RELATION MODULES FOR EXTENSIONS OF
NILPOTENT GROUPS

James A. Schafer

1. INTRODUCTION

Let G be a group and G = {x,,...,x,;r,,...,r,} a finite presentation of G, i.e,,
Xy, ..., X; generates a free group F of rank d(F) and r,, ..., r, are elements of
F such that G = F/R, where R is the normal closure of r,, ..., r, in F. In many
situations, it is desirable to know the minimal number of generators, d.(R), of
R as a normal subgroup of F. For example, if G is the fundamental group of
a closed 3-manifold, then the maximum of the numbers d(F) — do(R) over all
finite representations must be zero [3]. Now it is notoriously difficult to determine
d.(R) in general. One does not even know, if in the case G is finite, whether
the number, dF — dp(R), is an invariant for G. dF — d;(R) is known not to be
an invariant of G if G is infinite. Dunwoody and Pietrowski [2] have shown
that the trefoil knot group = {a,b; a® = b} has a two generator presentation needing
more than one relation.

Now if one has an exact sequence of groups

1->N-—> C—T—; Q-1

then N = N/(N,N) becomes a @-module by conjugation, g - n = cnc™',where mc = q.
If the above sequence arises from a presentation of G, then the G-module R is
called a relation module for G. Notice that any generators of N as a normal
subgroup of C map to generators of N as a @-module, i.e., do(N) = dg (N).

For a relation module, Gruenberg [4] has shown that if G is finite, the number

d;(R) — d(F) is an invariant for G. Moreover no examples of finite groups are
known where d.(R) > d;(R).

It is the purpose of this paper to compute the number d;(R) when G is an
extension, 1 > N—> G— @ — 1, of N by @, where N and @ are finite nilpotent
groups and the orders of N and @ are relatively prime. In all that follows we
shall be constantly concerned with extensions where the orders of N and @ are
relatively prime. We shall refer to such an extension as a relatively prime extension.
Note that such an extension is automatically split although we shall not explicitly
use that fact. In the course of our investigations we shall also compute d;(g),
the minimal number of generators of the augmentation ideal of ZG.

In order to state the main result we need some notation. Let F,& be semisimple
and M an irreducible F,@-module (F, = field of p elements). Let 7, = number
of occurrences of M in F,Q and if A is any F,@-module, let 7,,(4) = number of
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occurrences of M in A. Let [x] be the smallest integer = x.

If A is an F,@-module and s is an integer, let B,(4) = 0 if for every irreducible

module M # F,,
T (A) 1 s+1
o[22 (2]
? Tar 2

Let B,(A) = (—1)°""! otherwise. That is, if s is odd, B,(A4) = 0 if for all irreducible
M # F, Te, (A) > [y (A) /7y ]land B,(A) = 1 otherwise; if s is even, B,(4) =0
if for all irreducible M # F,, Tr, (A) = [1,,(A)/ 7\, ] and B,(A) = —1 otherwise. Define
the numbers

o, = max {dy(F,H,N) + B,(F,H,N), d(H,(Q,))}

where @, is a Sylow g-subgroup of @ and F,B = F, ® B. d(B) = the minimal number
of generators of the abelian group B.

THEOREM. If1—> N— G— @ — 1 is a relatively prime extension with N,Q
nilpotent, then

(i) de(g) =,
(i) if 1> R— F— G — 1 is any finite presentation of G, d (R) — d(F) = a,.

Remarks. (a) This generalizes the corresponding result for nilpotent groups
proven by Wamsley ([6], [11]).

(b) Included in the above case are all p-hyperelementary groups
1-Z/n->G->G,— 1,

G, a p-group and (p,n) = 1. It was while wrestling with the problem of d(R)
for a particular 2-hyperelementary group that this paper came into being. For
p hyperelementary groups (in fact for any N with d,(F,H,(N)) =1 for s = 1,2),
we easily see o, = d(G,) and o, = dH,(G,). Because it comes with little extra
work, we will give an independent proof of the p-hyperelementary case using
particular properties of the cyclic subgroup.

I would like to thank the referee for pointing out the following two facts.
(c) For the groups considered above, d;(g) = d(G). See K. W. Gruenberg [7].

(d) A related formula for d(G) if G contains a normal nilpotent subgroup appears
in a paper of K. W. Gruenberg and K. W. Roggenkamp [8].

2. PRELIMINARY RESULTS

The proofs of the following results are easily accessible in Gruenberg [6, Chapter
7]. All groups will be finite.

Definition. A ZG-lattice A is called a Swan module if



EXTENSIONS OF NILPOTENT GROUPS 41

dg(A) = max dg(A /pA)
PET

where wG = set of primes dividing the order of G.

Using a result of Swan [10], the following result was proved by Gruenberg
[4].

THEOREM 1. All relation modules and all augmentation ideals are Swan
modules.

From this one sees that it is sufficient to compute the number of generators
of a relation module or augmentation ideal locally. Let p € wG and let M be
an irreducible F,G-module. Set p,, =0 if M =F, and p,, =1 if M #F,. Recall
[x] is the smallest integer greater than or equal to x.

THEOREM 2. Letp € wQ. Then
dim H'(G,M)
dim M
(i1) If 1> R— F— G — 1 is a finite presentation of G, then
dim H?(G,M) — dim H' (G,M)
dim M ]]

(i) deG(g/pg) = max {[[ ]] + pa i M irreducibleF,, G-module}

d, (R/pR) = max {[[

— pp + dF: M irreducible F, G-module}.

3. SOME LEMMAS AND THE FIRST PROOF FOR THE
HYPERELEMENTARY CASE

LEMMA 1. Let 1-> H— G—: Q —> 1 be a relatively prime extension with Q
nilpotent. Let p € w(Q) and suppose M is an irreducible F,G-module. Then
H'(G,M) =0 for i = 0 unless M = F,. In this case H(G, F,) = H* (Q,F ).

Proof. Let @, be a Sylow p- -subgroup of @. Since @ is mlpotent there exists
a projection p of @ onto @,. Let H = kernel of po . Then the order of H is relatively
prime to p and since M is an elementary abelian p-group, H (H,M) = 0 for i > 0.
The Lyndon spectral sequence of the extension

1—>I:I—>G-—>T—1;Qp—->1

therefore collapses and we have H'(G,M) = H* (Qp,M A ), { = 0. Since H is normal
in G,M" is a G-invariant subspace of M and hence by the irreducibility of M
must be (0) or M. If M H — 0 we are done, so assume M7 = M, i.e., we may consider
M as an irreducible F,@,-module. But every mod p representation of a p-group
has a fixed point. (Construct the split extension I" of M by @, and use the class
formula for the action of the p-group I on M by conjugation.) Therefore M % £ (0)
and so by irreducibility M% = M. Since M% = M, we must have M = F,. The
last statement follows from the fact that for i = 0 H'(G, F,)=H' (Q ,F, ) But
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from the universal coefficient formula it follows, since @ is nilpotent and therefore
the direct sum of its Sylow subgroups, that H*(Q@,,F,) <« H'(Q,F,) for i > 0.

»
Remark. For @ a p-group it is not difficult to see that
(i) dim H(Q,F,) = d(Q)
(i) dim H*(@,F,) — dim H*(Q,F,) = d(H,(Q,2)).
See, for example, Gruenberg [5, Chapter 7].

LEMMA 2. Let 15> H—> G— Q@ — 1 be a relatively prime extension with H
nilpotent. Letp € w(H) and H,the Sylow p-subgroup of H. Then if M is an irreducible
F,G-module,

(i) M is trivial as H,-module,
(i) H'(GM) = H'(H,,M)*'% for i z 0.

Proof. H, is normal in G since it is characteristic in H. Again since M is
a mod p representation of H,, M £ (0) and so MP» =M by the irreducibility
of M. As for (ii), since M is an elementary p-group, H?(H,,M) is a F,-vector space
for all g. Now the order of G/H, is relatively prime for p, so

H*(G/H,,H'(H,,M)) =0 fors>0,t= 0.

This collapse of the Lyndon spectral sequence gives the result.

From the last lemma we see that we must investigate the action of G/H,
on H ‘(Hp,M ). This is especially easy in the case H, is cyclic.

LEMMA 3. Suppose 1 >2/n— K 5 K’ — 1 is an exact sequence of groups.
Let p|n and suppose M is an F,K module which is trivial as an F,(Z/n)-module.
Then for each s =1, H* ' (@2 /n,M) = H* (@2 /n,M) as K’-modules.

Proof. If 1 A— B— C— 1 is an exact sequence of groups and N is a left
(right) B-module, the left (right) action of C on H*(4,N), (H, (A,N)) is obtained
as follows: Resolve the trivial A-module Z over ZA, P, — Z. Tensor with ZB over
ZA to obtain a resolution of ZB ®,,2Z = ZC. “Lift” right multiplication by ¢ € C
toa chainmap f5:ZB®,, P,—» 2B ®, , P, .After taking Hom, 5(—,N), (N ®, z—),
the resulting induced map gives the action of ¢ € C on H*(4,N), (H,(A,N)).
Applying this procedure to the “standard” resolution of Z over Z/n ([1], [9])
one sees easily that the action of ¢ € K’ on H*(Z/n,M) is induced from the following
ladder. M; = Hom, (A;,M),A =A;, =2 (K), p a generator of Z/nC K, wx = g, and

1

if p? =p% then 9, (p?) =1+ p+ ... + p* .

1+p+...+pn—1 ~ p—1 -~
.M, > M,, >M,,, > ...
q. k q. k q k+1
\L x(ap(p » l x(ap () , 1/ x(@,(p »
1+p+...+pt—1 p—1
—_— N S
e M, > M,, > M, 1 — ...

n—1

In our case Z/n acts trivially on M and since p|n, both the maps 1 +p + ...+ p
and p — 1 are zero. Therefore H°(Z/n,M) = M and the above action of g € K’
on H*7'(2/n,M) and H**(Z/n,M) is given by q - m = xa*m with =x = q.
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These lemmas together with the results of Section 2 give
THEOREM 3. Let1— Z/n— G— G,— 1 be a hyperelementary group.

(i) dg(g) = d(G,) unless G is a nonabelian extension of relatively prime cyclic
groups, in which case d;(g) = 2.

(i) If 1 -» R— F— G — 1 is any presentation of G,
dg (R) = d(F) + d(H,(G,,2)).

Proof. For the prime p we have by Lemma 1 and the remark immediately
following that d;(g/pg) = d(G,) and d,; (R/pR) = dF + d(H, (G,)). For the primes
q dividing n, Lemmas 2 and 3 show dim H?(G,M) — dimH"'(G,M) = 0 for all
irreducible F,G-module M. This gives (ii). As for (i), we note that if M is an ir-
reducible F,G-module, g|n, then by Lemma 2(i), M is trivial as a (Z/n), =Z/ q'-
module and H'(Z/q*; M) = M. Therefore

dim HY(G; M) = M%/*/?" < dim M.
It follows from Theorem 2 that d;(g/qg) < 2 for g|n. If d(G,) = 2, then
dg(g) = d(G,)

from Theorem 1. On the other hand if d(G,) = 1, then G, is cyclic. If G is cyclic,
dz(g) = d(G,). Otherwise G is nonabelian and d(g) = 2.

4. THE GENERAL RESULT

We have seen from Lemma 2 that if we are interested in relatively prime
extensions where the subgroup is nilpotent, then we must investigate irreducible
G-modules which are trivial when restricted to a subgroup. We therefore consider
the following situation.

Let £ be a commutative ring, 1 - H— G — @ — 1, an exact sequence of groups
and M a left kG-module. @ acts on the left of H°(H,M) and on the right of H,(H).
Suppose M is trivial as an H-module. We can then define a left @-module structure
on Hom (H,(H),M) by (q ' f)(2) = qf (zq). Also since M is a trivial H-module, the
universal coefficient theorem gives a (non-naturally) split exact sequence

0 — Ext (H,_,(H),M)— H*(H,M)-> Hom (H,(H),M)— 0

where ¢ is given by o { f}({2}) = (f(2)}.

LEMMA 4. With the above @-module structures, o is a homomorphism of
@-modules. Moreover the induced action on E € Ext(H,_,(H),M) is given by

7= q*Eq* = Ext(R,, L, )(E)

where R, L, are the actions of q on H,_, (H) and M respectively.
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Proof. Referring to Lemma 3 for the description of how to compute the action
of ¢ € @ on H*(H,A) and H, (H,B), it is easy to see that if one uses the Bar
construction, B, (H), for P,, the maps f,:ZG®, B, (H)— ZG ®,B, (H) can be
chosen to be f2(1 ® [A,]...|h,]) = x® [A{|...| hi] where wx = q and A] = xh,x~".

Define 7 and f ? by the following diagrams (the horizontal maps are the natural
isomorphisms)

Homy (P,,M) = Hom(ZG ®, P, ,M) Z®,P, =2®,2ZG®,P,
\Lf" \LHom(fq. 1) J, e i, 1077
Hom (P, ,M) = Hom;(Z ®,P, ,M) ZO,P, =2 ®,ZG®,P,.
Then f? induces the action of ¢ in H*(H,M) and f? induces the action of g on
H, (H). An easy calculation using the above description of f? for the Bar construction

of H shows that the following diagram is commutative (the horizontal maps are
the natural isomorphisms). Recall M is trivial as an H-module. P,;, =Z ®, P, .

Hom (P,;,M) = Homy (P, ,M)
Hom (77, 1d)

Hom (P,,,M) 77
Hom (Id, L,)

Hom (P, M) == Hom, (P, ,M)

That is, the action of g on H* (H,M) can be computed from the chain map Hom ( ¢, L,)
on Hom (Py,M).

Now the universal coefficient theorem for H with a trivial coefficient module
M is obtained by using the natural homomorphism of Hom (P, M) = Homy (P, ,M)
and then applying the usual universal coefficient theorem to the complex, P,
of free abelian groups. We recall this proof [9].

Let K be a chain complex of free abelian groups, C, the cycles and B, the
boundaries. Then the middle column in the following diagram induces the universal
coefficient sequence.

0 0

P

0 —> Hom (H,,M) ——> Hom (C,,M) ——> Hom (B,,M)

Ti. la,

3
Hom (K, _, , M) ——> Hom (K,,M) —> Hom (K, _,,M)

T

Hom (C,_,,M) ——> Hom (B,_,,M) —> Ext(H,_,,M) —> 0

y |

0 0
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In our case K, = Py and it is obvious that i*,;*, * commute with Hom (79,L,).
The result now follows immediately.

In what follows we shall assume N and M are left G-modules (we interchange
right and left by g n = n - g7') and the action of G on Hom (N,M) and Ext (N,M)
are as given above, i.e., by Hom (g7 ',2) and Ext (g™}, g) respectively.

a B
PROPOSITION 1. Let 0—» N,— N,— N,— 0 be an exact sequence of G-

modules and G-maps. Let M be a G-module. The following is then an exact sequence
of G-modules.

B* a*
0 —» Hom (N,,M) —> Hom (N,,M) - Hom (N,,M)

A B* a*
— Ext(N,,M) —» Ext(N,,M) —» Ext(N,,M) — 0.

Proof. The above 6 term sequence is natural with respect to maps of short
exact sequences.

LEMMA 5. Let N be a finitely generated G-module, M an F,G-module. Suppose
F,G is semisimple, then

Ext (N,M)¢ = Hom (,N, M) where N={n€ N:pn=0}.

Proof. Let f:(ZG)™ — N be an epimorphism of G-modules and let K = kernel f
which is a free abelian group. f induces an epimorphism

1®f:(F,G)">F,N=F,®N

whose kernel we denote by K. Consider the following exact diagram of G-modules
and maps.

0 0

|,

- f
0 —>=KnNpZG)” —> pZG)" —> pN ——> 0

Lo

f
> (ZG)" —> N —> 0

o

>(F,G)" —>F,N—> 0

y v

0 0

€&— 0O

\

CE— N E€— R E€—

v

The middle row gives by Proposition 1 a 6-term sequence of G-modules (in fact
F,G-modules since M is a F,-vector space)

(1) 0 — Hom (N,M)— Hom ((ZG)™,M)— Hom (K,M)— Ext(N,M)— 0
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which terminates since (ZG)™ is Z-free.

Now, since M is p-elementary, if A is any abelian group, the inclusion of
Hom (F,A,M) into Hom (4,M) is an isomorphism, and we will identify Hom (F,4,M)
and Hom (4,M) in the following without further comment.

Since F,G is semisimple, (1) splits completely and we obtain

(2) Hom (F,N,M) ® Hom (F,K,M) = Hom ((F,G)",M) @ Ext (N,M).

The map K — K factors though F, K= K/pK and so we have an epimorphism
v:F, K — K with kernel isomorphic to K N p(ZG)"/pK as a G-module. Consider
the followmg exact ladder of G-modules.

0 —>K N p(ZG)"/pK—>p(ZG)"/pK —> p(ZG)"/K N p(ZG)" —>0

*) | l \Lf

0 > N > N —>pN ——> 0

where k is induced as follows.

f
0 —> K —> (2G)™ > N > 0

b

0 —>pk ——>pRZG)" ——> p@ZG)"/pK ——>0

Since (ZG)™ and K are free abelian, multiplication by p is an isomorphism onto
pK or p(ZG)™. By the 5lemma, « is an isomorphism. Also fin (*) is an isomorphism.
The right-hand square in (x) commutes since px ([ px]) = pf (x) = f([px]). Therefore
k induces by the 5 lemma an isomorphism of K N p(ZG)™/pK with »IV. This
give an exact sequence of F,G-modules 0 - ,N — F, K-K—-0 whlch again
splits and so

(3) Hom (FI,K,M) = Hom (K,M) ® Hom (,,N,M)

From (2) and using (3) we have

(4) Hom (F, N,M) ® Hom (K,M) ® Hom (,N,M) = Hom ((F ,G)",M) @ Ext (N,M).
Since (F,G)™ = F,N @ K, the Krull-Schmidt theorem gives

(5) Hom (,N,M) = Ext (N,M).

Taking fixed points gives the result.
COROLLARY. Ext(N,M)® = Hom, (F,N,M) if N is finite.

Proof. 0— ,N— N 5 N— F,N— 0 is an exact sequence of abelian groups
with G-action. We will show ,N = F,N as F,G-modules. Let N (p) = p-torsion of

N,then0— ,N— N(p) —i N(p)— F,N — Ois exact. The proof will be by induction
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P
on the exponent of N(p). If exponent N(p) = 1, then N(p) = N(p) is the zero
map, so we are done. Assume exponent N(p)=e+1>1. Now if

a B
0—> A —» B— C— 0isan exact sequence of G-modules and maps, the snake lemma
applied to the ladder

« B
0—>A—>B——>C——>0

bl

0 > A >B —> C —>0

gives a 6-term sequence of F,G-modules
0-,A- , B—- , C->FA->F,B->F,C—-0.

Letting B= N(p)and A = {n € N:p°n = 0} and using the complete splitting of
the above sequence together with the induction hypothesis and the Krull-Schmidt
theorem gives ,N = F N as F,G-modules.

Let now 1 > H - G — @ — 1 be an exact sequence of groups and let N
be a subgroup of H which is normal in G. Denote G/N by @, and consider the
diagram

1 SN—> G —>Qy —>1

i I

l1—>H—>G—> ——>1

In this situation we have the following lemma.

LEMMA 6. (i) Let A be a left G-module if ¢ € Qy and u € H'(H,A), then
i*(m(g) - uy=q-i*(u).

(ii) Let B be a right G-module, if ¢ € Q, and z € H;(N,B), then
i*(Z ' Q) = i* (2) - W(Q)-

Proof. Let P*—: Z be a projective resolution of Z over ZH and hence over
ZN. Let v:ZG®,P,— 2G ®, P, be a “lift” of w:Z(Qy) — Z(Q). For g € Q,,
denote by

[%:ZG®yP,— ZG®, P, a “lift” of R,:Z(Qy)— Z(Qy)
and by

[YZ2G®, P> 2G®,P, a “lift”of R__:Z(Q)— Z(Q).

Then f™ o vy and v o f? are chain homotopic since they are both “lifts” of

R  om=moR,.
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Since the map induced by inclusion {: N — H can be computed using v, the results
i) and ii) follow.

We are now in a position to prove the main result of this paper. Recall the
following definitions. Let F,@ be semisimple and M an irreducible F,Q-module.
Let 7, = number of occurrences of M in F,@ and if A is any F,Q-module, let
Ty (A) = number of occurrences of M in A. Define B,(A) = 0 if for every irreducible
module M # F,, 5, (A) = (7 (A)/M] + (—1/2)°*" and let B,(A) = (—1)**" other-
wise. Define

o, = max {do(F,H,(N)) + B, (F,H,N),d(H,(Q,))}

primes

where @, is a Sylow g-subgroup of Q.
Obviously only the primes p € w(N) and ¢ € w(§) make any contribution to

THEOREM 4. If1— N— G— @ — 1 is a relatively prime extension with N, @
nilpotent, then

() dg(g) = a,
(il) If 1> R— F— G — 1 is any finite presentation of G, d (R) — d(F) = «,.

Proof. We know from Theorems 1 and 2 that it is sufficient to evaluate the
numbers

[[dimHl(G,M)]] q IIdimHz(G,M) —dimHl(G,M)]]
an
dim M dim M

for M an irreducible F,G-module and p € w(G). Let ¢ € w(Q), then from Lemma
1 and the remark following it, the only contribution will occur when M = F_, and
this will be d(Q,) in the first case and d(H,(Q,) in the second.

Let p € w(N). If M is an irreducible F,G-module, then Lemma 2 says M is
trivial as an N,-module (N, = p Sylow-subgroup of N) and

H'(G,M) = H'(N,,M)%'™.

From Lemma 4, the universal coefficient sequence

0—- Ext(H,_,(N,),M)— H°(N, ,M)—U> Hom (H,(N,),M)— 0
is an exact sequence of G/N,-modules and in fact, since M is an elementary
p-group, a sequence of F (G/N,)-modules. Since p & w(G/N,), F,(G/N,) is semi-
simple so the sequence splits. Taking fixed points we have

1) H°(GM) = HS(NP,M)G’NP = Homg, (H,(N,),M) ® Ext (H,_, (Np),M)G’Np.

Since H,(N,) is finite for s > 0, the corollary to Lemma 5 gives for s > 1
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(2) H*(G,M) = Homg,y ((F,H, (N,),M) ® Homg, (F,H, ,(N,),M)
while for s = 1 we have
3) H°(G,M) s Homg, (F, H,(N,),M).

Because Nis nilpotent, N = X N, andsince the homology of a p-groupis annihilated
r 4
by p¥ in positive dimensions, we have H (N)= X H,/N,) for s> 0. Hence the

inclusion i: N,— N induces an isomorphism i, :F:Hs (N,)— F,H (N) for s >0. 1

claim that F,H (N,) is trivial as an N/N,-module. This follows from Lemma 6
forifz€ F,H (N,)andg € N/N,=kernw:G/N,— G/N, then

1, (2q9) = 1, (@) (q) = i, (2).

Since i is an isomorphism z:g =z and F,H (N,) is trivial as an N/N_ -module.
Now recall M is an irreducible F,G-module and that it is trivial as an N, -module.
Consider Hom, N, (F,H,(N,),M) and suppose it is different from zero. Let

0 # f:F,H,(N,)— M.

Since M is irreducible as F,(G/N,)-module, f is an epimorphism. Let m € M
and ¢ € N/N,, m=f(,z€ F,H(N,) and g-m=f(z2-q)=f() =m. That
is M =M"'"e or M is trivial as an N-module. Therefore the only irreducible
F,G-modules to be considered are those which are trivial as N-modules, i.e.,
irreducible F, @-modules. Recalling that F,H_(N,) = F,H_(N) is also an F,@-module,
we obtain the formulas (p,, = 0 if M = F,, p,; = 1 otherwise).

. dim Hom, ,, (F,H, (N),M)
@) d;(g) = max £ + ppr, dQ,
g dim M
dim H F H,(N),M
(ii) dgi(R) — d(F) = max {[[ m OmF"_Q( () )H + pM,dHZ(Qq)}
Py dim M

where M is an irreducible F,@-module and @, is a Sylow g-subgroup of Q.

Now it is obvious that

[[dim Hom, ,(A4,M) ]] _ [[TM(A)]]
dim M U on,

for any @ module A and also that max [7..(A) /73]l = dy(A). Using these observations,
it is not difficult to show

max
M irr

{H dim Hom,_o (4,M)

_1 s+1 -
dim M ]] + (=1 pM} dy(A) +B,(A).
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It follows that the right-hand sides of (i) and (ii) are a, and «, respectively.

Since 3,(A) = 1, we have the following corollary. (Compare to the hyperelemen-
tary case.)

COROLLARY. Ifmax dH,(Q,) > max dy(F,H, (N)), then o, = max d(H,(Q,)).
q p q

We conclude this paper with the following obvious question: What is the
significance of the a, for s = 37

Addendum. 1t has been observed by the referee that the proof of the above
theorem yields a calculation for d.(g) and d;(R) — d(F) also in the case @ is
not necessarily nilpotent. In the definition of «,, replace d(H,(®,) by d,(q)) if
s=1 and by do(S) — d(E) if s=2, where 1> S—>E— Q—1 is any finite
presentation of @. With this definition of o, Theorem 4 remains correct even
if @ is not nilpotent. In order to see this one merely observes that the first half
of Lemma 1 shows that if M is an irreducible F,G-module with p € w(Q), then
either H'(G; M) = 0 for all i or M is an irreducible @-module and

H'(G; M) = H(Q;M).
On the other hand if M is an irreducible F,@-module, then M is irreducible as

a G-module and again H'(G;M) = H(Q;M). It follows from Theorems 1 and 2
that

max
PET(Q)

{[[dim H (G; M)

:H + p 31 M irreducible F, G-module} =dy(g)
dim M

and

dim H? (G; M) — dim H*(G; M) |
— pp: M irr F, G-module

max
pPET(Q) dim M
= dQ(S) —d(E)
and the result follows.
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