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There exist bounded holomorphic functions f in the unit disk A such that for
uncountably many positive numbers A the N-level-set {z € A: |f(z)|=A} has infinite
length ([4] and [7]). Also, there exist Blaschke products and singular inner functions
possessing one level-set of infinite length ([3] and [6]). The present paper describes
Blaschke products whose A-level-set has infinite length for each A in a preassigned set
of capacity 0 and of type F, on the interval (0, 1). This solves Problem 5 in [6].

The properties of Riemann surfaces that we use in our proofs are described in
Chapters 9 and 10 of [2].

THEOREM 1. Let K be a set of capacity 0 on the interval (0,1), and let it be
closed with respect to A. Then there exists a Blaschke product whose \-level-set has
infinite length if and only if A€ K.

In the proof, we omit the trivial case where K is empty. Let 8 and 7 denote the
universal covering surface of the domain =A — K and the natural projection of 8
onto A—K. By Koebe’s uniformization theorem, there exists a conformal mapping
H of A onto 8 such that the composite function ¢ =mn-H satisfies the condition
¢ (0) =0. Because the set of asymptotic values of ¢ is the set KUAJA and K has
capacity 0, the function ¢ is a Blaschke product (see for example [5, Theorem 2 on
p. 33 and Footnote 1 on p. 72]).

Let I' denote the group of automorphisms 7 of A that satisfy the functional
equation ¢oT=¢ throughout A. Then I' is isomorphic to the fundamental group
71 (), and it consists of a set of Mobius transformations of the form

T (z) = el 2" %
1 —a,z

The points a, are precisely the points where ¢ (z) =0; therefore

an| ap — 2
a, 1 —a,z’

¢(Z) — eiBI?[ l

Let Ay be the least number in the set K, and let w denote the subdomain of A that
contains the origin and whose image under the mapping ¢ is the slit disk A —[X, 1).
Let X denote a number in (0, 1), let C, denote the circle |w| =\ (minus the point A, in
case A € K), and let « denote the portion of the inverse image ¢ ~!(C,) that lies in &.
Then the A-level-set of ¢ is the union of the arcs 7,,(a) (n=1,2,...), and it follows
that the length of the A-level-set of ¢ is
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-1 — o ’ _ bl 1 - Iafllz
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If N¢ K, the arc « is bounded away from dA; therefore it is rectifiable and the
integrand in the last expression is bounded on «. It follows that /(¢ ~!(C))) <oo.
If A€ K, every sequence zj,2;,... on « with the property ¢(z;) — A has the
property |z;| — 1, since fis continuous and omits A; therefore the arc o reaches the
circle dA. To estimate our integrand on the arc o, we denote by ¢; the jth factor of
the Blaschke product ¢, and we make the substitution A;= |¢;|? in the identity

|dz].

1 - I__[Aj': (l —Al) +A1(1“A2)+"'+A1A2"‘An__l(1 _An)'
Jj=1

Clearly, the identity implies that
1-lo’= ¥ (-6, II |&,
n=1 j<n

(see [1, p. 116]). On «, the left member has the constant value 1 —\? and each of the
finite products in the right member has modulus less than 1. From the relation

(1 = &) = |z]*)
11— @,z

1 - ]¢n(Z)|2 =

we deduce the inequality
g 1-laf  1-N
n=1

|1 —apz> = 1 —|z]*°

Because the function 1/(1—|z|?) is not integrable on any arc that reaches the unit
circle, /(¢ = (Cy)) = oo if X\ € K. This concludes the proof of Theorem 1. O

Small changes in the proof yield a more general theorem.

THEOREM 1. Let K be a set of capacity 0 in the punctured disk A— {0}, and let it
be closed relative to A. Let B denote a Blaschke product, with B(0)=0, whose
Riemann surface is the universal covering surface of A—K. If vy is a rectifiable arc in
{|zl <p<1]}, the inverse image B~ (y) has infinite length if and only if the closure
of v meets the set K.

THEOREM 2. If K is a set of capacity 0 and of type F, on the interval (0, 1), then
there exists a Blaschke product whose \-level-set has infinite length for each \ in K.

Let @ be the universal covering surface of A—{—1/2}, let §,S,,... be an
enumeration of its sheets, and let ¢ be a conformal mapping of A onto  that carries
the point 0 to a point of @ over 0. Write K= UF,, where each set is compact and
none is empty. Set K=Uo~!'[S,N7~!(F,)], where = is the natural projection map.

Let B denote a Blaschke product, with B(0) =0, whose Riemann surface is the
universal covering surface of A—K, and define ¢ to be the composition 7~ o B. It is
well-known that the composition of two inner functions is an inner function, and it is
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easy to see that ¢ does not have the asymptotic value 0. Therefore ¢ is a Blaschke
product. Now suppose that A € F;,, and let 3 denote the arc on S, that lies above the
arc {he?:0<0<x/2)}. If 'yza“ (8), then the A-level-set of ¢ contains the inverse
image B~ (vy). By Theorem 1’, this inverse image has infinite length, and Theorem 2
is proved. m]

The hypothesis of Theorem 2 does not imply the existence of a holomorphic
function in A whose A-level-set has infinite length if and only if A € K. This is clear
from the two observations that if f is holomorphic in A, then the set of values A for
which the A-level-set of f has infinite length is type G5, and that such a set can not be
both countable and dense on an interval.

Theorems 1 and 2 remain valid when we replace the words ‘‘Blaschke product”’
with ‘‘singular inner function’’. Because the proofs are similar, we shall deal only
with the extension of Theorem 2.

Let T be the Mobius transformation that maps the three points —1,0,1 onto
—1,1/2,1, respectively. If we modify the proof of Theorem 2 by taking K=
Ue~'[S,Nx ' (T(F,)U{1/2})1, the proof yields a Blaschke product ¢ omitting
the value 1/2 and such that, for each path 7in A—T(K) ending at a point of 7T(K),
the inverse image ¢ ~ ' (7) has infinite length. If a path in A—K ends at a point of X,
then its inverse image under the singular mapping 7! ¢ has infinite length. This
proves the extension of Theorem 2.
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