z/2))

1 1 (§) 1—w?+u*—uby—- ..

= - du
22k+1 27rl u2k+l

— (—l)k/22k+l-

Since L is the multiplicative sequence associated with z!/?/tanh(z!/?) we obtain

LeG* ™01 (W), iy (W) )—(——-——b’z >2k( —)
kU™ D yeeosd” Pk s Pr) = tanh(b/2) tanh b /)’

and as above Ly (j* ' pi(W),...,Ji* pi_1(W),pr), [W,dW1) is the coeffi-
cient of z2¥ in (z/tanh z)*(z/tanh(2z)). Thus

L G 2y (W),s oo ok (W), pi), LW, 0 ])
1 (§> dz 1 1+tanh?z
" 2xi J tanh®ztanh(2z) =~ 2#i J 2tanh®*tlz

du  (substituting # =tanhz)

1 (& 14+u?

2mi 3 20K (1 —u?)
1 —14+2/(1—u?)
= i CS) 20 2K+ du
_ 1 —du 1 (§) du
T 2w J 2uFY U 24 T w1 —u?)
1 1+u+ut+---
=0+ i <§ 2R du=1.

So Ni (W) = (—1)* 2%+ _¢,; hence u (RP¥ 71, 5) = (—1)*/(a,2%*") (mod 1).
That is
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1/722k+1 k even

_1/2%%42 g odd (MOdD)

p(RP¥! )= {
Since RP*~! has an orientation-reversing diffeomorphism its other p-invari-
ant is —,u(RP4k_1,S). Thus

1/22", k even

d1
122+ g oda (ModD)

d(RP4k—l) EZl[JL(RP4k_l,S)I = {

Appendix II. Explicit computations. In this appendix we shall exhibit explicit
constructions of the homotopy RP%’s and RP'?’s. The constructions go as fol-
lows. Start with a homotopy (4k —1)-sphere £ ~! admitting a free circle action;
thus we have an S!-bundle of Euler class 1 Z% ! — X*~2 where X*~2is a
homotopy CP?%*~1 We consider only those homotopy spheres which are divisible
by 2in 0% 15 j.e. ¥ 1 =254 -1 Let 0% ! be the total space of the Euler class
2 S'-bundle over X% 2, and let Q*~!'=0# —%. Then O=5*"1; u(Q,s)=
p(0,5)—pn(L) (mod 1) and these p-invariants can be computed if the rational
Pontryagin classes of X 4 -2 are known. To compute 5 (Q, s) it remains to com-
pute a(Q) = a(Q), and this is accomplished by using a theorem of Montgomery
and Yang.

THEOREM ([16]). Suppose S' acts freely on the homotopy sphere L*~1,
Define I(Z*~! Sy =g(f~1(CP*~2))—1 where f: £/S' > CP*~ is an orien-
tation-preserving homotopy equivalence transverse to CP%*=2 Let 0=Y/Z,,
the quotient of © by the involution in the S'-action. Then a(Q)=1I1(Z,S'). O

We pointed out in §4 that there are exactly 8 distinct free involutions on homo-
topy 8-spheres. We shall now realize all of these as involutions on S® with distinct
p-invariants by using the above program. We use the computation of free S'-
actions on homotopy 7-spheres given in [15]. Homotopy CP3’s are distinguished
by their first Pontryagin classes p{(X?) = (24i +4)a? where a is a generator of
H?*(X;;Z). The corresponding L/ = (18i2+4)20 €67 where L, is the generator
of 67 with u(Zo) =1/28 (mod 1).

Let W} be the total space of the Euler class 2 D2-bundle over X7, and let Q,-7 be
the homotopy projective space dW 2. We have p, (W) = (24i +8)a?. Let §; be the
spin structure on Q; inherited from the unique spin structure on W;. We have

PEIWI—a(W;) _ T2i2+48i+7

w(Q:,5) = 7 = 57 (mod 1).
Let Q; =0;— (9i%+2i)Z¢; so O; =S’ and
32i+7
s =2 (mod 1),
1 (Qi, 5i) 2o (MO )

An easy computation using the quoted theorem of Montgomery and Yang (see
[16], p. 191) yields « (Q;) = —8i. Thus :
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p(015) = (051 + (@) = 2t (mod 1);

and so Qq,...,Q; are homotopy RP7’s with p-invariants which are distinct
in Q/Z modulo absolute value. Since there are exactly 8 free involutions on
homotopy 8-spheres, we realize them all on S® (with distinct p-invariants) by sus-
pending these examples.

The construction of homotopy RP!?’s starts with the description of Brumfiel
of homotopy CP>’s which are distinguished by their rational Pontryagin classes
([4]; see also [10]):

PUXa )= (6424m)a*  py(X10,) = (15+228m?*—456m —1440n)a*
(where m is even). The corresponding homotopy sphere is

. m(32m*+301)
Em,n= 3

where pu(Xo) =1/992 (mod 1). )
Again we let W,},?n be the Euler class 2 D2-bundle over X,},‘f,, and Q,lnl, n=
W, n. Then

P1( X n)=(10+24m)a* and py(Xp, )= (288m?*—360m—1440n +39)a*;

—84m? —224mn + 34811)20 eg!l

SO

#(Om. n,5) = (4p,1p, [W1-3pi W ]1—240(W))

o
211.3.3]

(288m3 +1560m2 + 672m +2880mn + 12001 +31) (mod 1).
28.31

We let
=00 #— [—'—:—(32m2+301)—42m2— 112mn+174n]20;

s0 O, , =S and

1 (O ny S)
_ 1 [ —992
T 28.31 3

Again an easy computation as in [16] shows «(Q,, ») = 32m?—80m—224n. So

3220
m3—1224m? — ——3—m+31 —1984mn—-2592n] (mod 1).

ﬁ(Qm,n,S) Eﬂ(Qm,nss)_ﬂa(Qm,n)
-1 /32 100
= e <Tm3+40m2+Tm—l +64mn+80n> (mod 1).

Then Q1! ,, m=0,2, n=0,...,15 are homotopy RP!!’s which have g-invariants

which are distinct in Q/Z modulo absolute value. Their suspensions give 32 free
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involutions of S'? distinguished by their p-invariants. Since there are exactly 32
free involutions on homotopy 12-spheres (see §4), this realizes all of them.

—
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