SURFACES BOUNDING THE UNLINK

Charles Livingston

Let F be a surface embedded in S* with boundary the unlink. A small isotopy
results in an embedding (F, 0F) — (B*, S3). In this paper such maps will be classi-
fied up to isotopy. In particular, it will be shown that the isotopy class of the map is
determined by the homeomorphism type of F and an even integer which is easily
calculated from the original embedding. Following the proof of this result we will
discuss an application to 4-manifolds. The final section of the paper consists of some
remarks concerning what is known in the case that dF is knotted. We will show that
examples constructed by Trotter [10] of distinct surfaces having as boundary the
same pretzel knots are isotopic when considered as surfaces in (B4, S?), answering
question 1.20C of [5] to the negative.

Much of the motivation of this work comes from [1], and I would like to thank
Rob Kirby for suggesting the problem to me. Some of the results first appeared in the
author’s dissertation [6].

1. Preliminaries. Throughout this paper we will work in the C* category.
Although most of the results will be stated for the pair (B*, S3), they hold as well for
the pair (R%,R3). We will move freely between these spaces without further
comment.

For any surface F we let genus(F) = 1 rank(H,(F, Z/2Z)) where F is the surface
obtained from F by capping off each boundary component with a disk. In all that
follows, N(X) denotes a closed regular neighborhood of X in whatever space X is
embedded. By a standard surface we mean a surface embedded in S* which is con-
structed from a 2-sphere embedded in S3 by puncturing the 2-sphere, adding trivial
handles, (which may or may not be orientable) and, in the nonorientable case, adding
trivial once twisted bands along a single boundary component. Finally, if F} and F;
are embedded surfaces in S3, we say they are isotopic in B*if after pushing F; and F,
into B* the maps (F,, F,) — (B*, §3) and (F,, 8F,) — (B*, S?) are isotopic through
maps keeping boundaries in S3.

The proof of the main theorem is constructive. An explicit isotopy carrying the
initial embedding to a standard one is described. The isotopy consists of a sequence
of isotopies, each of which pushes the surface into B* and then pulls it out again. At
certain times trivial handles are constructed, which are then ignored. To understand
why this construction is valid, consider an initial isotopy which pushes F straight into
B* into a parallel copy of S3. 8F bounds a vertical collar to that pushed in copy of F.
All the isotopies constructed can be thought of as occurring at this lower S3 and
below, and then extended to the collar. It is easily checked that the trivial handles
and bands by the side do not interfere with the construction in any way, and that
after each step in the construction they are still trivial.
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2. Basic isotopies. Isotopies used to simplify an embedding of a surface will be
constructed as a sequence of more simple isotopies, each of which reduces the com-
plexity of the embedding. The notion of surfaces obtained by “‘surgering a surface
along an arc’’ will simplify the description of these isotopies. In the first part of this
section this notion is defined. Following that definition, Propositions A, B, and C
are presented. These propositions describe: the basic isotopies which will be used
throughout the construction. ,

Let F denote an embedded surface in S3 and « an arc meeting F only at its end-
points, where it has transverse intersection. A regular neighborhood of o, N(«), can
be chosen so that N(«) is diffeomorphic to B2 x I, with {0} x I=aand BZX INF =
B?2x {0JUB?x (1}.

DEFINITION. The surface F'= (F— ((B*x{0})U(B2x[1})))US!x T is ob-
tained from F by surgering F along «.

Conversely, if Fis embedded in S? and there is an embedding of B2 x I in S with
B2x INF=S8!'x1, then F is obtained from

F'=(F—(S'xD)U((B*x{0}) U(B*x(1}))
by surgering along the arc « = {0} X IC B?x I.

PROPOSITION A. Assume that F’' and F" are obtained by surgering a surface
F along arcs « and o', and that there is an isotopy in S> carrying a to o', o,
0 < s< 1, such that for all s, oy satisfies the conditions necessary to perform surgery
on F along ag. Then F’ and F” are isotopic in S°.

PROPOSITION B. If F’ and F" are obtained by surgering a surface F along arcs o’
and o”, and if o’ and " agree on N(da’), then F' and F” are isotopic in B*.

Proof A. The proof is straightforward. The isotopy carrying o’ to «” extends to a
regular neighborhood of «’. Restrict this isotopy to the boundary of that neighbor-
hood to construct the desired isotopy of F’ to F”. O

Proof B. There is an isotopy in B* carrying a’ to a” fixing N(da’) throughout. To
construct that isotopy, start with a homotopy «, of «’ to a” rel N(d«’) in S3. Push-
ing that homotopy into B* eliminates the possibility of any unwanted intersections
with F. In B* the homotopy is easily changed into an isotopy. Now, as in the proof
of A, extend that isotopy to one of B%x I, and then restrict to 9(B2 x I). a

The setup of the final result of this section is the following. D? is an embedded
disk in S3. {F;} is a collection of disjoint embedded surfaces in S meeting int(D?)
in a collection of circles and {c;} is a collection of disjoint embedded arcs in S3
meeting D? in a collection of points. Assume that there is an embedding 8 of S! in
S3 — ({F;} U {«;)) meeting D? in exactly one point, which is not in the interior of any
disk in D? bounded by a circle of intersection in {F;} N D2

PROPOSITION C. There is an isotopy in B* carrying {F;}U («;} to an embed-
ding {F;/}U {«f}, which fixes the boundaries of the F;’s and «;’s and such that
{F/}U (]} does not intersect int(D?).
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Proof. Let D; be a disk in the interior of D? such that all intersections of
{F.}U {q;} with int(D?) are in Dy, and 8N D, = ¢. A regular neighborhood of D, is
diffeomorphic to B2 x I. That embedding of B%x I in §3 can be isotoped in B*, fix-
ing B2x (0,1} to a new embedding in S3 for which B2x (},3) € N(8) —D? and
B2x[0,11UB2x [3,1]1 € N(D?) — D?. (This again uses the fact that two arcs in
S3 with the same endpoints are isotopic in B4, fixing endpoints.) This isotopy carries
{F;} U {o;} to a new collection, {F;} U {«/) with the desired properties. O

3. Isotoping surfaces to standard embeddings. We will prove that any surface in
S3 with boundary the unlink is isotopic in B* to a standard surface using three steps.
We will first show that in the orientable case the problem can be reduced to one of
surfaces of genus 0. The problem is then solved for genus 0 surfaces. Finally, we
describe the necessary changes in the earlier arguments to have them carry over to the
nonorientable case.

.We will now consider F to be embedded in R*=9R%. Let {9,F} be the set of
boundary components of F, where / runs over a finite and possibly empty indexing
set of integers.

Reduction of Genus in the Orientable Case.

LEMMA 3.1 (General position for knotted surfaces). If F is an embedded orientable
surface in R® with boundary the unlink, then F can be isotoped in R® so that the
Sfunction (x,y,t) = t restricts to a Morse function h on F with each critical value of h
corresponding to exactly one critical point. Furthermore it can be assumed that
o, FS P;={(x,y,t)|t=1i)} and that h(x) is a decreasing function on a collar neigh-
borhood of dF, as a function of the distance from x to oF.

Proof. The only difficult point here is that concerning the boundary behavior of A.
All that is required to prove this is to note that a pushoff of dF; along F links dF;
geometrically O times. This is because the pushoff is homologous in the complement
of 9;F to a collection of curves [3;F|j#i} each of which links 9;F algebraically 0
times, and d;F is unknotted. The rest of the lemma follows from standard general
position arguments. O

THEOREM 3.2. Any orientable surface (with standard boundary) in R3 can be
isotoped in RY to be a genus 0 surface with trivial handles added.

Proof. Assume that F has genus greater than 0. We reduce the genus of F using the
following three steps. The proof then follows immediately from induction on
genus(F).

Step 1. Put F in general position as given in Lemma 3.1 with critical and boundary
values 0,2,4,...,2N. Set F, = {x € F| h(x) < t}. Genus(F;) = 0 and genus(Fop, ) >
0. Let K be the largest integer so that genus(F5x, 1) = 0. We will show that Py, ;N F
contains a nonseparating circle on F. If 2K+ 2 were either a maximum, minimum, or
boundary level, genus(F,x,3) = genus(Ffrx,;) =0. Hence 2K+2 corresponds to
saddle point, and F,g. 3 is constructed from F,x,, by adding a band. If that band
joined two distinct components of F,x,, or if it joined some boundary component
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to itself the genus would remain unchanged. Hence, the band joins two different
boundary components of a single component of F,x,,. Each of these boundary
components is nonseparating, as the core of the band along with an arc in F,x ; join-
ing the two boundary components together form a closed curve intersecting each
boundary component exactly once.

Step 2. After an isotopy in R% some nonseparating circle on F bounds a disk in R?
missing F except at its boundary.

On the plane P,x,; used above, take an innermost circle of P,x,,NF which is
nonseparating on F. Denote that circle by S;. S, bounds a disk Dy on Py, . Let 8 be
a closed curve on F intersecting Sy once. If BNint(D,) # ¢, using the fact that
all curves in FNint(D,) are separating, 8 can be surgered to a curve B8’ with
B’ Nint(Dy) = ¢. Now push B’ off F so that it intersects D, exactly once, and apply
Proposition C.

Step 3. F is obtained from a surface of lower genus by adding a trivial handle.
Using a regular neighborhood of the disk D, found in Step 2, we see that F is
obtained from an F’ by surgering along an arc. Slide the basepoints of that arc to be
close together on F’. Propositions A and B can now be used to produce an isotopy of
F to a surface with a trivial handle. a

COROLLARY 3.3. Any closed surface in S* is isotopic in B* to the standard surface.

COROLLARY 3.4. Any Seifert surface (orientable) for the unknot is standard in B*.

Proof. These follow from the facts that any genus O closed surface in S3 is
standard (Schonflies’ Theorem [8]) and that any disk in S? is standard. Corollary 3.3
also follows from results in [4]. 0

Surfaces of Genus 0.

We have reduced the problem of showing that all orientable surfaces bounding the
unlink are standard to a proof of that fact for surfaces of genus 0. Hence the orient-
able case is concluded with:

THEOREM 3.5. Any genus 0 surface bounding the unlink in S3 is isotopic in B* to a
standard surface. .

Proof. Pick some boundary component, 3y F, and let it bound a disk D, in S* with
the property that int(D,) intersects F in a collection of circles, and F intersects D,
transversely. The construction that follows will show that F can be isotoped, using
B*, so that FND{=¢, where D{ is another disk bounding 3,F. Hence F is con-
structed from a surface with fewer boundary components by puncturing once. As
genus 0 surfaces for the unknot are standard, the proof is completed by induction.

Construction.

Step 1. If any circle of intersection in int(Dy) N F is trivial on F, pick an innermost
such circle. A standard cut and paste argument says that the disk on Dy bounded by
that circle can be replaced by the disk bounded on F to yield a new D, with fewer
circles of intersection. Continue this procedure until all such circles are eliminated.
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Step 2. If any circles of intersection remain, using an innermost circle of intersection
on D, we see that F is obtained by surgering two surfaces together along an arc,
where each surface has nonempty boundary. Slide the basepoints of that arc to be
near the boundary of each surface.

Step 3. Eliminate any circles of intersection of D, with either of the surfaces which
are being tubed together if those circles bound disks on the surface, as in Step 1.
Consider an innermost circle of intersection on Dy, S;. We would like to repeat Step
2, but it is now possible that the arc constructed above intersects the disk on D,
bounded by S,.

As S, separates two boundary components of a surface, there is an arc on that sur-
face running from one of the boundary components to the other which intersects S
exactly once. On the boundary of a regular neighborhood of that arc there is a closed
curve § which does not intersect any of the surfaces involved and which intersects the
disk on D, bounded by S, in exactly one point. (Construct 8 by lifting the arc above
to the boundary of the regular neighborhood of Fin both normal directions and join-
ing the two lifts together with small arcs going around the boundary of F.) The con-
ditions of Proposition C are now met so we can use Proposition C to eliminate the
points at which the arc meets the disk. Hence, after an isotopy we can repeat Step 2
to get three surfaces which are tubed together along arcs.

Step 4. Repeat Step 3 until D, does not intersect any of the surfaces being tubed
together. There are two possibilities.

a. If the surface to which D, belongs has more than one boundary component, the
procedure used in Step 3 can be repeated to eliminate the points where arcs intersect
Dy,. In this case, Dy is a disk in the complement of the tubed together surfaces, and
we are done.

b. If Dy belongs to a surface with only one boundary component, then that surface
is a disk. That disk is joined to another of the surfaces by an arc. Considering the
surface which results from surgering the surfaces together along that arc, we are in
case a. above, and the proof is completed. O

Nonorientable Surfaces.

We will now trace through the previous arguments indicating what modifications
must be made if the surface under consideration is nonorientable. The key problem is
in proving Lemma 3.1. A component of dF, 9;F, when pushed off itself along F
might link 9; F. Hence before applying the general position result we need the follow-
ing. (This lemma is a slight extension of a similar result given in [1]. Its proof is based
on the same construction.)

LEMMA 3.6. Any surface bounding the unlink is isotopic in B* to a surface F’,
where F' is obtained from a surface F” bounding the unlink by adding trivial once
twisted bands along its boundary. The surface F” can be arranged to have the prop-
erty that each of its boundary components does not link itself when pushed off along F.

Proof. Perform an isotopy so that dF lies in the plane Py, with dF bounding a
collection of disjoint disks in P, and with F meeting P, transversely except at isolated
points on dF. If the linking number of d;F with a copy of 9;F pushed off along Fis n,



294 CHARLES LIVINGSTON

then, as these two curves form a (2, 2n) torus link, there is an isotopy fixing dF such
that the pushed off copy of d;F meets the disk in P, bounded by 9;F in exactly n
points. It can hence be arranged that the number of arcs of intersection of F with the
disk on Py bounded by d;F is exactly half the linking number of that boundary com-
ponent with itself when pushed off along F.

Cutting F along the arcs interior to the disks shows that F is constructed from a

different surface bounding the unlink, /", by adding once twisted bands along its
boundary. Isotoping F” into B* it is possible to slide the bands to the side, and by
sliding the bands over each other to make them all trivial. F” along with the collec-
tion of bands forms F”.
. The next modification that must be made is in the proof of Theorem 3.2, in Step 1.
The band that is added to F,g,, is now possible nonorientable. If such a band joined
some boundary component to itself the genus of F,x, ;3 would be positive. Hence, for
the proof of Step 1 to carry over to the nonorientable case we must show that no such
bands can occur.

Adding a once twisted band from a boundary component of a surface to itself does
not change the total number of boundary components. On the other hand, if Fyx, 5 is
constructed from F,g, by adding a band along a single boundary component, then
the set of circles FN P,k 3 is constructed from FN P,x,, by surgering some S! in
FN Py, along an arc in Pk, running from that S! to itself. (Surgery of a circle
along an arc in the plane is completely analogous to surgery of a surface in R? along
an arc in R3.) As any S! in the plane is separating, that arc runs from one side of S!
to the same side. It is evident that this operation increases the number of boundary
components.

In Step 2 of the proof of Theorem 3.2 we can no longer use a pushoff of 3.
Instead, use the two-fold cover of 8 which lies in the boundary of the normal bundle
to F in S3. The rest of the proof of Theorem 3.2 carries over as before. Only note
that some of the trivial handles constructed might be nonorientable.

The results concerning genus O surfaces do not depend on orientation. Hence with
the modifications mentioned above we have shown that any surface bounding the
unlink is isotopic in B* to one which is constructed from a standard surface by add-
ing once twisted bands to its boundary. All that remains to be shown is that where
the bands are attached does not affect the isotopy class of the surface in B*. O

LEMMA 3.7. Let F be a standard surface embedded in S* with once twisted trivial
bands added along its boundary. F is isotopic in B* to a standard surface for which
all the twisted bands are added along a single boundary component.

Proof. Assume F'is constructed from a standard surface F by adding a total of m
right handed twisted bands and » left handed twisted bands along the boundary com-
ponents. Let F’ be the surface constructed from Fj by adding the same number of
right and left handed twisted bands along a single boundary of F,. We will now show
that F and F’ are isotopic in B*.

After a small isotopy in S3 it can be arranged that the boundaries of F and F’ are
identical. Now push each surface into B* so that the cross sections of each are identi-
cal to the level ¢, at which point the remainder of each surface appears, each having
one boundary component. (These cross sections correspond to performing the
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obvious moves joining the boundary components of each surface.) The surfaces at
the level f, are isotopic in S3, with boundary fixed. Hence, on pushing the surfaces
into B* and performing an isotopy it can be arranged that all cross sections are iden-
tical. It follows that the original embeddings were isotopic in B*. ]

4. Main classification theorem. Let us summarize what we have shown up to this
point: Any surface bounding the unlink S3 is isotopic in B* to a standard surface.
The classification of surfaces bounding the unlink is hence reduced to the classifica-
tion of standard surfaces up to isotopy in B*. A final definition is needed.

DEFINITION. If F is embedded in S3, denote by ¢; the linking number of 8;F with
itself pushed off along F. Define c(F) = X ¢;.

LEMMA 4.1. If F| and F, are isotopic in B* then c(F,) = c(F,).

Proof. In the next section it will be shown that ¢(F) /2 is the signature of the 2-fold
branched cover of B* with branching set a copy of F pushed into B*, and hence is
invariant under isotopy in B*. m|

THEOREM 4.2 (Classification of surfaces bounding the unlink).

a) Two surfaces, F; and F,, bounding the unlink are isotopic if and only if F, and
F, are homeomorphic and c(F,) = c(F,).

b) If F is orientable c(F) = 0. If F is nonorientable c(F)/2 = 2(genus(F)) mod(2)
and |c(F)/2| € 2(genus(F)).

c) For any surface F and any even integer c satisfying the conditions given in b)
above for c(F) there is an embedding of F in S* with boundary the unlink and with
c(F)=c.

Proof. By the above arguments we can assume F; and F, are standard. Further-
more, we can assume that all twisted bands twist in the same direction. If there is a
pair of oppositely twisted bands, by sliding them next to each other and then one
over the other they can be combined to give a trivial nonorientable handle.

a) If F| and F, are isotopic they are certainly homeomorphic, and by Lemma 4.1
c(F)) = c(F,). Conversely, c(F;)/2 is the number of twisted bands. Furthermore, if
the surfaces are nonorientable it can be assumed all handles are nonorientable. (Slide
one basepoint on an orientable handle around an orientation reversing path to make
the handle nonorientable.) Result a) is then immediate.

b) In the proof of Lemma 3.1 it was shown that c(F) is 0 for orientable sur-
faces. If F is nonorientable then the number of twisted bands in the standardly pre-
sented F is |c(F)/2|. However, the number of twisted bands is also 2(genus(F)) —
2(number of trivial handles). With these observations the conditions given in b) fol-
low immediately.

¢) To construct such an embedding add ¢/2 twisted bands to a disk embedded in
S3. Add (genus(F) — c/4) trivial handles and puncture the surface to get the correct
number of boundary components. O

S. Branched covers. In their paper on branched covers [1] Akbulut and Kirby
prove, as Corollary 4.2: ‘“Let P* be the 4-manifold constructed by plumbing
on a graph. Suppose dP* is a homotopy 3-sphere. Then P* is diffeomorphic to
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(#k(S?x S?)) —int(B*) or to (#k(CP?) #1(—CP?)) —int(B*); the former occurs
when the weights of the framings on the graph are all even, the latter when some are
odd”’. (A different proof is given in [9].) The proof of this (in [1]) shows that P* is
the double branched cover of B* branched over a pushed in surface bounding the
unknot in S3. Then, they complete the proof using Theorem 4.3 of the same paper:
“If F [a surface for the unknot] is orientable, the Q, [the p-fold branched cover of B*
branched over F union a 4-ball] is diffeomorphic to #g(p—1)(S?x S?) for g=
genus F. If F is not orientable, then (for p=2) Q= #p(CP?) #q(—CP?), for
p+qg=rank(H,(F; Z;))”.

The geometric explanation for this is contained in Theorem 4.2 of this paper. The
surfaces become standard when pushed into B*. Using Theorem 4.2 we can general-
ize the result to surfaces with boundary the unlink.

Let F be a surface with rank(H,(F; Z,)) = m and #(0F) = n. If F is embedded in
S3 with boundary the unlink, denote the p-fold cover of B* branched over F by M,.
Denote by (S2x §2) the space S2x S —int(B*).

THEOREM 5.1. If F is orientable,
M,=(#(m—n+1)/2)(S*x 8% (p—1)(n—1)(S?x B?).
If F is not orientable,

M, = ((m—n+1—(c(F)/2))/2)(CP*(—CP?)
#(c(F)/2(CP*))%# (n—1)(S?x B?).

Proof. This result follows immediately from the techniques of [1], as it is sufficient
to find the branched covers of B* branched over standard surfaces. O

6. OF is knotted. Many authors have constructed examples of distinct incom-
pressible surfaces for a given knot ([2, 3, 7, 10]). We can ask the question whether
two surfaces bounding the same knot are isotopic when pushed into B*, given that
they are topologically the same. One interesting aspect of this question relates to
4-manifolds. By constructing branched covers of B* over pushed in Seifert surfaces
for a knot one gets 4-manifolds having the same boundary which are hard to dis-
tinguish algebraically.

The conjecture that all surfaces of a given genus bounding a fixed knot are isotopic
in B* is unlikely. However, it is interesting to note that in many of the examples of
knots with distinct Seifert surfaces, the surfaces are easily shown to be isotopic in B*.
One case in which it is more difficult to see that the surfaces are isotopic in B* is in
the case of pretzel knots described by Trotter [10]. We will now show that for the
pretzel knots having distinct Seifert surfaces described by Trotter, the surfaces are
isotopic in B*. Whether or not these surfaces are isotopic is question 1.20C of [5].

Figure 1 illustrates two surfaces, | and F,. In [10] Trotter illustrates an isotopy
carrying dF; to 8F,. He also proves that F; and F, are not isotopic in S3. In isotoping
dF to aF; it is difficult to keep track of the image of F;. However, it is relatively easy
to keep track of the bands on F) illustrated in Figure 1, and to show that the isotopy
can be arranged to carry them to the illustrated bands on F,.
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After performing such an isotopy it is possible to push the surfaces into B* so that
the cross sections are identical to some level £, at which level the remainder of each
surface appears with boundary the unknot. (These cross sections correspond to per-
forming band moves along the illustrated bands.) In each case the remaining part of
the surface is a disk. As any two disks embedded in S3 with the same boundary are
isotopic keeping the boundary fixed, it is now clear that the original surfaces were
isotopic in B*. This procedure works in general for the examples constructed
by Trotter.
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