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To Lamberto Cesari, on the occasion of his 70th birthday.

INTRODUCTION

Let B be an open region in R” whose boundary C is a connected, orientable
(n — 1) dimensional manifold and whose closure is A. For a subset M of RY we
use w, (M), H>™' (M) and P(M) respectively for the Lebesgue measure, the Haus-
dorff (n — 1) dimensional measure and the de Giorgi perimeter of M. We are
interested in comparing three “measures” of the size of C. These are

a) the perimeter of A (or of B),

b) the Hausdorff (n — 1) dimensional measure of C (or some substitute for
C suitable for our purpose),

and
c) the Lebesgue surface area of a mapping whose image is C.

The conjecture is that undér rather general conditions the three measures are

either all finite or all infinite. The present article is a step toward resolving
this problem.

We first observe that the perimeters of A and B need not be equal. Either
one can be infinite while the other is finite. We show here that this can occur,
for n = 3, only when the three dimensional Lebesgue measure of C is positive,
and that if p;(C) > 0 then at least one of the perimeters P(A), P(B) is infinite.
It follows that if p;(C) = 0 then P(A) = P(B), both finite or both infinite.

Regarding the Hausdorff (n — 1) dimensional measure of C, it is well known
this value is generally large compared with other “measures.” Suitable substitutes
for C do exist in the literature. In [11], Federer considered the reduced boundary,
and in [17] Vol'pert considered the essential boundary. It will be shown that
the essential boundary of Vol'pert has a topological formulation in the density
topology [14], [15].

For Lebesgue surface area we show if the inclusion mapping i: C — R” is collared
[2], and C is finitely triangulable then if either A or B has finite perimeter
the mapping i has finite integral geometric stable area [8], [9], [10]. For n = 3,
with the collared hypothesis and the assumption p,(C) =0, we then have the
equivalence P(A) is finite if and only if the Lebesgue area of i is finite.

We dedicate this paper to Lamberto Cesari in deep appreciation of the profound
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influence that his vast mathematical output and many generous personal suggestions
have had upon the mathematical careers of both of us.

1. THE EQUALITY OF P(A) AND P(B)

By modifying the example of Besicovitch [1] one can readily construct examples
of open regions B having boundary C with p;(C) > 0. Thus, we have, by Theorem
1.1 below, that P(A) # P(B). By a simple inversion of R® we can change P(4) > P(B)
to P(A) < P(B).

THEOREM 1.1. Let A, B and C be as in the introduction and let n = 3.

a) If p;(C) > 0 then either (i) P(A) = P(B) = o, (ii) P(A) = © and P(B) <
or (iii) P(A) < « and P(B) = o.

b) If p,(C) = 0 then P(A) = P(B) both being either finite or infinite.

Proof. Suppose P(A) <o and P(B) <. We show p;(C)=0 and hence
P(A) = P(B). First we establish some notation. For each i=1,2,3, write
x = (x,,X,,%;) = (x,,%;), where X; is the pair of coordinates orthogonal to x;. For
any subset S of R? and any X, let S(x;) = {x:x € S,x = (x;,%;)}. We shall also
denote by S(%;) the real-valued function of the real variable x; given by the
characteristic function of the set S(%;). The essential total variation of S(x;) will
be denoted by v(S(X;)). (The essential total variation of S(¥;) is calculated by using
partition points which are points of approximate continuity of S(%;). See [13].)

Since P(A) < w and P(B) < « we have for p,-almost every ¥; that v(A(x;)) <o
and v(B (X;)) < ». Since A\ B = C, we have for p,-almost every X; that v(C(X;)) < .
The compactness of C(%;) together with ., (C(x;)) > 0 and v(C(%;)) < « imply that

(+)) C(%;) can be decomposed in a union of a nonempty, finite, disjointed
y collection of nondegenerate intervals and a set of p, measure zero.

We derive a contradiction from p;(C) # 0. Suppose p;(C) > 0. Then (*,) holds for
ns-almost every x € C (i = 1,2,3). Let i = 1. From (*;), there are numbers a < b
and a set X, of positive p, measure such that F = {(x,,%,):a <x, < b,%, € X,}
is a subset of C. We have p;-almost every x = (x,,%,,x,) € F is a point of linear
density of C in the x, direction. From (*,) we have p;-almost every x° = (x?,x,,x3)
in F is contained in an arc I(x°) contained in C(%)). For x° € F, let J(x°) be
the arc {(x,,x2,x%): @ = x, = b}. Then T'(x°) = I(x°) U J(x°)contains a simple triod
when I(x°) exists. Clearly, {x;:3x° € F > T(x°) exists and x; = x,} has positive
n, measure. Consequently, one can find an uncountable disjointed collection of
simple triods contained in the compact two dimensional manifold C. This contradicts
Moore’s Triod Theorem [16]. Hence p.,(C) = 0 and the theorem is proved.

2. PERIMETER AND MEASURE OF BOUNDARIES

Let M be a measurable set. It is known that the Hausdorff (» — 1) dimensional
measure of the usual boundary of M does not determine the finiteness of the
perimeter of M. We show that a more suitable topology on R" is the density topology,
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[14] and [15]. The density topology on R" is generated by the approximately
continuous real-valued functions on R". A set M is d-open if it is measurable
and each point of M is a point of density one of M. As in general topology, a
regular open set is one which is equal to the interior of its closure.

The perimeter of a measurable set is invariant under Lebesgue measure
equivalence. Also, every measurable set is equivalent to its d-closure and to its
d-interior. Consequently, for the purposes of perimeter, it is sufficient to consider
only regular open sets in the density topology.

PROPOSITION 2.1. If M is a regular open set in the density topology, then
the d-boundary 9,M of M is the essential boundary of Volpert.

Proof. According to Vol'pert [17], the essential boundary of a measurable
set M is the set of points x € R™ such that x is neither a point of density of
M nor a point of rarefaction of M. Let M be a regular open set in the density
topology. It is clear that the set of points of density of M is M itself and the
set of points of rarefaction of M is the complement of the d-closure of M.

PROPOSITION 2.2. If M is a regular open set in the density topology and
P(M) < o then H? *(3,M) < o,

Proof. This is immediate from [17], Theorem, page 228.

THEOREM 2.1. IfMis aregular open set in the density topology then P(M) < o
if and only if H? ' (8,M) < oo,

Proof. Due to Proposition 2.2 above we need only show that H ;“‘(adM ) < o0
implies P(M) < o, This implication follows from Federer [12], Theorem 4.5.11,
page 506, since the Hausdorff (n — 1) dimensional measure is no smaller than
the integral geometric (n — 1) dimensional measure.

3. PERIMETER AND AREAS

When the (n — 1) dimensional manifold C is finitely triangulable the inclusion
map i:C— R"” has an (n — 1) dimensional Lebesgue area L, _, (i) associated with
it. Federer has established the following.

THEOREM 3.1. [11]. Let A, B and C be as in the introduction, C be finitely
triangulable and i:C— R" be the inclusion map. If n,(C) =0 and L,_,(i) <
then P(A) < o,

We investigate a converse to the above theorem. First we give a definition.
The manifold C is said to be collared [2] if there is an embedding f: C X [0,1] — R"
with f(x,0) = i(x) for x € C. For convenience we shall assume the collaring is

such that f[C X [0,1]] C A. Hence A\ f[C X [0,1]] has positive distance from
C when C is compact. We refer the reader to [8], [9], [10] for the definition
of the integral geometric stable area of the mapping .

THEOREM 3.2. Let A, B and C be as in the introduction, C be finitely
triangulable and collared. If P(A) or P(B) is finite then the integral geometric
stable area of the mapping i is finite.

To prove the theorem, we need several lemmas.
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Let X=X, U X, C R"' X [-1,1], where

X, =8"?%x[-1,1] U B ' x {-1},
8" ?={z€ R ':|z| =1},
B" '={ze R"':|z| = 1},
(X,,X;) 1is an oriented relative (n — 1) manifold [7] with X,\ X, connected,
X=X, NX,,
X,CB"' x [1/2,1].
Denote by « the natural projection of R* = R*' X R onto R" " given by w(z,s) = z.
We will use Cech cohomology with integer coefficients.

LEMMA 3.1. LetX, X,, X,, X, be as above. Then w|X,: (X,,X,)— (B"~,8"72).
If the origin of R® = R" ™' X R' is in the unbounded component of R"\ X then
the homomorphism

(WIXz)*:Hn_l (Bn—l,Sn—2)__) Hn—l(Xz’Xs)

is trivial.
Proof. Let h:X X [0,1] = S" ! be the continuous map given by

( (2,9)

[lz]* + |s[*]"/*

(z,2ts + (1 — t)s)
h((2,5),t) = 4 : 0=s=1/2
[|2]? + |2ts + (1 — t)s|®1*/?

(z,t+ (1 — t)s)

L[|z + [+ (1 - 8)s]*1"*

,—1=s=0

1/2=<s=1

Define the maps « and 8 by
a(z,8) = h((z,s),1), B (z,8) = h((z,5),0).
Next, let v: B""'— S""! be a homeomorphism into $”~! such that
(Y loa)(z,8) =2,  (2s) € X,.

Hence 7| X, = vy 'oa. In order to calculate the homomorphism (w|X,)* we define

three more sets E¥, E~ and S.
(2,1) I
TE R &

E~ = closure of S '\ E",
S=E"NE".

E+‘
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The compact pairs (S ',E~) and (E*,S) are relative (n — 1) cells and the inclu-
sion map i, : (E*,S)— (S""',E”) induces an isomorphism.of H" ' (S" " ,E~) onto
H" Y(E*,S). Moreover the inclusion map i,: (X, ,X;) — (X,X,) induces an isomor-
phism of H" ' (X,X,) onto H" ' (X,,X,).

Since X, and E~ are contractible and «:(X,X,)— (S" ,E”), we have the
commuting diagram where the rows are exact.

.k
J2

0= H"2(X,) » H"Y(X%X,) > H''(X) - H'(X,) =«
T Ta*
A
O — Hn—-Z(E—) — Hn—l (Sn—l,E_) - Hn.-—l (Sn—l) - Hn~l(E—) — 0

From the commuting diagram of continuous maps

iy

(X.,X;) — (XX))

| X,
\lr"‘z = alX, \I/‘!

B",8"%) 5 (E*,S) - (S"LET)

we have the following diagram of homomorphisms commutes, where the horizontal
homomorphisms are isomorphisms.

* *

n—1 i2 n—1 j2 n—1
y4 ~ H"'(X,,X,) « H''(X,X,) > H"'(X) =2
(x1X,)* Tas Par Ta

* Lk
Y L3

Zz Hn—l(Bn—-l,Sn—Z) «— Hn_l(E+,S) «— Hn——ll(Sn—l,E—)_"_l) Hn—-l(Sn—l) zZ

Since A defines the homotopy A:(X,X;) X [0,1] = (S* ', E~) between a and
B, we have B* = o™ and hence
H '(X,,X,) 35 H'(X)
T(‘"|X2)* TB*
Hn—l (Bn—l,Sn—2) E) Hn—l(sn—l)
commutes. Consequently, if the origin of R” = R”™' X R' is in the unbounded

component of R”\ X then (w|X,)” is trivial since 8* would be trivial by Borsuk’s
Theorem, [7] page 302. Lemma 3.1 is now proved.

Let g be a component of (o) *(z) and € > 0. We define the sets

B(z,e) = {{ € R"':|{ — 2| = €},

Uze) = {LE R L — 2| <€},

S(z,e) = {LER" | — 2| =€},

V(g,e) = closure of the component of (woi) ' [U(z,€)] containing g,
W(ge) = V(g,0\ (moi) ' [Ulz,9)].
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Then woi: (V(g,e),W(g,e)) > (B(z,€),S(z,€)). We say g is an inessential component
of (woi) ' (2) if there is €, > 0 such that for each 0 < € < ¢, the homomorphism

(woi)* : H" " (B(2,€),S(2,€)) > H" ' (V(g,e), W(g:e))

is trivial. The stable multiplicity of woi at z is S(mwo i,2) = the number of essential
components of (woi) " (z). It should be noted that if there is, for each 0 < e < €
a continuous map F': (V(g,e),W(g,€)) = (B (z,€),S(z,¢)) such that

F|W(g,e) = (mod)| W(g,e)

and F~'(z) = @ then g is inessential.

LEMMA 3.2. Let f:CX [0,1] > A be a collaring of C, z € R*™" and g be
a component of (woi)~'(z). Suppose s, and s, are such that the line segment
K = {(2,8):s,=< s= s,} contains i(g) in its interior and K C f[C X [0,1]]. Then
g is an essential component of (woi) ' (2).

Proof. Since i(g) is a compact set contained in K, (z,s,) & i(g), (2,5,) & i(g)
and K C f[C X [0,1]] there are s; and s; such that s, < s} <s}, <s,,

(z,s1) € f[C X (O,1],

(2,55) € fIC X (0,1)] and i(g) C {(z,8):5", < s < 5%} = f[L].There is €, > 0 so that
for 0 < € < ¢, we have

V(g,€) C Blz,€) X (s1,83).

For each such e there is 3 > 0 such that the 3-neighborhoods in R” of (z,s]) and
(2,s,) are contained in f[C X (0,1)] and 3 < e. By the continuity of f there is
a ¢t such that 0 <t <1 and f[L + t] is a simple arc joining the 3-neighborhoods
of (z,s]) and (z,s}) and contained in U(z,e) X R*. Clearly, the arc f [L + ¢] is disjoint
from V(g,e). Hence a straight forward application of Lemma 3.1 yields for each
0 < e < ¢, the homomorphism

(woi)* : H" 7' (B(2,€),S(2,€)) > H" ' (V(g,€), W(g,e))

is trivial. Thereby g is inessential and the lemma is proved.

LEMMA 3.3. Let f:C X [0,1] - A be a collaring of C, z € R*™", and g be
a component of (mwoi) '(2). Suppose s, and s, are such that the line segment
K = {(2,8):3,=< s= s,} contains i(g) in its interior and KN f[C X (0,1]] =@.
Then there exists €, > 0 such that for each 0 < € < ¢, there is a continuous map
F:(V(ge),W(ge)) > (B(z,),S(2,€)) such that

F|W(g,e) = (woi)| W(g,e) and F(z) =Q.

Consequently, g is an inessential component of (woi) ™' (2).

Proof. Since i(g) is contained in the interior of K and K N f[C X (0,1]] =@,
there are si, s such that
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5, <871<8;<s,, (2s))€& fICX[0,1]], (2s3) € f[C X [0,1]]

and i(g) C {(z,5):s; <s<s}}. Let ¢ be such that the 2e,-neighborhoods
in R™ of (z,5;) and (z,s;) are disjoint from f[C X [0,1]]. Clearly, for 0 < e <¢,,
i(V(g,€)) C B(z,€) X (s),s%). Let N=V(ge)N (moi) ' [Ulze/2)] and let
3:V(g,e) > [0,1] be given by

B d [x,V(g,e\N]
d[x,V(ge\N] + d[x,V(ge) N moi) ()]

d(x)

where d [x,S] is the distance from x to S. Then for 1 > m > 0, let F, be the continuous
map on V(g,e) given by F, (x) = f(xmd (x)). Now, F, |W(ge) = i| W(g,e). Choose
m small enough so that F,(x) € B(z,€) X (s},55). Then F,'(m ~'(2)) =@ since
KN f[CX(0,1]] =@.Let F=moF, and the lemma is proved.

Let A, B and C be as in the introduction and z € R*™'. We denote by A_,
B, and C, the sets A N 7w '(2), BN w () and C N w '(2). We use A,, B, and
C, to denote the characteristics functions of the respective one dimensional sets.

LEMMA 3.4. Let f:C X [0,11 > A be a collaring of C and z € R*™'. Then
S(woi,z) = v(Ad,) and S(woi,z) < v(B,).

Proof. Suppose v(4,) < «, Then there is a finite family {I, } of mutually disjoint
closed intervals such that A, is Lebesgue equivalent to the characteristic function
of Z= U{I,} and hence v(4,) = v(Z). Since A, is closed, Z C A, and, for each
I, the end points of I, are members of C,, I, \ B, = I, N C, and each component
of I, N C, is a component of w (). Next, let J be a component of R\ Z. Then
pldNA,] =0,JN A, =JN C, and each component of J N C, is a component
of w7 '(z). By Lemmas 3.2 and 3.3, we have that the essential components of

(woi) ' (z) must contain some end point of the intervals in {I,}. Consequently,
S(wei,z) = v(Z) = v(A,).

Suppose v(B,) < «. We have v(R\\ B,) = v(B,) and R\\ B, is closed. The proof
for B, reduces to one analogous to the above case for A,.

Proof of Theorem 3.2. From Lemma 3.4 we have for each P € O(n)

X S(mwePoiz)dp,_,(2) = g v((P[A]).)dpr,_,(2)
Rr-1

Rr—1

and

S S(woPoi,z)dp,_,(2) = S v((P[B]).)dw,_,(2).
Rr—1

Rn—1

We infer from the proof of [12] Theorem 4.5.11, page 506, that

S S StmwoPoi,z)dp,_, (2)d8(P) < =
O(n) Rn—1
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and hence the integral geometric stable area of i finite.

THEOREM 3.3. Letn =3 and A, B and C be as in the introduction. Suppose

C is collared and finitely triangulable. Then P(A) or P(B) is finite only if L,(i)
is finite.

Proof. 1In [3], [4], Cesari proved that the essential multiplicity and the stable

multiplicity of 7o coincide except for a countable set of z € R (Of course, Cesari
proved this fact for all continuous mappings into R”.) Hence, as shown in [10],
the integral geometric stable area and Lebesgue area coincide.

COROLLARY. Assume the hypothesis of Theorem 3.3 above. If p, [C] = O then

P(A) < o if and only if L, (i) < .

10.
11.
12.
.13.

14.

15.
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