QUASIAFFINE TRANSFORMS OF OPERATORS

C. Apostol, H. Bercovici, C. Foias and C. Pearcy

1. Introduction. Let JC and JC’ be separable, infinite dimensional, complex
Hilbert spaces, and let £(J3C’, 3C) denote the space of all bounded, linear operators
from JC’ to JC. If 3C’'=3C, we write £(IC) in place of £L(I’,F). An X in
L£(3C’,3C) is called a quasiaffinity if it has trivial kernel and dense range. An
operator T’ in £(3C’) is said to be a quasiaffine transform of an operator T in
L(3C) (notation: T’ <T) if there exists a quasiaffinity X in £(JC’, 3C) such that
XT'=TX. If both T"<T and T<T’, then we say that T’ and T are quasisimilar,
and we write 7'~ T. These relations have already played a considerable role in
operator theory (see, for example, [13]), and under certain additional hypotheses,
one knows that 7’ < T implies 7’ ~ T. This is true when 7 and 7'’ are normal [13],
and also when 7 and 7’ belong to the class Cy in the terminology of [13], cf. [17].
Moreover, if T'< T and T is algebraic, i.e., satisfies some polynomial equation, then
T’ is also algebraic and 7’ ~ T [2], [19]. However, it has been known for a long time
(cf. [12] and [16]) that the relation ‘‘<’’ is not reflexive, and that, in general, one
may have T’ < T without 7’ inheriting many of the properties of 7. For nonalgebraic
operators this phenomenon is quite striking. Indeed, it was shown in [16] that if 7 is
a nonalgebraic strict contraction having a cyclic vector, then the unilateral un-
weighted shift S(®) of infinite multiplicity is a quasiaffine transform of 7. We will
show in Section 3 that this result remains true if the hypothesis of possessing a cyclic
vector is omitted. It will follow that every nonalgebraic operator in £(JC) has a
quasiaffine transform of the form «S{®) for some positive number «.

In Section 4 we will use the main theorem of Section 3 and a result of Berg [4] to
prove that every T in £(JC) has a quasiaffine transform of the form N+ K where N
is normal and K is a compact operator of arbitrarily small norm. Of course, as noted
above, if T is algebraic, then 7" and N+ K are quasisimilar. Unfortunately the
relation N+ K< T does not always imply quasisimilarity. Indeed, we show that a
quasinilpotent operator which is quasisimilar to an operator of the form N+ K (with
N normal and K compact) necessarily commutes with a nonzero compact operator,
and one knows from [7] that there are quasinilpotent operators that do not commute
with any nonzero compact operator.

Finally, we improve a result from [7] by showing that any operator 7 in £ (3C)
whose essential spectrum ¢,(7) is the singleton {0} has a compact quasiaffine trans-
form K. Again in this case the relation K< T cannot be replaced by quasisimilarity.

We remark that the results in this paper were obtained in 1976 and 1977. Earlier
versions of the paper appeared as INCREST preprints in those years, and the main
results were announced in the Notices of the A.M.S. in 1978 (78 T-B110).

2. Preliminaries. We will denote by K= K(3C) the ideal of compact operators in
L£(3) and by 7:L£L(IC) > L(I)/K the canonical projection onto the Calkin
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algebra. If T€ £(3C), we denote by o(7) the spectrum of T and by 0,(7) the
essential spectrum of 7, i.e., the spectrum of #(T). If n is any positive integer, 7"
will denote the direct sum of n copies of T (acting on the direct sum JC” of n copies
of 3C). In this same vein, 7(*) will denote the direct sum of X, copies of 7 acting on
the Hilbert space 3C(*) that is the direct sum of R, copies of JC.

We write D for the open unit disc in C and H? for the Hardy space consisting of
those analytic functions on D with square integrable boundary values. Similarly, we
denote by H® the Banach algebra of all bounded analytic functions on D under the
supremum norm. Furthermore, we denote by S the unilateral shift acting on H?
defined by

@.1 (Su)($) = ¢u(t), €D, u€H.

Note that for the canonical basis {e,}r—, of H? defined by e,({) =", we have
Se, =e,+,. More generally, if w={w,]~o is any bounded sequence of complex
numbers, the unilateral weighted shift W, is defined on H? by W_e, = w,e,, for
nz0.

Observe next that if T is a strict contraction (i.e., || T|| <1) in £(3C) and ¢ € H?,
then ¢ is analytic in a neighborhood of ¢(7) and therefore we can define the opera-
tor ¢(7) by the Riesz-Dunford functional calculus. For a fixed 4 in J3C (and fixed T)
we denote by X, : H?>— JC the operator defined by X}, (¢) =¢(T)A for all ¢ in H2.
An easy calculation shows that 7.X, = X, S for all # in 3C, and the following lemma
gives more information about X/,.

LEMMA 2.1. If T is a fixed strict contraction in £(3C), then for each h in 3C, the
operator X, : H*> — 3C defined above is compact and satisfies | X, || < C|\h| where C
is a constant depending only on || T||.

Proof. Let h be a fixed vector in 3C, let r satisfy || T|| <r<1, and observe that X,
is the composition X, = ¥,°®,Y,, where Y,: H?—>H>, &,:H* — £(3C), and
¥, : £(3C) = IC are defined by

(Y,9)($) = 6(r7), ¢ €H? (€D,

¢.(¢) =¢(r~'T), ¢ €H",

¥, (R) =Rh, R€ L(X).
It is easy to see that Y,, ®,, and ¥, are norm-continuous and that || Y, | < (1—r2)~"2,
| @,/ <1, and | ¥,|i < ||2], from which the inequality || X, || < C| k| follows, where
C depends only on r and thus only on || T'||. To show that X, is compact, it suffices
to show that Y, is a compact operator. But we can write Y, = Y,;Z,; where
Z/;: H?>— H? is defined by (Z,;¢)(¢) = ¢(Vr¢), and the compactness of Zy; is an
immediate consequence of the fact that the matrix of Z relative to the orthonormal
basis {e,} for H?is Diag(1,r"%,r,r¥? ...).

An operator T in £(JC) is said to be polynomially compact if p(T) € K for some
nonzero polynomial p. It is an easy consequence of the spectral mapping theorem
that if 7 is polynomially compact, then o,.(7T) is a finite set and o¢(7") is at most a
countable set whose only accumulation points belong to ¢.(7) (cf. [10, Cor. 1.26]).
Furthermore, one knows (cf. [10, Prop. 1.27]) that every N in o(7T)\a,.(T) is an
eigenvalue of T of finite multiplicity.
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LEMMA 2.2. If T is a polynomially compact contraction in £(3C) such that
1—TT"* has finite rank, then o.(T) is a subset of the unit circle.

Proof. The hypothesis implies that #(T) is a coisometry and if this coisometry
were not unitary, then o,(7) would have to contain D, contradicting the fact that
0.(T) is finite. Thus w(7T) is unitary and the result follows.

COROLLARY 2.3. Let T be as in Lemma 2.2, and let 0<r<1. Then there exist
disjoint subspaces 3Cy and 3C; of 3C such that JCo+3C; = 3C, dim JCy < oo, TIC; C IC;
Jori=1,2,and o(T|3))N{z:|z|<r}=

Proof. As noted above, the set 6o =0(7)N{z:|z| < r} must be finite and consist
entirely of eigenvalues of T of finite multiplicity. If E is the spectral idempotent for
T corresponding to gy, then we may set 3¢y = E3C and J3C, = (1— E)JC, and the result
follows from the well-known properties of spectral idempotents.

REMARK 2.4. In connection with Lemma 2.2, we also note that if M C (H?)" is
an invariant subspace of S{", and if T is defined by T'= Py S | 9L, where
Py, 1 denotes the orthogonal projection onto 9+, then

rank(lgge —TT*) = rank(Pozr (1= S Sy | ogt)
< rank(1 —SMSM*y = 5.

so that 7 satisfies the conditions of Lemma 2.2 if it is polynomially compact.

In what follows we shall also have occasion to use a certain result on truncated
weighted shifts. Let w={w;}7-o be a finite sequence of complex numbers, and let
T, be the truncated weighted shift with weight sequence w defined on an (n+2)-
dimensional Hilbert space by setting

2.2) T,fi=wifis1, 0<j<n, and T,f,,; =0,

where { f,}"“ is an orthonormal basis for the space. The following theorem is a
slight modification of ([4], Theorem 1).

THEOREM 2.5 (D. Berg). Let T, be the truncated weighted shift with weight
sequence w = {w;}7-o. Suppose that 1 < || T,|| < 2 and for some ¢ > 0, we have
|wol <&, |wy|<e,and |(|w;|—|wj41])| < € for 0< j<n. Then there exists a normal
operator N such that | T,— N | <200¢'2.

A typical sequence of weights satisfying the conditions of Theorem 2.5 is obtained
as follows. Let 0<e<1, and define the finite sequence w(e, k) to be the weight
sequence

(2.3) € 26, 3¢, ..., (n—1)¢, ne,ne,...,ne, (n—1)e,...,2¢¢

where n is the smallest integer such that ne > 1 and the term ne appears & times. The
truncated weighted shift with weight sequence w(e, k) will be denoted by T «)-

In a different direction, recall that an operator 7 in £(3C) is quasinilpotent if
o(T) ={0). The following result is [7, Theorem 1].

THEOREM 2.6. Let T be a quasinilpotent operator in £(3C). Then there exist
a compact quasinilpotent operator K in £(3C) and an operator X in £(3C, JC“”))
that is bounded below such that K™ X = XT.
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We will also need the following result which follows from [18] or [3].

PROPOSITION 2.7. Any operator T in £(3C) such that o,(T) = {0} can be written
as T=T'+K where T’ is quasinilpotent and K is compact.

3. The shift as a universal quasiaffine transform. In this section we will prove that
every nonalgebraic operator in £(3C) has a quasiaffine transform which is a
multiple of S¢®). The following two lemmas are the main steps needed to reduce the
proof of this theorem to a more manageable one.

LEMMA 3.1. Let T in £(3C) and T’ in £(3IC") be two strict contractions such that
S@T’'<T. Then aS'®) < T for every scalar o> 1.

Proof. If a> 1, by the results of [16] we have a.S{®) < S and hence aS(®'@ T’ <
S@T’. By the transitivity of the relation ‘“<’’ it is enough to show that aS(®) <
aS{®)@T'. Setting T” =« ~!T’, this relation is equivalent to

@ S<( @ S)@T”.
i, j=0 i,j=0

Let us choose a sequence {h;};2,, dense in the unit ball of 3C’, and define the
operator X: @{%-9 H>— (D=0 H*) ®3IC’ by

X( @ qf),-j) = ( @® 4—i—j¢ij)®( Eoz—i_jd’ij(T”)hj).

i,j=0 i,j=0 Lj=

That X is bounded follows from the fact that ¢;(T")h; = th(qb,-j) and Lemma 2.1.
It is obvious that X is one-to-one and that ((D%-¢ S)®T")X=X(D =0 S). To
conclude the proof it therefore suffices to show that X has dense range. It is easy to
see that the relation

3.1 (é ¢ij>®k€ (range X)*

i,j=0
is equivalent to

(3.2) 47, ) 2+ 27 (ST Yhj, k) ger = 0
for all i,j >0 and ¢ in H?. Therefore we infer that

((T")hj, K)o = lim 2777(@, ¥5) = 0
i—0
and hence k£ = 0 because the sequence {4;};Z, is dense. (Note that for ¢ =1,
¢(T")hj= h;). Now the relations (3.2) reduce to (¢, ¥;;) =0 for all ¢ in H?, and this
clearly implies Y;;=0. Thus (3.1) implies (@,‘-’3-:0 ;bij)@k: 0, and the lemma
follows. a

LEMMA 3.2. Let Tin £(3C) and T' in £(IC’) be two strict contractions and let X
be an operator in £(3C’, IC) with dense range such that TX = XT'. If there exists an
h in 3C such that for no nonzero polynomial p does p(T)h belong to the range of X,
then S®T” < T for some strict contraction T".
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Proof. Replacing 77 and X by Pex)t 7| (ker X)* and X| (ker X)*, respec-
tively, we may assume that X is one-to-one. Under this additional assumption we will
prove that in fact

(3.3) S®T' <T.

The operator Y: H?>@ JC’ — 3C defined by Y(¢ @D h’) = ¢(T)h— Xh’ has dense
range (because range Y DrangeX) and 7Y=Y(S@®T’). To complete the proof of
(3.3) it suffices to show that Y is one-to-one. Thus suppose that Y(¢®Dh') = 0,
that is,

3.4 o(TYh = Xh'.

Choose a positive r less than 1 such that r>max{||T||, || 7”|}. If the function ¢ is
not the zero function, we can write ¢ = py where p is a polynomial and y is a func-
tion in H? having no zeros in the disk {(z:|z| <r}. Then (T) and y(7T’) are in-
vertible, and therefore p(T)h=y(T) " '¢(T)h=y(T) " 'Xh'=XY(T’') " 'h’ € X3C".
By the hypothesis we have p=0 and hence ¢ = 0. Thus (3.4) reduces to XA'=0, so
that #’= 0 by the injectivity of X, and the proof is complete. O

The preceding lemma suggests the following definition.

DEFINITION 3.3. A strict contraction 7 in £(JC) has property (A) if for every
strict contraction 7, every operator X with dense range such that 7X = XT7’, and
every h in JC, there exists a nonzero polynomial p such that p(7T)k belongs to the
range of X.

An easy consequence of Lemmas 3.1 and 3.2 is the following.

PROPOSITION 3.4. If T is a strict contraction in £(3C) not having property (A),
we have aS ®) < T for every scalar o> 1.

In the sequel we will use the slightly stronger property (B) defined below.

DEFINITION 3.5. A strict contraction T in £(JC) has property (B) if for every (not
necessarily strict) contraction 7, every operator X with dense range such that
TX=XT’, and every A in JC, there exists a nonzero polynomial p such that p(7T)hA
belongs to the range of X.

Note that if 7 has property (A) and 1 <a < || T|~!, then «T has property (B).
Furthermore, it is obvious that any algebraic operator has properties (A) and (B).
Our strategy consists of proving that the converse is also true: any operator having
property (B) is an algebraic operator.

The following lemmas will help us ‘‘globalize’’ property (B).

LEMMA 3.6. Let X be a complex linear space, n be a positive integer, and T a
linear operator on X. Assume that for each x in X there exists a nonzero polynomial
ry of degree less than or equal to n such that r,(T)x=0. Then T is an algebraic
operator.
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Proof. For each x in X we denote by p, the generator of the ideal J, =
{p:p(T)x=0]}. For every pair x,y in & there exists z in X such that p, is the least
common multiple m of p, and p,. Indeed, it suffices to write p,=p’'p”, p,=q’q”",
such that p’ and g’ are relatively prime, p’q’=m, and define z=p”"(T)x+q"(T)y.
The equality p,=m follows from the relations p,~(x=p’, pPg (r)y=¢q’, and the
fact that p,,,=p, p, when p, and p, are relatively prime. This argument, com-
bined with the assumption that p, is of degree less than or equal to n for each x,
shows that the family {p,},eq admits a common multiple p for which, obviously,
p(T)=0. O

Recall that a linear manifold 9N of JC is called paraclosed if it is the range of some
operator in £(J3C’, 3C).

LEMMA 3.7. Suppose T € £(3C) and M is a paraclosed linear manifold of 3C such
that TM C M. If for every x in 3C there exists a nonzero polynomial p, such that
PATYXEM, then p(T)ICC M for some nonzero polynomial p.

Proof. We may write 90 = RJC’ where R € £(J3C’, 3C). For every positive integer N,
let us denote by sy the set of all x in JC for which there exist a polynomial p,({) =
YN oa;¢/ and a vector z in 3¢’ such that p,(T)x=Rz, 1/N< LN, |a;| <N, and
|zl| < N. 1t is easy to see that each sy is closed, and thus {sy) is an increasing
sequence of closed sets such that UyJ—-, sy = JC. Therefore, by the Baire category
theorem, if N, is sufficiently large, then sy, contains some ball

B={x€J:|x—x0| <e}.

Since every x in 3C can be written as x=((x’—x,) for some x’ in B and some scalar
B3, and since M is invariant for T, we have Px(T) Py, ( T)x € 9. It follows that for
each x in JC, there exists a nonzero polynomial p, of degree at most 2N, such that
Px(T)x € M. The lemma now follows from Lemma 3.6 applied to the operator T,
defined on the quotient space 3C/M by T, (x+ M) = Tx+ M. O

COROLLARY 3.8. If T belongs to £(3C) and has property (B), then for every
contraction T’ in £(3C’) and every operator X in £(3C’, 3C) with dense range such
that TX = XT', there exist a nonzero polynomial p and an operator Z in £(3C,3C")
such that p(T) =XZ. Furthermore, the equation p(T) = XZ implies p(T') =2ZX
whenever X is one-to-one.

Proof. Suppose T’ and X are as in the statement of the corollary. It follows from
Definition 3.5 and Lemma 3.7 that there exists a nonzero polynomial p such that
p(T)3CC X3C'. Furthermore one knows from the range inclusion theorem that there
exists an operator Z in £(JC, JC’) satisfying p(7T) = XZ. Suppose now that X is
one-to-one. Then we have x(p(T’) —ZX)=p(T) X—XZX=p(T)X—p(T)X=0,
and the corollary follows at once from the injectivity of X. O

Suppose now that 7 is a strict contraction in £(JC). We define a large family of
operators X, each of which has dense range and intertwines 7 and S{*). To this end
we choose a sequence {4;};2, dense in the unit ball of 3C, and for every sequence
a={a;}2¢in (/) we define X, : @2 H*— IC by
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(3.5) Xa( @ ¢,-) = T oyt (Dhy = T, o X (45)
Jj=0 j=0 j=0

in the notation of Lemma 2.1. It follows easily from that lemma that for each « in
(1}), X, is compact and satisfies || X, | < C| «|,. Furthermore, a calculation shows
that for each «, X, S®) = T'X,,. Moreover, by taking (D24 ¢;) successively to be 1
in the nth component and zeros elsewhere, n=0,1,2,..., one sees that if ¢ is
defined by o= {{e;} € () : a;# 0 for j=0,1,2, ...}, then whenever « €0, X, has
dense range.

We are now ready for the ‘“‘coup de grace’.

PROPOSITION 3.9. Every strict contraction T in £(J3C) having property (B) is an
algebraic operator.

Proof. For each positive integer N, let us denote by oy the set of all those «
in (/;) for which there exist a polynomial p,({) = Ef:o v;$’ and an operator Z,
in £(3¢, @2y H?) satisfying

N
(3.6) Po(T)=X,2,, /NS Y |vjl<N, and |Z,| <N,
Jj=0

where X, is as in (3.5). Since the mapping o — X, is norm continuous and the unit
ball in £(3C) is compact in the weak operator topology, it is easy to verify that each
oy is a norm-closed subset of (/;). Furthermore, since for each « in o, X, has dense
range, it follows from Corollary 3.8 (with 7/ = §(*)), that s C UJ-, a5. Moreover,
since o is obviously a dense G; in (/;), o is of second category in (/;) (cf. [5, Prob.
4U]), and so, therefore, is Uy-; on. It results that there exist a positive integer Ny
and a ball B={«a € (/}): ||a—ap|| <€} such that BC on,- Since the subset of (/)
consisting of sequences o with only finitely many nonzero components is dense,
there must exist a sequence o’ = («;);2( in B such that aj =0 for j 2 J. For this o/,
we have, of course, p, (T) =X, Z, and TX, =X, S(®). Let us write now
9 = (ker X,-)* and note that since o/ = 0 for j > J, we have

J-1
(3.7 Nc PH? and X, = X, Py.

j=0
Thus if we define X’ in £(91,3C), Z’ in £(3C,IN) and T’ in £(9N) by
B8 X' =X,|N, Z'=PyZ,, and T =PyS®|9N (=PyuSY|N),
then it follows from (3.7) that

TX' = T( Xy | M) = (TXy) | N = (X, S| N
= (X Py St [N = (X | V) (P SV | O) = X' T

and from (3.6) and (3.7) that
(3.10) P(T)=X,PyZ,=X'Z".

(3.9)

But X" is one-to-one (as well as compact), and thus by Corollary 3.8, p,(T’')=Z'X",
which implies that 7 is polynomially compact. Observe next that 7" is covered by
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Remark 2.4, and therefore by Corollary 2.3 there exist disjoint subspaces 91, and 9,
of I such that g+ 9, =N, diM Ny < Ky, TN, C I, and

o(T’|N) O8] < | T} = 2.

Moreover, (3.9) implies that 7(X’|9,) = (X'| ) (T’| N;). Thus, by a theorem
of Lumer and Rosenblum [9], it follows that X’| 9, =0, and hence that 9, =0,
since X’ is one-to-one. We conclude that 91 =91, is finite dimensional, and thus
from (3.8) and (3.10) that p,-(T) has finite rank. If g is any nonzero polynomial
such that g(p,-(T)) =0, then (gep,-)(T) =0, and the proof is complete. O

The following corollary follows immediately from the remark after Definition 3.5.

COROLLARY 3.10. Every strict contraction T in £(3C) that has property (A) is
algebraic.

We are now ready for the main result of this section.

THEOREM 3.11. If T is a nonalgebraic operator in £(3C) and |T| <a, then
aS(®)<T.

Proof. We may write a =~/ where 3<1/|T|| and 1<+. Then BT is a strict
contraction and by Corollary 3.10, T cannot have property (A). Thus, by Proposi-
tion 3.4, we have vS(®) <7, and this is equivalent to aS{(®) < T. 0

We remark that it is an easy consequence of a theorem of Rota [11] that the con-
clusion of Theorem 3.11 holds under the weaker assumption that « is any number
larger than the spectral radius of 7. '

We also remark that a perusal of the proofs of the results in this section shows that
the fact that the operator T acts on a Hilbert space plays no essential role, and there-
fore we have established the following more general result.

THEOREM 3.12. If T is a nonalgebraic (bounded, linear) operatbr acting on a
separable complex Banach space and || T|| < «, then aS(®) <T.

Let us observe that the conclusion of Theorem 3.11 is generally false for a= || T'|.
Indeed, if T is a completely nonunitary contraction and $(*?< T, then u(S(®)) <
u(T) for every u in H®, and therefore u(T) # 0 whenever u # 0. Thus, if Tis a non-
algebraic Cy-contraction, then one knows that ||T| =1 and the above argument
shows that S{®) is not a quasiaffine transform of 7.

REMARK 3.13. It is known that S<S§*. Indeed, if 7 is any strict contraction such
that both 7 and 7™* have cyclic vectors, then it follows from [16] that S<T<S*.
Furthermore, if X is any quasiaffinity satisfying XS = S*X, and 9 is any non-
zero invariant subspace for S, then X9 is dense in H?. (For, if (X9MN)~ # H?,
then S*(XIM)~ C (XIM)~ and S*|(XIM)~ is a Cy-operator satisfying S| M <
S* | (XIM)~, contradicting the fact that S| 9N is unitarily equivalent to S, which is
not a Cy-operator.) Observe next that Theorem 3.11 implies that

(3.1D) S(®) < 8§72 < §*/2 < S(®)*,
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and if Y is the quasiaffinity satisfying YS(®)=§(®)*Y obtained by composing the
three quasiaffinities given by (3.11), then it follows easily from the above result
about X that if M is any nonzero invariant subspace for S'®, then YU is dense
in 3¢(=),

4. Normal plus compact quasiaffine transforms. In this section we will prove that
every operator 7 in £(JC) has a quasiaffine transform of the form N+ K, where N is
normal and K is a compact operator of arbitrarily small norm. We will also show
that the relation N+ K< T implies N+ K~ T if T is algebraic but not in general.
Finally, we will investigate cases in which an operator T has either a normal or a
compact quasiaffine transform. The program begins with two lemmas.

LEMMA 4.1. Let W,, be a unilateral weighted shift in £(H?) with weight sequence
w=1{w;};2¢, where w;> 0 for all j. Then W,<S whenever

4.1) inf{fwow;...w,:n 20} >0.

Proof. If (4.1) holds, there exists an operator X in £(H?) such that Xe,= e, and
Xe, = (1/wow;...w,_1)e,, n=1,2,.... It is obvious that X is a quasiaffinity, and
an easy calculation shows that XW_ = SX, from which the result follows. O

LEMMA 4.2. Let {¢;}j2¢ be a decreasing sequence of positive numbers converging
to zero. Then there exists a sequence {Kk;}jZo of positive integers such that the
weighted shift W, with weight sequence w given by

O)(Eg,ko), Eo,w(Ei,kl), 61,...,w(€j,kj), EJ',...,

where the finite sequences w(e;, k;) are as in (2.3), is a quasiaffine transform of S
and satisfies | W, || < 1+¢. Moreover, W, can be written as W,= N+ K, where N is
normal, |N|| < 14 2¢p+200¢)/2, K is compact, and || K| < o+ 200}/

Proof. For each nonnegative integer J, let n; be the smallest positive integer such
that nje;> 1, and observe from (2.3) that if the positive integer k; is chosen so large
that

(nje)5(n— D) tei(njpy — el ™! > 1,

then the weight sequence w certainly satisfies (4.1), so we have W_ < S by Lemma 4.1
and || W, | < 1+¢o by inspection. Moreover it is obvious that we may write W, as
W,= W, + K’ where w’ is the weight sequence

w(éo,kg),o, w(el,kl),O,...,w(c-j,kj),O,...,

K’ is compact, and || K’| < €. Furthermore it is clear that W, is unitarily equivalent
to D2y Toe, kp» Where the Ty, k) are as in (2.2). Thus, by Theorem 2.5, we may
write Ty, x,) = N;+ K; where N; is normal and [ K} || < 200¢}’2. Since

D Toe, k) = ( ® Nj) + ( D Kf)’
Ji=0 f=0 j=0

the result follows by setting N= @72, N;, K=K'+ @20 K, and noting that since
e;—>0, @2, K; is compact and we have
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1K < eo+200ed?,
[N = | Wo—K| < | W, |l + | K| <14 2¢0+ 200>

We can now prove the universality of the existence of normal plus compact
quasiaffine transforms.

THEOREM 4.3. Suppose T belongs to £(3C) and ¢ is any positive number. Then
there exist N and K in £(3C) such that N is normal, K is compact, N+ K< T, and
|K|| < e. If T is algebraic, we also have T<N+K, so T and N+K are quasisimilar.

Proof. We suppose first that T is not algebraic. In this case it follows easily from
Theorem 3.11 that it suffices to prove the theorem when 7= S(*). Let {ejljzo bea
decreasing sequence of positive numbers converging to zero and satisfying

€0+ 2002 <€, 14265+ 200e)? < 2.

Then, by Lemma 4.2, for each positive integer j, there exist a normal operator N;
and a compact operator K; such that N;+K;<S and | N;|| < 2, | K;|| < ¢;+200e)/%
We set N= D2 Nj, K= ®;20 K;, and observe that N is normal, K is compact,
| K|l < e, and N+K=<S®). Thus the proof is complete in the case when T is not
algebraic.

That an algebraic operator T in £(JC) is quasisimilar to an operator of the form
N+K, where N is normal, K is compact, and | K| is arbitrarily small, is well known.
For completeness, we sketch an argument. It can easily be seen that 7 is similar to an
operator of the form G—)J'-'zl()\j-i—]\/}) where each Nj; is a nilpotent operator. (This
follows, for example, from the Riesz-Dunford functional calculus or from a
theorem of Halmos [8] and the theorem, used above several times, of Lumer and
Rosenblum [9].) Furthermore, one knows from [7, Theorem 4] that every nilpotent
operator is quasisimilar to a compact operator of arbitrarily small norm, and the
result follows easily by forming the appropriate direct sums.

The last statement of the theorem follows from the fact, mentioned in the intro-
duction, that if 7/< T and T is algebraic, then 7’ is also algebraic and 7’ ~ T (cf.
[21, [19D). O

The following proposition is useful in showing that we cannot expect all operators
to have normal quasiaffine transforms. We denote the point spectrum of an operator
Tin £(3C) by 0,(T) and the set of complex conjugates of a subset of A of C by A*.

PROPOSITION 4.4. Suppose that ‘N and T are operators in £(3C) such that N is
normal and N<T. Then o(N) Co(T) and [a,(T*)]* Cop(N) Co,(T).

Proof. The first inclusion follows from Corollary 2.12 of [6]. For completeness, we
sketch an argument. Let X be a quasiaffinity such that XN = T X, and suppose first
that a(N)\o(T) # @. Then there exists an open set ‘U such that U™ Co(N)\o(T)
and E=E(U7) #0, where E(-) is the spectral measure associated with N. Thus
(XE)Y(EN)Y=XEN=XNE=T(XE), and since 6(EN) C U™ C C\ag(T), the theorem
of Lumer and Rosenblum [9] implies that XE = 0, contradicting the fact that X is a
quasiaffinity. Hence 6(N) Co(T). That 0,(T*) Ce,(N*) and 0,(N) Ca,(T) follow
from the obvious general facts that if T} <75, then T3 < T} and 0,(7T}) Co,(73).
Since 0,(N*) = [0,(N)]*, the desired inclusion relations result. O
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REMARK 4.5. Proposition 4.4 shows clearly that one cannot hope to show that
every operator in £(J3C) has a normal quasiaffine transform. For example, if
0,(T) = @ but 0,(T*) # &, then N<T is impossible for every normal operator N.
(In particular, the operator S has no normal quasiaffine transform.) Furthermore,
no nonzero nilpotent operator can have a normal or even a cohyponormal quasi-
affine transform as is shown by Theorem 3.6 of [6].

REMARK 4.6. The operator W, considered in Lemma 4.2 is interesting in itself. It
has the form W_ = N+ K with N normal and X compact, but for no normal operator
N’ do we have N'< W,,. Indeed, N’ < W, would imply (by Lemma 4.2) that N’ <,
contradicting Remark 4.5. It is also easy to see that | w(W,)| < 1. (This follows
from the fact that since ¢; — 0 and no weight in the sequence w(e;, k;) exceeds 1+¢;,
W, can be perturbed by a compact weighted shift K’ such that the weighted shift
W,—K'’ satisfies || W,—K’| =1.) Thus o ,(W,)CD~ ={{:|¢|<1}. On the other
hand, the relation W,<S obviously implies o,(W,) Co,(S) =@ as well as D=
0,(8*) Co,(W,*). Since W,=N+K, any hole in o.(W,) must have associated
Fredholm index 0, but since o,( W,,) = &, no such hole can exist. Thus we see that
g.(W,) =D~ and that W_ = N+ K has the curious property that its point spectrum
is empty but the point spectrum of its adjoint (N+ K)* contains D.

REMARK 4.7. It is known (cf. [7]) that there exist quasinilpotent operators in
£(3C) that do not commute with any nonzero compact operator. For such a 7T we
cannot replace the relation N+ K< T of Theorem 4.3 by quasisimilarity, as is shown
by the following result.

THEOREM 4.8. If T is an operator in £(3C) such that 6,(T) ={0}) and T~ N+K,
where N is normal in £(3C) and K is compact, then T commutes with a nonzero
compact operator.

Proof. Let X and Y be two quasiaffinities in £(JC) such that
4.2) TX=X(N+K) and YT=(N+K)Y.

If T=0, the theorem is trivial, so we now suppose that 7#0. Then clearly
X(N+K)Y is nonzero and commutes with T, so it is enough to show that this
operator is compact. Furthermore, this can be done by showing that XN is compact,
and since | N—E, NE,| — 0, where E,, is the spectral projection of N corresponding
to the set A, ={¢{:1/n<|{|}), it suffices to show that for each positive integer n,
XE, NE, is compact. Note that in the Calkin algebra, we have, by (4.2),

x(T)x(XE,) = n(XE,)n(E,NE,) = n(XE,)w(E,NE,+1—E,),

and since 6,(7T) = (0} and o(E,NE,+1—E,;) CA,U (1}, it follows from the theorem
of Lumer and Rosenblum [9] (applied in the Calkin algebra) that XE, is compact for
every n, thus completing the proof. O

Our last result is a generalization of [7, Theorem 3] and shows that for a certain
class of operators T the relation N+ K=< T in Theorem 4.3 can be replaced by a
stronger relation.
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THEOREM 4.9. Suppose T is an operator in £(3C) such that ¢.,(T) ={0}. Then
there exist compact operators K’ and K” in £(3C’) such that K'<T<K".

Proof. The relation K’'< T is equivalent to 7* < (K"’)*, so it suffices to establish
the existence of K”. Furthermore, to do this it is enough to prove the existence of a
compact operator K, in some £(JC”) and an injective Z in £(3C, 3C”) such that

(4.3) K,Z=ZT.

Indeed, in this case we can set 3¢’ = (Z3C)~ and K" =K, | 3C’. Thus we will establish
(4.3). By Proposition 2.7 we can write 7= 7'+ K, where 7" is quasinilpotent and K,
is compact. Furthermore, by Theorem 2.6 there exist a quasinilpotent, compact
K3 in £(3C) and an X in £(3C, 3¢(*)) that is bounded below such that K{*)X =
XT’. Let us set JC; =XJ3C and define a compact operator K, in £(JC(°°)) by
K4—XK2X 'PJCI, where Py, is the (orthogonal) projection of 3C‘*) on JC; and
X~1:3¢, > 3C is the “mverse of X. Then, obviously, we have K; X= XK,, and
hence

(4.4) (K§®) + K) X = XT.

If K3 (*) were compact, then (4.3) would be established since X is injective. Since
K3 (°°) is not compact, we must tinker further with (4.4). Let Y be any quasiaffinity in
£(JC(°°)) and write Y ! for the densely defined, possibly unbounded, set theoretic
inverse of Y. Then, formally, we may write

4.5) - Y(K{®)+K) Y 'YX = YXT,

and since Y.X is injective, it suffices to construct some quasiaffinity Y in £(JC(*))
such that YK; (*)y—! and YK,Y ! are bounded (on the range of Y) and such that
the extensmns of these densely defined operators to JC{*) are both compact.

Since K is quasinilpotent, by a theorem of Rota [11], there exists a sequence
{Q) } ~o of invertible operators in £(3C) such that Qy =1 and for each j =2 1,
I QJ || =1, |Q;K3Q;!| <1/2/. Furthermore, if we denote by P, the projection of

—@j 0 JC onto @2, 3¢, n=1,2,..., then |K4P,| —0 (cf. [10, Corol-
lary 4.4]), and thus we may choose an mcreasmg sequence {#n;};2o of natural num-
bers such that no=0 and

(4.6) IKaPo, Il Q71 <1727, j=1,2,.

For each nonnegative integer j, we define Y;= Q) where k satisfies ny <j<ng,y,
and we set Y=®2, ¥;. Then YK{™'Y~! can be written as @2, Y;K;Y; ! and
this operator can be extended to a compact operator in £(3C{*)) since

YK Y7 — 0.
Finally, the operator YK, Y ! can be written as
njyp—1
YK,Y ' = Ky(1=Py) + L YKy(P,, ,,+,)(0@( @ Q;‘)@o)
J

and this operator also extends to a compact operator on JC(*) since for every
positive integer J,
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i, (0% )00

< K 1071 < 1727,

Thus the theorem is proved. O
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