A DUALITY THEOREM FOR HARMONIC FUNCTIONS

Steven R. Bell

Let D be a bounded open subset of R" with C® boundary, and let 2% (D) denote
the space of complex valued harmonic functions on D which are in C* (D). In this
paper, we prove that the dual of the Frechet space A (D) is the space # ~* (D) of
harmonic functions on D which satisfy finite growth conditions at the boundary.
More precisely, a harmonic function g is in 2~ % (D) if and only if there are positive
constants m and C such that Sup{|g(z)|d(z)":z€ D} < C where d(z) is the distance
of z to bD, the boundary of D. In fact, we prove that #°(D) and A ~=(D) are
mutually dual via an extension of the usual L?(D) pairing.

This duality in conjunction with some classical results from potential theory allows
us to prove an interesting theorem about the Poisson kernel P(x, ) of the domain D.
It is a classical fact that the operator ¢ — {,,P(x,0)¢(0)doy maps C*(bD)
isomorphically onto A% (D). In this paper, we prove that the operator

h e S h(x)P(x,0) dV,,
D
when defined correctly, is an isomorphism between 2~ (D) and D’'(bD).

A key step toward proving these results is the establishment of

LEMMA 1. Suppose D is a smooth bounded domain in R" and s is a positive
integer. There is a positive integer m=m(s) and a constant C=C(s) such that if f
and g are harmonic functions in L*(D), then

jfg’sc( Sup |3“f(z)|)<5up Ig(z)ld(z)‘>.
D k4 z€D

€D, |a| =m

Here, the symbol 9% is defined when a=(a;,a,,...,a,) is a multi-index as the
differential operator
glel

5 =
axill axzaz .o ax";n

The constants m and C do not depend on f or g.

This lemma leads to the remarkable conclusion that if f€ #* (D) and g€ h ~* (D),
then {,, fg is a well defined quantity, even though |fg| may be far from integrable.

Before we can state and prove our main theorem, we must establish some defini-
tions and recall some facts from potential theory.

Throughout this paper, D will be a smooth bounded domain contained in R”. If s
is a positive integer, we let W*(D) denote the usual Sobolev space of complex valued
functions on D with norm || ||y induced by the inner product
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(u,v)= Y, S 9%ud%v .
|a| =s JD

We let W3 (D) denote the closure of Cy° (D) in W*(D). A function u will be said to
vanish to order ¢ on bD if 3*u(z)=0 for all multi-indices o with || <¢ and all
z€ bD. 1t is easily proved that if v is a function in C$(D) which vanishes to order
s—1 on bD, then ve W§(D).

The dual space of W§(D) will be written W~5(D) and can be identified as a
Banach space with the space of distributions N supported on D such that

[N —s = Sup(|M(9)|: ¢ € C5(D); |o]s=1)
is finite.
We define A°(D) and h ~*(D) to be the corresponding subspaces of W*(D) and
W ~*(D) consisting of harmonic functions.

An alternate and, for our purposes, more useful description of A~ *(D) is
h~=2(D)= U, h~°(D). This equality is valid because of

LEMMA 2. Let s be a positive integer with s> n. There are positive constants ¢ and
¢, such that if g is harmonic on D, then

cilgll-s-n = Sup g(2)]d(2)° = s [Ig]l-s+n-

Proof of Lemma 2. Sobolev’s lemma and Taylor’s formula imply that |¢(x)| <
C||® ||s+nd(z)* for ¢ in W§*" (D). Hence, the left-hand side of the inequality is true.

To prove the right-hand side of the inequality, let # be a C* radially symmetric
function supported in the unit ball with {6 =1. Define 8,(x) =e¢ "0 ((x—z) /e) where
e=d(z). Then

< llgl-s+nllOzlls—n = Cllgll-ssnd(z) > "2

lg(z)| = ’ EDgﬂz

This completes the proof of lemma 2. O

h~ (D) now obtains its topology as the inductive limit of the Banach spaces
h (D). With this topology, a linear functional 7 on 2~ (D) is continuous if and
only if 7 restricts to be a continuous linear functional on 4 ~°(D) for each positive
integer s.

Before we can state our main theorem, we must describe a special differential
operator. Let P denote the orthogonal projection of L2(D) onto its subspace h°(D)
consisting of harmonic functions.

LEMMA 3. For each positive integer s, there is a linear differential operator L° of
order N=(s/2)(s+3) with C*(D) coefficients which maps W**N (D) to W§(D)
such that PL°=P.

This lemma equips us to define the extension of the L?(D) pairing {f, g% ={p /8
for functions f€ h*(D) and g€ h~= (D). We simply define (f,gd =1, (L°f)g
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whenever g€ h~5(D). We will prove that this pairing is well defined and non-
degenerate in the course of the proof of

THEOREM 1. If D is a smooth bounded domain in R", then the spaces h® (D) and
h =% (D) are mutually dual via the nondegenerate sesquilinear pairing { , ).

Proof of Lemma 3. Let r be a smooth defining function for D, i.e., let rbe a C*
function such that D={r<0}, bD={r=0}, and Vr#0 on bD. The operator L* will
have the form

s—1
LSu=u— A( ) Bkrk“)
k=0

where the functions 6, depend on & and will be determined inductively. Note that
PL°= P because the subtracted term is the Laplacian of a function which vanishes to
second order on D and is therefore orthogonal to A°(D). Let X be a C* function
which is equal to 1 in a neighborhood of 4D and which is zero in a neighborhood of
{vr=0}.

For ue C*(D), set L'u=u—A(0yr*) where 8y =1|vr|~2Xu. We have chosen 6,
in this manner so that L'u vanishes on bD. Hence L'u € W} (D). Note that L' is a
linear differential operator of order 2 with coefficients in C* (D).

Suppose that L? has been constructed so that L’u vanishes to order t—1 on bD and
in such a way that L’ is a linear differential operator of order (#/2)(¢+3) with
C> (D) coefficients. Set L'*'u=L'u—A(0,r'*?) where 0, is to be determined. Note
that L‘*!u vanishes to order 1—1 on bD no matter what we choose 0, to be. Set

vr-vV
(a/0d7) =Ivre
bD. To make L‘*!'u vanish to order ¢ on bD, it suffices to choose 8, so that
(8/0n)' L**1u=0 on bD. To this end, we set

(3/37) is a vector field which points in the normal direction on

|
<
inil
I
[\%]
N
=Y}
-:SIQ"
\_/N
&
=

6= (t+2)!

Now L’*!is a linear differential operator of order (¢/2)(¢4+3)+t+2=(¢t+1)(t+4)/2
with coefficients in C*® (D). Furthermore, L‘*!yu vanishes to order ¢ on bD when
u € C®(D). Therefore, L’*! extends to be a bounded operator from W1+ (D) to
WEH1 (D) where N= (t+1)(¢+4)/2. This completes the induction.

Proof of Lemma 1. If f€ Ws*N (D) where N=(s/2)(s+3) and g€ h°(D), then

= [IL°flsgll-s = Cllf s+ nllgll-s.

Sng‘ = l SD (L°)g

Lemma 1 now follows from lemma 2. o

Proof of Theorem 1. Let G be the solution operator to the Dirichlet problem

A’¢p=p with ¢ = —‘;—i =0 on bD. Here d¢/dn denotes the normal derivative of ¢ and

¢=Guv. It is easy to verify that P=71— AGA where I is the identity operator. Since G
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maps W*(D) to W*+4(D) in a bounded way, it follows that P is bounded from
W*(D) to WS(D) for each positive integer s and that P maps C* (D) to C*(D).
This fact will be very important in what follows.

Let r be the defining function for D used in the proof of lemma 3. We let r,=r+¢
and D, ={r. <0} for small ¢e>0. It is a standard result from the theory of partial
differential equations that the operator G. which is the solution operator to the

Dirichlet problem A?¢=v on D, with ¢ = g¢ =0 on bD, is such that for any given
ve WD), e

|Gv — Gev||ws+4p,y — O

as e—> 0. From this, it follows that for any given v € W*(D), the operator P, =
I—AG.,A is such that
|1Pv = Pevllwspy — 0O
as e—> 0.
Using the defining function r, for D, and the procedure outlined in the proof of
lemma 3, we can construct operators

L:: WS*N(D,) — W§(D,) € W§(D)
such that P,L{ =P,. It is not hard to check that
ILév — L¥v|wspy = Cellv|ws+Np)

where C, — 0 as e — 0.
We are now in a position to prove that the pairing { , ) is well defined and non-
degenerate. Suppose that u€ A*(D) and ve h ~5(D) Nh~"(D). Then

(LSu, v)y — {L'u, v)y = Lirgl(Lﬁu—-LE‘u, ) =0
e—o

because P.LS =P.L! =P.. Hence the pairing is well defined. It is clear that there is no
nonzero function u € A= (D) such that {u, v), =0 for all ve h~> (D). Suppose that
v€ h~5(D) and that {u, v), =0 for all u € h* (D). We will prove that v must be the
zero function. For z€ D, let 6, be a Cg° (D) function which is radially symmetric
about z with {6, =1. Then P, € h®(D) and 0= (PO, v)y=(L°Pb,, v) =
Lim,_o{L{P.0,,v)=(0;,v) =v(z). Hence v=0 and the pairing is nondegenerate.
The inequality
‘ S uv
D

where N=(s5/2)(s+3) which appears in the proof of lemma 1 reveals that each func-
tion v€ h—>(D) defines a continuous linear functional on A* (D) via u - {u, v
and similarly, each u € A® (D) defines a continuous linear functional on 2~ (D).
We must prove that all continuous linear functionals on A* (D) and h~®(D) are
among these. In order to accomplish this, we now define an operator £° which maps
hS(D) to h~(D) boundedly such that (u, v);=<{u, ESv), for all u€ h*(D) and
v e h*(D), and such that ES maps A° (D) to h® (D). Note that if # and v are in
h= (D), then

= Clluls+nllv]-s
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(u,v)s= Y, (0%, 3%v)y = ), (8%, L*0%v),

laj<s

=Y (=), d*L53% vy = <u, ESv)g

where E5v=P(E|a,5S(——I)""'B"Lsa"‘v). Furthermore, ESv € h® (D) and
|ESv||-s = Sup{|[{E*v, ¢ )| : p € C°(D); |[|o]s =1}
= Sup [Ev, P¢ )| = Sup|<v, Po)s| < C|lv]s

because P is bounded from W3(D) to W5(D). Hence E° extends to be a bounded
operator from A°(D) to h~5(D), and since {u, v); =(L°u, E°v)q holds for 4 and v
in h*(D), it follows that {u, v),=<(L5u, ESv);={u, ESv), for all u in h* (D)
and v in A°(D) by completion.

Suppose that T is a continuous linear functional on 2 (D). Then T satisfies an
inequality of the form |Tu|=<C|u| for some positive integer s and constant C.
Hence, there is a function g in A°(D) such that Tu=(u, g);={u, E°g), for all
u € h* (D), and the functional T is represented uniquely by E°g.

Now suppose that T is a continuous linear functional on A~®(D). Then T is
continuous on 2 ~*(D) for all positive integers s. The Hahn-Banach theorem implies
that for each positive integer s, there is a function ¢, € Wg(D) such that Tv= (v, ¢;)
for all v € h~5(D). We claim that P¢, =u € h® (D) for all s>0. Indeed, if ¢#s, then
(v, PgYo ={v, Pp,)o = Tv for all ve h°(D) and therefore Po, = P¢,. Allowing s to
be arbitrarily large, we see that u=P¢, € h® (D) by Sobolev’s lemma. We shall now
prove that Tv=<{v, u)y for all v in h ~* (D). For each positive integer ¢, choose a
sequence of functions {¢¥}in C§®(D) such that ¢¥ — ¢, in W/ (D) as k—> oo,
Suppose that ve h ~*(D). Let t=s+ N where N=(s/2)(s+3). Then

Tv = v, ¢ = (v, $;d0 = Lim<w, ¢/ ).

But (v, ¢¥) =Lim,_o{v, LS P.$*¥ = (v, L*P¢¥),. Hence
Tv = Lim{v, LSP¢ky, = (v, LSu)y = {v, udy

k—oo
and T is represented by u. This completes the proof of theorem 1. m]

REMARKS. A) There is a standard way to extend the operator P to C~ % (D), the
dual space of C* (D). If we write {f, A\)o =\(f) for \€ C~®(D) and f€ C* (D),
then PA can be defined via the relation (Pf, N)o ={f, P\)y, i.e., P\ is the element of
C~% (D) which represents the functional f —{Pf, N)¢. This extension of P takes on
greater meaning in light of theorem 1. Indeed, if A€ C~(D), then PN€ h —* (D)
and PA(z)=(P0,, \), where 0, is a radially symmetric function about z in Cj° (D)
with |6, =1. Theorem 1 implies that P maps C~ (D) onto h~* (D).

B) It is a classical fact from potential theory that #* (D) = C®(bD) via restriction
to the boundary. Hence, the dual space of #* (D) can be identified with D’(bD),
the space of distributions on bD. If ¢ € C*(bD) and A€ D’'(bD), let us write



128 STEVEN R. BELL

(o, \)p =N(¢). We now define operators 7 and S via {u, v)e =<{u, Tv)y, (U, S\)y =
{u, \), for all u€ h* (D) and ve€ h~* (D). The operator T is an isomorphism of
h=®(D) onto D'(bD) and S is the inverse of 7. It is not hard to verify that if
u€ h®(D) and Yy € C*(bD), then Tu(6) =<u, P(-,0)) and Sy (x) = (¥, K(-, X))
where P(x, ) is the Poisson kernel function and K(y, x) is the harmonic Bergman
kernel function. Hence the Poisson kernel and the Bergman kernel functions can be
viewed as defining inverse operators.

C) The main result of this paper has roots which can be traced back to the classical
duality between the spaces A and A~ % of holomorphic functions on the unit disc in
C (see [4, 5, 6]). The classical duality is exhibited via an L? pairing on the boundary
and exploits the symmetry of the disc.

D) The techniques used in this paper were motivated by a similar program which
has been carried out to show that A and A~ are mutually dual in a smooth
bounded strictly pseudoconvex domain contained in C” ([2}). This result has appli-
cations in the theory of boundary behavior of biholomorphic mappings (see [1]).

REFERENCES

. S. Bell, Biholomorphic mappings and the d-problem. Ann. of Math. 114 (1981), 103-113.

, A representation theorem in strictly pseudoconvex domains. Illinois J. Math. (in
press, 1980)

3. N. Kerzman, The Bergman kernel function. Differentiability at the boundary. Math. Ann.
195 (1972), 149-158.

4. B. Korenblum, An extension of the Nevanlinna theory. Acta Math. 135 (1975), no. 3-4,
187-219.

, A Beurling-type theorem. Acta Math. 138 (1976), no. 3-4, 265-293.

6. B. A. Taylor and D. L. Williams, Ideals in rings of analytic functions with smooth boundary

values. Canad. J. Math. 22 (1970), 1266-1283.

—

Mathematics Department
Princeton University
Princeton, New Jersey 08540




