ON MEROMORPHIC FUNCTIONS WHOSE IMAGES
CONTAIN A GIVEN DISC
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1. Introduction. Let S denote the well-known family of functions, f, that are
analytic and univalent in D= {z:|z| <1} and have the normalization f(0) =0,
f’(0) = 1. Netanyahu [6], [7] introduced the classes S(d) = {f€ S:d= dy} where dy
is defined by

(1.1) dr=inf{ || : f(z) # a}.

He studied the relation between the second coefficient and d. This concept has been
extended in several directions in [3], [8].

We define M to be the set of all normalized univalent meromorphic functions
f(z) =z+ayz*>+ --- in D. For each function fin M, we define dy by (1.1), and let
M(d) ={(feEM:d< df).

For each p € (0,1), Goodman [2] introduced the classes

U(p) ={fe€M:[f(p) =o].

He conjectured that k,(z) = pz/{(p—z)(1 —pz)] is the extremal function for the
coefficient problem in U(p). Ever since, several papers have been written on this
conjecture, each obtaining partial results. Among these, we mention the ones by
Jenkins [4], and Kirwan and Schober [5].

It follows from the minimum modulus problem of Fenchel [1], that U(p) is a sub-
set of M(d) when d = p/(1+ p)?, and for all d we have S(d) S M(d). Therefore, it
seems natural to study the classes M(d).

In this paper, we solve the coefficient problem for M(d), and moreover we are
able to find the extreme points of the closed convex hull of M(d). The coefficient
bounds we obtain for M(d) are valid but, of course, are not sharp for the subclasses
U(p) and S(d).

2. Extreme points of the closed convex hull of M(d). We begin with some pre-
liminary results.

LEMMA 1. Suppose f € M(d), then d|z| < |f(z)| for all |z] <1.

Proof. Let us define ¢(n) =f"!(dy). Then ¢(0) =0 and |¢(5)| < 1 for |g| <1.
So, by the Schwarz Lemma, we obtain |¢(5)| < |n| for all |5| <1. However, this is
equivalent to the conclusion of the lemma when |f(z)| < d. To see this, let dy = f(z).
Note that when |f(z)| > d, the conclusion holds trivially. O

LEMMA 2. If f € M(d) has a pole at the point a, then |a| = d.
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Proof. Consider the function ¢(z) defined by
1—az dz
z—a f(z)’

Note that ¢(z) is a regular analytic function in D and on 8D we have |¢(z)]| < 1.
Therefore, by the Maximum Principle, |¢(z)| < 1 holds for all |z| <1. In particular,
|¢(0)| < 1 and this is the conclusion of the lemma. a

o(2) =

COROLLARY. If f€ M(d) has a pole at the point a, and a(f) is its residue at a,
then d|a|(1— |a|?) < |a(f)].

Proof. This result follows from the fact that |¢(a)| < 1, where ¢ is the function
defined in the proof of Lemma 2. ]

THEOREM 1. Suppose f € M(d), then the function h(z) defined by

2f(dz)  1+d”
(1-d*dz 1-d?

belongs to the class P of analytic functions which are subordinate to (1+2z)/(1 —2).

2.1) h(z) =

Proof. It follows from Lemma 1 that

o(2) = d— (dz/f(z))
1—-(d*2/f(z))
is a regular analytic function bounded by 1, and takes zero to zero. Now, let y(z) =

p(dz)/d. Then | (z)| < |z| for allz € D, and h(z) = (1+y¥(z))/(1 —y(z)). Hence,
the theorem follows. ' O

COROLLARY. Suppose f € M(d). Then |a,,,| < (1—d?)/d" for all n, and the
bound is sharp.

Proof. 1t is well-known that the coefficients of the functions which belong to P atre
bounded by 2. Note that the nth coefficient of the function 4 (z) defined by (2.1) is
2a,,.,d"/(1—d?). Hence, la, 1] < (1 —d?) /d". Also, note that these bounds are
assumed by the coefficients of the function f(z) =dz(1—dz)/(d—z) which is
in M(d). 0

THEOREM 2. Extreme points of the closed convex hull, cOM(d), of M (d) consist
of functions
1—dzy
d—

fi(z) =dz (In| =1).

Proof. The mapping A defined by
A(N)(2) =2f(dz) /(1 —d*)dz

is a linear homeomorphism of the space X = {f: f(0) =0, f is analytic in |z| <d]}
into the space Y = {f: fis analytic in |z| <1]. We define L: X— Y by L(f)(2) =
A(f)(z) — (1 +d?)/(1—d?), so that L is a linear homeomorphism followed by a
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translation. By Lemma 2, we know that M(d) € X, therefore,
2.2) CoL(M(d)) =L(coM(d)) and Egima) =L (Esma),

where E, denotes the extreme points of the set 4 (see, for example, Schober [9,
p. 172]). By Theorem 1, L(M(d)) € P. Therefore it follows that

2.3) coL(M(d)) ccoP=P,

since P is a compact convex subset of Y. It is known that
Ep={(1+92)/(1—nz): 9| =1)

and it can easily be verified that Ep & L(M(d)). From this we obtain

2.4) coEpScoL(M(d)).

As noted above, P is a compact convex subset of the locally convex space Y, so by
the Krein-Milman Theorem Co Ep =¢o P= P. Comparing this with the relations
(2.3) and (2.4), we arrive at P=co L(M(d)). This last equality and the equalities
(2.2) permit us to conclude that P= L(CoM(d)) and Ep = L(Egpa ). Finally,
from the knowledge of Ep, we obtain Egpga =L Y Ep}=1{f,(2):|n| =1}, and
this is the conclusion of the theorem. O

COROLLARY. Given f€ M(d), there exists a probability measure p on |z| =1
such that

f(z)=S dzm

d
m=1  d—nz "

e

3. Additional coefficient estimates. In this section we obtain bounds on the coeffi-
cients c, defined by

(3.1 log

=c1z+- -+, "+

Sf(z)
z

where z is small.

THEOREM 3. Suppose f € M(d) and define c,, by (3.1). Then if f has a pole at the
point a, we have

1/ 1 1
3.2) e, < 210g 191 4 7( _ |a|"> <l ( _dn)

n\d"

Sfor all n. In particular, if f € S(d), we have |c,| < 2log,§, Jor all n. The inequalities
(3.2) are sharp.

Proof. Consider the function g(z) defined by

f(z) z—a)
dz 1—az /)’

g(z) = 10g<

where the branch of log w is chosen so that log1 = 0. It is a consequence of Lemma 1
that g(z) is a regular analytic function in D with positive real part. Also note that
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Re g(0) = log(|a|/d). It follows from the theory of functions with positive real part
that the nth coefficient of g(z) is bounded by 2log(|a|/d), i.e.,

11 _ |a|
= 7{(1" _anj

d’
Hence (3.2) follows. Note that the extreme points of co M(d) show these inequalities
are sharp. If f € S(d), a similar argument establishes the inequality |c,| < 2log(1/d).

< 2log
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