EXOTIC SPHERES AS STATIONARY
SETS OF HOMOTOPY SPHERE INVOLUTIONS

Reinhard Schultz

This short paper applies the techniques developed by K. H. Dovermann in [5] to
answer affirmatively the following question: Given a smooth homotopy sphere L”, is
there a smooth involution on another homotopy sphere 771" (m>0) with L as its
fixed point set? One may view this as a partial converse to the P. A. Smith Theorem
[3, Chapter III] in the smooth category. Here is the specific result:

THEOREM. Let L" be a homotopy sphere. Then there is a homotopy sphere T*"
with a smooth involution having L as its fixed point set. The Pontrjagin-Thom in-
variants are related by p(T) =p(X)? for suitable framings of T and T.

A similar result for p odd has been proved by P. Loffler, who also treated the case
of involutions in case n is even (compare [7] and [8]). Our proof relies on Loffler’s
method together with Dovermann’s machinery.

Proof of Theorem. We asume n>2 since the other cases are obvious. Consider a
framing of ¥ with zero Hopf invariant mod 2 (such exists by [1] and [6] plus the sur-
jectivity of the J-homomorphism if n=1, 3,7). It follows that £ X X with the twist
involution is a Z,-stably framed manifold in the sense of G. Segal [10]. Suppose we
consider

U =L" X L"#; — 8" x §",

where S” has the usual (trivial) framing and the connected sum is done equivariantly
along the fixed point set. Then we have an equivariant degree 1 collapsing map
f:U— S(R{Z,]"®R) (S denotes the unit sphere) which is already a homotopy
equivalence along the fixed point set. By frameability this is a normal map upon
which surgery may be considered as in [5].

Case 1. If n is even, then the surgery obstruction is the multisignature of U in
R[Z,] by [5, Theorem 2.1]. This is given by the ordinary signature of U and the so-
called involution signature. The former vanishes by the Hirzebruch theorem and
stable parallelizability. The latter is completely determined by the normal bundle of
the involution’s fixed point set [2, Section 6], which is trivial by construction (this is
why we needed to add —S” X S”). Therefore we can do surgery on U as desired to
get T2". By construction, T and I? are framed bordant, and hence p(7T) =p(Z?)=

p(I)%

Case 2. If nis odd, then the surgery obstruction is given in two stages; first, there is
the ordinary Kervaire invariant of the problem, and if this vanishes there is a
Z,-valued obstruction rank, K, (f)®Z, mod 2, where A=Z,[Z,] (see [5, Theorem
4.1]). We claim both vanish in our particular situation.
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Since p(U) =p(X)? and p(X) has filtration greater than or equal to 2 in the ordi-
nary Z, Adams spectral sequence for the stable homotopy of spheres, the vanishing
of the ordinary Kervaire invariant follows immediately from the work of
W. Browder and filtration considerations [4]. On the other hand, fis already highly
connected by construction, and it follows immediately from the construction that

K:(f) ®Z, =H,(U;Z;) =A@ A

(as A-modules). Hence the mod 2 rank obstruction also vanishes. This surgery can be
done, and p(T) =p(X)? follows as in the case where » is even.

REMARK. In most instances one can show directly that the Kervaire invariant van-
ishes because X X X and S” X S" are almost diffeomorphic (compare [9]).
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