ON PARTIALLY TEICHMULLER BELTRAMI DIFFERENTIALS

Frederick P. Gardiner

Introduction. If E is a measurable subset of a Riemann surface R, we consider two
problems associated with quasiconformal mappings F from R to another Riemann
surface R, with the property that F is conformal on R—E. The first problem is to
characterize extremal mappings in the same Teichmiiller class as F subject to the
condition that they be conformal on R—E. Using a modified version of the ‘“main
inequality’’ of Reich and Strebel we can show that mappings F extremal in this sense
have partially Teichmiiller form. By this we mean there is an integrable holomorphic
quadratic differential ¢ on the surface R, such that F~! has Beltrami coefficient
k|¢|/¢ on F(E) and zero on R —F(E). It also follows that such differentials are
extremal. To a certain extent these results can be viewed as analogous to those
presented by Reich in [6]. In Reich’s notation we are treating the case where b, =0,
which Reich says has special interest and is not included in his own treatment.

The second problem we consider concerns mappings F which are Teichmiiller
trivial on R and which are also conformal on R—E. The space of Beltrami
differentials of such mappings is denoted by My(R, E). We are unable to show that
My(R,E) is connected but can show that given u in My(R, E) corresponding to F
there is a mapping p; in My(R, E) corresponding to F; such that if y, is the Beltrami
coefficient for FeF; ! then ||pi]lw < ||« for i=1 and i=2. The result also gives
real analytic parametric path of Beltrami differentials in My(R, E) connecting u
to Ry

1. Preliminaries. Let R be a Riemann surface, C be the union of the ideal
boundary curves of R and let ¢ be a closed subset of C. It is possible for either C or ¢
to be empty. When C is nonempty we consider it to be part of R so in this case Ris a
bordered Riemann surface.

Let A(R, o) be the space of integrable, holomorphic, quadratic differentials on R
which are real with respect to real boundary parameters at points of C—o. If R is of
finite type with genus g, n boundary contours and k interior punctures and o is a
finite subset of C, then from the Riemann-Roch theorem one can show that the real
dimension of A(R,d) is

1) 6(g—1)+3n+2k+card(o) +p

where p is the real dimension of the continuous group of holomorphic homeo-
morphisms of R. p can be positive only in special cases when g=1 or 0.

Let L(R) be the set of all Beltrami differentials on R. An element p of L(R) is an
assignment of a measurable function u* to each local parameter z such that

d -
(@ p*(z) ?12— = uf(?) % for any two parameters z and { with overlapping

domains and
) |l#llo=supf]|p*(z) ]« for all z} <oo.
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Let M(R) be the open unit ball in the Banach space L(R). From the theory of the
Beltrami equation [1] for any u in M(R) there will be a quasiconformal homeo-
morphism w= w* from R onto another Riemann surface R* satisfying

@ Wi = pw,.

Let Dy(R, o) be the group of quasiconformal, homeomorphic self-mappings # of R
which are homotopic to the identity in the sense that there exists a continuous curve
of continuous self-mappings g, of R for which

(i) go(z) =z and g,(z) =h(z) for zin R and

(i) g/(p)=h(p)=pforpinocand 0<r<1.
The group Dy(R, o) induces an equivalence relation on M(R) by defining p ~ » if
v=(wkoh);/(w#eh), for some & in Dy(R, o).

The Teichmiiller space T(R,o) is the space of equivalence classes under this
equivalence relation.

2. The extremal problem. Let F: R—> R, and M(F,E,R,0) =M be the set of
elements u in M(R) which are identically zero on R — E and which are equivalent to
the Beltrami coefficient of F under the action of Dy(R, o). Let

k*(M) = inf(|| ]| : 4 € M(F, E, R, 0))

and K*(M)=(1+k*(M))/(1—k*(M)). If p is the Beltrami coefficient of G and pu
isin M=M(F,E,R,0) and if ||u|lo =k*(M), we say G is extremal for the class M.
The existence of at least one extremal mapping G for the class M is assured by the
compactness of a family of quasiconformal mappings whose dilatations have a
uniform bound. We will write z=F(w), f=F~Y, «(w) =Fy/F,, k(z) =f;/f,. For
a mapping G whose Beltrami coefficient is in M (F, E, R, o), we may as well assume
G and F map onto the same Riemann surface. Suppose F: R—>R; and G: R —>R,.
The equivalence relation implies there is a conformal map c¢: R, — R such that C-G
is homotopic to F by a homotopy fixing points of ¢. But C-G and G have identical
Beltrami coefficients. Of course, we cannot assume F(E) = G(E).

The following theorem is a form of Hamilton’s necessary condition for ex-
tremality, [4].

THEOREM 1. Suppose T(R, o) is finite dimensional. Suppose F is extremal in the
class M(F,E,R, o). Then

sup

Re SS k1(2)6(z) dxdy | = ||x1 ]l
F(E)

where the supremum is taken over all ¢ in A(R,,¢,) for which ||¢|rE) =1.

Proof. Hamilton’s proof [4] goes through verbatim except for the requirement that
one must invoke the existence of trivial curves of Beltrami coefficients on R; with
given tangent vector and with support contained in the set F(E). The existence of
such curves is proved in [3] and depends on the finite dimensionality of T(R, o). We
begin the proof by applying the Hahn-Banach theorem to obtain 7 in L (E’) such that

Re HF(E) rédxdy = Re SSF(E) k6 dx dy

for all ¢ in A(R,, 0;) with the property that
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Re SSF(E) x@dxdyl / SS'F(E) || dxdy}.

If the conclusion of the theorem were not true, then |7 <| &]|e- Let v=x;—17.
Then » is infinitesimally trivial and so there exists a curve v(¢,z) of trivial Beltrami
coefficients on R, with support in F(E) such that »(¢,z) =tv(z) + o (¢) uniformly in
z. Now, one forms the mapping H = G-F= Gof~! where G has Beltrami coefficient
v(t,z). By calculating the Beltrami coefficient of A just as in [2, page 42] one finds
that for sufficiently small ¢ the Beltrami coefficient of H has norm less than ||«|| and
H is in the same class as F. This contradicts the fact that x is extremal. O

I = sup]

COROLLARY L. If T(R, o) is finite dimensional and if F is extremal in the class
M(F,E,R,0) then «(z)=k|¢p(2)|/¢(z) for z in F(E) and x;(z) =0 for z in
R, —F(E) where 0< k<1 and ¢ is a nonzero element of A(R;,0;).

Proof. Obviously «,(z) =0 on R, —F(E) since k(w) =0 on R—E. Choose ¢ such
that "¢”F(E) =1 and ”F(E) K]¢d)€dy= “Kl ”w . But then

lalo={{ woaxdy< {| lnlelglaxdy < nle
F(E) F(E)

and we conclude that k¢ = | x| |¢| almost everywhere in F(E) and this proves
the corollary. O

REMARK. There is an initial holomorphic quadratic differential v on E with
property that F has Beltrami coefficient k= —k|¢(w)|/¢(w) for w in E and
k(w) =0 for win R—E. But ¢ is not necessarily in A(R, ¢) and it does not neces-
sarily extend into the domain R —E. This is a reflection of the asymmetry of the
extremal problem. If one poses the problem of solving the extremal problem for
M(f,F(E),R;,0,), the extremal value will in general be smaller than k(F). The
fact that F is extremal in its class does not imply that f=F~! is extremal in its class.

DEFINITION. If a Beltrami differential «(z) =k|¢(z)|/¢(z) for z in E, and
k(z) =0 for z in R;—E, for some element ¢ € A(R;,q;), we will say «(z) has
partially Teichmiiller form on the set E|.

One of the results of the next section will show that if F=f"! and « and «, are the
Beltrami coefficients of F and f and if «; has partially Teichmiiller form on F(E),
then F is extremal in its class. In the analogous case treated by Reich in [6], he says
he can give conditions under which F is unique extremal. These conditions involve
uniqueness of the Hahn-Banach extension of the linear functional

SSF(E) k(2)¢(2) dxdy.

We do not know whether his method works in this case.

3. The main inequality of Reich and Strebel. Let the Beltrami coefficient of G be
an element of M(F,E,R,0) and E; =F(E). Let f=F~', g=G~'and y, p, «, x| be
the Beltrami coefficients of G, g, F, frespectively. The main inequality of Reich and
Strebel, [7, p. 464] applied to G-F on the surface R, =F(R) can be stated as
follows: for any quadratic differential ¢ in A(R,,0,),
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2

‘1—,(;—‘*1— I e 170
] p T8l T-ne/ll
R =Tl i

where p = f,. This inequality involves integrals over the subset E; and it follows from
the inequality in [7] because the integrals over R, —E, of both sides of (3) are
identical since x;(z) =u(f(z))=0on R,—E,.

In the case where «; has partially Teichmiiller form

K,(z)z{qus(zn/mz) on E,

4
“) 0 on R-—-E,

where ¢ is in A(R;,0,), one obtains

1+ |p(f(2))]
1- |p(f(2)]
where ¢ is normalized so that ||¢[|z, =1 and K= (1+k)/(1— k). From this one sees

that K< (1+ |||l )/ (1 — |||l ) for any u in M(F, E, R, ¢) and hence « is extremal.
We summarize this as a theorem.

THEOREM 2. Let F have Beltrami coefficient in M(F,E,R,0) and f= F~\.
Suppose the Beltrami coefficient k; of f is of partially Teichmiiller form as in (4)
where ”Rx |¢| <oo. Then F is extremal in its class.

5) K< [f 1ot dxdy
1

Another consequence of (3) concerns elements of My(E,R,0). My(E,R, o) is, by
definition, the set M(F,E,R,o) where F=the identity. In this case, we put
k=k;=0and p=1 and (3) becomes )

¢

1__. —_—
©) f§ 1o1< [§ 191 } :IL‘?L

for any ¢ in A(R, ¢) and any u in My(E, R, 0) . Expanding out the numerator in the
right side of (6), subtracting {{z|¢| dxdy from both sides and dividing by 2, (6) is
seen to be equivalent to

dxdy

po ?
E 1—|p|?

axdy< || 2 4] axay

7 Re S
O S £ 1—|uf?
for any p in My(E, R, 0) and any ¢ in A(R,0).

The inequalities (3) and (7) differ from ones given by Reich and Strebel in [5] and
[7] only insofar as they involve integrals over a subset of the given Riemann surface.

4. Paths in M(E, R, o). Using the notations introduced in the previous sections,
we prove the following theorem. It is similar to the result of Reich in [5, Theorem 1,

p. 18].

THEOREM 3. Suppose F has Beltrami coefficient p in My(E,R,¢)~and ||u|~ =
k=(K—1)/(K+1). Then there exist positive numbers ty, 6 and C and an analytic
curve v, in My(F(E), R, ¢) such that if h, has Beltrami coefficient v, then

(i) K(h,) <1+Ct and

(ii)) K(h,oF)<K—6t for 0<t<ty.
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REMARK. In this theorem the numbers 7y, 6, and C depend on u. It would be
desirable to know if the same theorem were true with the numbers ¢,, 6§ and C
depending only on |u|. =k.

Proof. Here we modify the method used by Reich, [5]. Consider the linear func-
tional L, defined on A(R, o) by

L(#)=Re (| 12

———dxdy,
E, 1- Im |2

where u, is the Beltrami coefficient of a quasiconformal mapping which is inverse to
a quasiconformal mapping with Beltrami coefficient x. Let

L]l = sup{|L.(®)]; l®llg, = 13-
By the Hahn-Banach theorem and the Riesz representation theorem there is a
Beltrami differential 7 on R, with support in E, = F(E) such that ||7|lo = | L]||
“1o
Re ————> dxdy = Re dxd
HE, 1= |2 ¥ SSE,”’ Y
for all ¢ in A(R,y,0,).

Then »,(z) = l—”l—z— — 7 is orthogonal to A(R,,0;) and has support in E|.
By (7) - |ﬂ1|
- k2
® Ille = I € T

since p, is in My(E;,R,,0).
By Theorem 1 of [3, p. 1099] applied to the surface R with subset E, there is a
curve of Beltrami coefficients »,(z) in My(E,, R, o) such that

® (2) = tri(2) +o(¢)

uniformly in z as ¢t — 0.

Let 2':R—R be a quasiconformal mapping with Beltrami coefficient »,. We
claim that (i) and (ii) hold for this choice of 4,. The complex dilatation of p, of
h'oF satisfies

il 4
(10) | = ]—~1"' _
— Vi

We will show there are constants 6’ and ¢#§ such that
lo,(z)| < k—&'t for 0<t<¢} and w in R.

As in [5, p. 20], let « be the positive solution of the equation

o _l k2 + k _ k
1—a?2 2\ 1—k2 1-k%2)  2(1—k) °

Sy ={z€R:|pu(2)]| < a)
S ={z€E;ta<|u(z)| <k}

Let

Since |u(z)| < a <k for z in S, it is obvious from (10) that there are constants §,
and ¢, such that
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(11) lo| < k—é6;¢ for 0<t<t and z€S,.
From (10) we have

lullz—z Re(v, py) + IVt|2
1—2tRe(v i) + |v)? |y >

(12) los|* =

From (9) and (12) one obtains

1— | (2) ]2

11(2) ] Re[r(2)m(2)] +0(1).

(13) |l (W) = |ui(2)| — ¢

By definition of »,(z),

Re[v(z)pui(2)] = Re[lu—'lzz — Tﬁl] > —MT — |7|]ul
1- |ll«1| 1—|P~1|

[l ]
=Bn 57 7 — 7L
| ll[1“|#1|2 | l

By (8) and (14) and the definition of «, the coefficient of —¢ in (13) is bounded
below by :

1— | p)? 1—a? k2 1-k
1- —= > all- =
|“"[ ™ 71| >« a 1-k2| 1+k°

for z in S,. Hence, there exists a 6, >0 and ¢, > 0 such that |p,| < k—§,¢. Taking
6’ =min(é,, 8,) and t;=min(z,?,), we get the desired result on R =S,US,. O

(14)
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