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In this paper we study the complex spaces Hol,(X,Y) of holomorphic maps
of rank =% from a compact complex space X into a complex manifold Y. Our
results are of the following type: If Y satisfies certain conditions, then for particular
k, the space Hol, (X,Y) is either discrete or finite, independent of X. Of particular
interest is the case £ = dim Y, where Hol, (X, Y) is the space of surjective holomorphic
maps.

Our results are modelled on the classical result of de Franchis that for Y
a compact Riemann surface of genus greater than 1, the number of surjective
holomorphic maps is finite. Lang [9] raised the question whether finiteness holds
for Y compact hyperbolic. Kobayashi and Ochiai [8] proved that the set of surjective
meromorphic maps from a Moisézon space into a compact complex space of general
type is finite. Recently Noguchi and Sunada [13] proved that if X is Moisézon
and A*T, is Grauert negative, then the number of meromorphic maps of rank
=k from X to Y is finite. Borel and Narasimhan [1] have also proved discreteness
results for holomorphic maps. Similar finiteness theorems for harmonic mappings
are given by Lemaire [10].

Our results, which are valid only for holomorphic maps, complement the results
of [8] and [13] mentioned above. Theorem 1 says that Hol,,,(X,Y) is discrete
if the holomorphic tangent bundle T, satisfies a k-pseudo-convexity condition.
In Theorem 1, Y may be noncompact. A consequence of this result (Corollary
2) is that if Y is a compact hermitian manifold with negative holomorphic sectional
curvature, then the set of surjective holomorphic maps is finite. We also prove
that if Y is an n-dimensional compact Kahler manifold with ¢, (Y) represented
by a negative semidefinite form and either c,(Y) # 0 (Theorem 1) or ¢7(Y) #0
(Theorem 3), then Hol (X,Y) is discrete. In particular, if Y is compact Kéhler
with first Chern class zero and Euler class nonzero (for example, a Kahler K3
surface), then the space of surjective holomorphic maps onto Y is discrete.

Our method of proof is to consider a one-parameter family of holomorphic
maps and to view the derivative with respect to the deformation parameter as
a holomorphic mapping from X into the tangent bundle of Y. This method was
used independently by Urata [14] to prove Corollary 2.

In the following we let X be a compact, connected complex space, and we let
Y be a connected n-dimensional complex manifold. We denote by Hol(X,Y) the
space of holomorphic maps from X to Y, equipped with the compact-open topology.
By a well-known result of Douady, Hol(X,Y) is a complex space (see Lemma 3).
If f € Hol(X,Y) we define rank f to be the maximum rank of f on the regular
points of X; thus f(X) is an analytic space and dim f(X) = rank f. We let
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Hol,(X,Y) = {f € Hol(X,Y)|rank f= &},

forl1<k=n.

Definition. Let E be a holomorphic vector bundle of rank r over Y, and let
0 = k =n — 1. We say that E is G,-negative if there exists a nonnegative function
é € C*(E) such that

(i) ¢ '(0) equals the zero section Z of E;

(ii) the Levi form of ¢ has at least r + n — k positive eigenvalues at each
point of E — Z.

Remark. If Y is compact and E is Grauert negative, then E is G,-negative;
i.e., ¢ is strictly plurisubharmonic on E — Z.

We shall prove the following general rigidity theorem.
THEOREM 1. If T, is G,-negative, then Hol, , ,(X,Y) is discrete.
Note that Y may be noncompact, although X must of course be compact.

Before proving this result we give some applications. If E is a hermitian
holomorphic vector bundle on Y, we let RE E*®E*® Ty ® Ty denote the
curvature tensor with respect to the hermitian connection on E. For v € E we
let R, € T3 ® T be given by R, (o,7) = R(v,0,0,7), foro,7r € Ty.

LEMMA 1. Let E be a hermitian holomorphic vector bundle over Y. If R, has
at least n — k negative eigenvalues for all nonzero v € E, then E is G,-negative.

Proof. Lety, € Y,v, € E, — {0} be arbitrary. Choose a local frame {e,,...,e,}
for E in a neighborhood of y, such that, writing h,; = H(e;€), we have

=0

iflyo'—

(hy(yo)) =1, dh

where I is the identity matrix. For v € E and w € Ty write

r n
i a a
v= E v'e;, w= E w*—
i=1 am=l 0z

where {z',...,2"} are local coordinates on Y. We have

_ Vi oan
R, (w,w) = — 2 5 Vo Tow" .
op 92 02

Let & € C*(E) be given by ¢ (v) = |v||® = Z h,v'0’. The matrix of the Levi form

of ¢ at v, with respect to the coordinates (z*,...,2",v,...,v") is

0 I

which verifies condition (ii) of the definition.
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From Theorem 1 and Lemma 1, we obtain an immediate consequence.

COROLLARY 1. If R, has at least n — k + 1 negative eigenvalues for each
nonzero v € Ty, then Hol,(X,Y) is discrete.

COROLLARY 2. IfY is a compact hermitian manifold with negative holomor-
phic sectional curvature then Hol, (X,Y) is finite.

Proof. This follows from Corollary 1 with & = n together with the fact that,
for Y compact hyperbolic, Hol(X,Y) is compact. (See Kobayashi [6])

Remark. InCorollary 2, the curvature is computed with respect to the hermitian
connection. If Y is Kéahler, then the holomorphic sectional curvature corresponds
to the Riemannian sectional curvature with respect to complex lines in T',. Note
also that if Y is not compact, then Hol,(X,Y) is empty since X.is assumed to
be compact.

COROLLARY 3. If Y has negative holomorphic bisectional curvature, then
Hol, (X,Y) is discrete.

Proof. This is just the case k£ = 1 of Corollary 1.

COROLLARY 4. If Y is compact and Ty is Grauert negative, then Hol, (X,Y)
is finite.

Proof. This follows from Theorem 1 with & = 0, together with the compactness
of Hol(X,Y).

Remark. Recently, Noguchi and Sunada [13] proved the following finiteness
theorem, which also implies Corollary 4 (for X Moisézon): If Y is compact, A* T,
is Grauert negative and X is Moisézon, then the set Mer,(X,Y) (meromorphic

maps of rank =k) is finite. Corollaries 2 and 4 were also proved independently
by Urata [14].

We shall use the following well-known facts to prove Theorem 1.

LEMMA 2. Let M be a complex manifold, and let & € C>(M). Suppose ¢ = 0
on M, and the Levi form of & has at least p positive eigenvalues at each point
of M — &~ 1(0). If A is an irreducible compact analytic subset of M with

dim A > dim M — p,

then A C ¢ 1(0).
Proof. Suppose A & ¢~ *(0). Choose a point a such that ¢ (a) = sup é > 0.

Choose a p-dimensional local complex analytic submanifold N of M such that
a € N and the Levi form of &|N is positive definite on N. Let B=A N N; thus
dim B = 1. Choose a nonconstant holomorphic map, f, from the unit disc D into B,
with f(0) = a. Since ¢ o f is subharmonic on D and attains its maximum at O,

¢ ofis constant. Choose ¢, € Dsuch that f, ,O(a/at) # 0.Then 8% (po f)/dtdt ) >0
which is a contradiction.

LEMMA 3. (Douady (3, pp. 87,90]). There exists a complex space H and a
holomorphic map h:X X H— Y such that the induced map h:H— Hol(X,Y) is
a homeomorphism.
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We now prove Theorem 1. Let T, be G,-negative and suppose Hol, ., (X,Y)
is not discrete. Since Hol, ,,(X,Y) is an open subset of Hol (X,Y), it follows from
Lemma 3 that there exists a nonconstant holomorphic map f: D— Hol,,, (X,Y),
where D is the unit disc in C. Write f(¢t) = f, € Hol,,,(X,Y), for t € D. Let
F € Hol(X X D,Y) be given by F(x,t) = f,(x) = h(x, f,), where h is as in Lemma
3. Define s € Hol(X,Ty) by s(x) =F, o) 0/ 9t) where ¢, € D is chosen so that
s(X) is not contained in the zero section Z of T,. If w: Ty — Y is the projection,
it follows from mweos = f,0 that dim s(X) = dim f,o(X )=k + 1. By Lemma 2 with
M=Ty,A=sX)andp=r+n—k=dim T, — &, it follows that

s(X) C $7(0) = 2Z,

which is a contradiction.

Our next results use the following well-known identity, for which we give
a short proof.

LEMMA 4. Let E be a hermitian holomorphic vector bundle on Y. Let s be
a holomorphic section of E and let u be a holomorphic vector field on Y. Then
ua(s||®y =|V.sll® — R(s,5,u,i).

Proof. Since s and u and holomorphic, Vs = 0 and [u,z] = 0. Thus

ui(|s||®) = Ztu(s,5) =u(V,s5)
=|V,slI®> + (V,V,s,3)
= ”VuS"z - <[Vu9v|2] S,g)

= ||V,sll* — R(s,5,u,a).

THEOREM 2. Let Y be a compact Kdhler manifold (of dimension n) with
nonzero Euler characteristic. If ¢,(Y) is represented by a negative semidefinite (1,1)
form, then Hol (X,Y) is discrete.

Proof. By Yau’s solution to the Calabi conjecture [15], Y carries a Kahler
metric with the given semidefinite (1,1) form as Ricci form. Suppose Hol, (X,Y)
is not discrete, and let f, € Hol,(X,Y), ¢, € D, and s € Hol(X,T) be given as
in the proof of Theorem 1. Let g: X — X’, f': X’ — Y be the Stein factorization
of f,,; i.e., X' is a complex space, f, = f’ o g, g is surjective with connected fibres,
and f’ has finite fibres. We note that s is constant on the fibresof g: Let B = g~ (x'),
wherex’ € X’. Since B is a connected compact analyticset ands(B) C Ty pwy=C"
it follows that s is constant on B. Thus we have a holomorphic map s’ € Hol(X’,T)
such that s=s'og.

We now show that [|s’(| is constant on X". Let @ = sup [|s"[| > 0, and let xg € X"’
X

such that ||s’ (x)]| = a. It suffices to show that ||s’|| = @ on a neighborhood of x.
Let y, = ' (x5). Choose connected neighborhoods X/, of x/ and Y/, of y, such that
the map o =f"|X;:X;— Y, is a \,-sheeted (branched) analytic cover, for some
Mo =1, and £, ' (y,) = {x,}, (When A\, =1, f% is a biholomorphism. In the case
of A; > 1, it is a A,-sheeted cover branched at y,.) We define the holomorphic

A
tangent vector field c on Y, by o(y) = 2 °

ve=

s’ (x") where x', ..., x*oare the points
1
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of £ 7' (y) counted with multiplicities. In particular o (y,) = A8’ (x,). For arbitrary
yEY,,

oIl = D lIs” &l = Xoa = llo (xo)l.

Thus |jo|® attains its maximum at y,. We now compute the Laplacian of |o]*.
Let y € Y, be arbitrary, and let u,, ..., u, be holomorphic tangent vector fields
in a neighborhood of y that are orthonormal at y. By Lemma 4 we have

u,4,|oll®> = —R (0,6,4;,,) = —R (4;,#;,0,5).

Thus, at the point y,

Alloll* =2 wiol* = -2 >, R(,,#;,0,5) = —2Ric5)= 0.

Hence ||o}|® is subharmonic on Y,. Since |jo]|® attains its maximum at an interior
point y,, |lo}|*> must be constant on Y,. Since, for y € Y,,

Slis’ @GN =l (DN =Ko

and ||s’ (x")] = a, it follows that ||s’|| = @ on X|. It follows that |s’||=¢a on X’;
hence s’ has no zeroes.

Let p: X — X’ be a resolution of the singularities of X’. Then X is a connected
n-dimensional complex manifold; Let §=s"op, f=f op. Since 5(¥) € Ty ;e for
% € X, § defines a section over X of the topological pull-back bundle f* 7. Since
§ has no zeroes, it follows that c,, ( f *Ty) = 0. (See, for example [12].) Thus

0= (c,(F*Ty),[X1) = ([ e, (Tp), 1X]) =\ (¢, (Ty),[Y]) = A (Y),

where \ is the number of points in the generic fibre of f and x stands for the
Euler characteristic. This contradicts the hypothesis that x(Y) # 0.

COROLLARY 5. If Y is compact Kahler with ¢,(Y)=0, ¢, (Y) #0, then
Hol, (X,Y) is discrete.

COROLLARY 6. If Y is a Kdhler K3 surface, then Hol,(X,Y) is discrete.

THEOREM 3. If Y is compact Kdhler, ¢,(Y) is negative semidefinite and
c1(Y) # 0, then Hol,,(X,Y) is discrete.

Remark. The hypothesis of Theorem 3 on ¢, (Y) is equivalent to the existence
of a negative semidefinite (1,1) form m in ¢, (Y) such that m is negative definite
somewhere.

Proof. By Yau [15], we can give Y the Kahler metric whose Ricci form is
the form m given in the remark above. Suppose Hol, (X,Y) is not discrete and
let s € Hol(X,Ty) be as before. By the proof of Theorem 2, ||s|| is constant on
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X. Choose a pomt Yo € Y with Ric, < 0. By again repeating the proof of Theorem
2 with x, € f' “'(y,), we obtain a holornorphlc vector field ¢ on a nelghborhood
Y, of y, such that sup lloll = llo (3,)]] > 0. However Aljo||? l,, = —2Ric(o,0)], >

which contradicts the maxnnallty of |lo (3,)|1%.

Theorem 3 generalizes a result of Lichnerowicz [11] (see also Kobayashi
[6,p.104]) that if Y is as in Theorem 3, then the automorphism group of Y is
discrete: In fact, if Y is a compact Kahler manifold such that ¢,(Y) is negative
semidefinite and the Chern numbers of Y are not all zero, then the automorphism
group of Y is discrete. (Theorems 2 and 3 consider the Chern numbers ¢, and
¢t ,respectively.) This well-known result is shown as follows: Suppose on the contrary
that Y carries a nontrivial holomorphic tangent vector field s. Then by Lemma
4, ||s||? is subharmonic with respect to the Yau metric. Thus ||s||* is constant and
hence s has no zeroes. By a result of Bott [2] and Illusie [4], the Chern numbers
of Y vanish, contrary to the hypothesis.
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