RELATION MODULES FOR EXTENSIONS OF NILPOTENT GROUPS

James A. Schafer

1. INTRODUCTION

Let G be a group and $G = \{x_1, ..., x_d; r_1, ..., r_s\}$ a finite presentation of G, i.e., $x_1, ..., x_d$ generates a free group F of rank d(F) and $r_1, ..., r_s$ are elements of F such that $G \cong F/R$, where R is the normal closure of $r_1, ..., r_s$ in F. In many situations, it is desirable to know the minimal number of generators, $d_F(R)$, of R as a normal subgroup of F. For example, if G is the fundamental group of a closed 3-manifold, then the maximum of the numbers $d(F) - d_F(R)$ over all finite representations must be zero [3]. Now it is notoriously difficult to determine $d_F(R)$ in general. One does not even know, if in the case G is finite, whether the number, $dF - d_F(R)$, is an invariant for G. $dF - d_F(R)$ is known not to be an invariant of G if G is infinite. Dunwoody and Pietrowski [2] have shown that the trefoil knot group = $\{a,b; a^2 = b^3\}$ has a two generator presentation needing more than one relation.

Now if one has an exact sequence of groups

$$1 \to N \to C \xrightarrow{\pi} Q \to 1,$$

then $\bar{N}=N/(N,N)$ becomes a Q-module by conjugation, $q\cdot n=\overline{cnc^{-1}}$, where $\pi c=q$. If the above sequence arises from a presentation of G, then the G-module \bar{R} is called a relation module for G. Notice that any generators of N as a normal subgroup of C map to generators of \bar{N} as a Q-module, i.e., $d_C(N) \geq d_Q(\bar{N})$.

For a relation module, Gruenberg [4] has shown that if G is finite, the number $d_G(\bar{R}) - d(F)$ is an invariant for G. Moreover no examples of finite groups are known where $d_F(R) > d_G(\bar{R})$.

It is the purpose of this paper to compute the number $d_G(\bar{R})$ when G is an extension, $1 \to N \to G \to Q \to 1$, of N by Q, where N and Q are finite nilpotent groups and the orders of N and Q are relatively prime. In all that follows we shall be constantly concerned with extensions where the orders of N and Q are relatively prime. We shall refer to such an extension as a relatively prime extension. Note that such an extension is automatically split although we shall not explicitly use that fact. In the course of our investigations we shall also compute $d_G(\mathfrak{g})$, the minimal number of generators of the augmentation ideal of $\mathbf{Z}G$.

In order to state the main result we need some notation. Let $\mathbf{F}_p Q$ be semisimple and M an irreducible $\mathbf{F}_p Q$ -module ($\mathbf{F}_p = \text{field of } p$ elements). Let $\tau_M = \text{number of occurrences of } M$ in $\mathbf{F}_p Q$ and if A is any $\mathbf{F}_p Q$ -module, let $\tau_M (A) = \text{number of } M$

Received June 17, 1979. Revision received November 9, 1979.

Michigan Math. J. 28 (1981).

occurrences of M in A. Let [x] be the smallest integer $\geq x$.

If A is an F_pQ -module and s is an integer, let $\beta_s(A) = 0$ if for every irreducible module $M \neq F_p$,

$$\tau_{\mathsf{F}_p}(A) \geqslant \left[\left[\frac{\tau_M(A)}{\tau_M} \right] \right] + \left(-\frac{1}{2} \right)^{s+1}.$$

Let $\beta_s(A) = (-1)^{s+1}$ otherwise. That is, if s is odd, $\beta_s(A) = 0$ if for all irreducible $M \neq \mathbf{F}_p$, $\tau_{\mathbf{F}_p}(A) > \llbracket \tau_M(A)/\tau_M \rrbracket$ and $\beta_s(A) = 1$ otherwise; if s is even, $\beta_s(A) = 0$ if for all irreducible $M \neq \mathbf{F}_p$, $\tau_{\mathbf{F}_p}(A) \geq \llbracket \tau_M(A)/\tau_M \rrbracket$ and $\beta_s(A) = -1$ otherwise. Define the numbers

$$\alpha_s = \max_{p,q} \left\{ d_Q(\mathbf{F}_p H_s N) + \beta_s(\mathbf{F}_p H_s N), d(H_s(Q_q)) \right\}$$

where Q_q is a Sylow q-subgroup of Q and $\mathsf{F}_pB=\mathsf{F}_p\otimes B$. d(B)= the minimal number of generators of the abelian group B.

THEOREM. If $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ is a relatively prime extension with N,Q nilpotent, then

- (i) $d_G(\mathfrak{g}) = \alpha_1$
- (ii) if $1 \to R \to F \to G \to 1$ is any finite presentation of G, $d_G(\bar{R}) d(F) = \alpha_2$.

Remarks. (a) This generalizes the corresponding result for nilpotent groups proven by Wamsley ([6], [11]).

(b) Included in the above case are all p-hyperelementary groups

$$1 \rightarrow Z/n \rightarrow G \rightarrow G_p \rightarrow 1$$
,

 G_p a p-group and (p,n)=1. It was while wrestling with the problem of $d_G(\bar{R})$ for a particular 2-hyperelementary group that this paper came into being. For p hyperelementary groups (in fact for any N with $d_Q(\mathbf{F}_pH_s(N)) \leq 1$ for s=1,2), we easily see $\alpha_1=d(G_p)$ and $\alpha_2=dH_2(G_p)$. Because it comes with little extra work, we will give an independent proof of the p-hyperelementary case using particular properties of the cyclic subgroup.

I would like to thank the referee for pointing out the following two facts.

- (c) For the groups considered above, $d_G(g) = d(G)$. See K. W. Gruenberg [7].
- (d) A related formula for d(G) if G contains a normal nilpotent subgroup appears in a paper of K. W. Gruenberg and K. W. Roggenkamp [8].

2. PRELIMINARY RESULTS

The proofs of the following results are easily accessible in Gruenberg [6, Chapter 7]. All groups will be finite.

Definition. A **Z**G-lattice A is called a Swan module if

$$d_G(A) = \max_{p \in \pi G} d_G(A/pA)$$

where $\pi G = \text{set of primes dividing the order of } G$.

Using a result of Swan [10], the following result was proved by Gruenberg [4].

THEOREM 1. All relation modules and all augmentation ideals are Swan modules.

From this one sees that it is sufficient to compute the number of generators of a relation module or augmentation ideal locally. Let $p \in \pi G$ and let M be an irreducible $\mathbf{F}_p G$ -module. Set $\rho_M = 0$ if $M = \mathbf{F}_p$ and $\rho_M = 1$ if $M \neq \mathbf{F}_p$. Recall [x] is the smallest integer greater than or equal to x.

THEOREM 2. Let $p \in \pi G$. Then

(i)
$$d_{\mathsf{F}_p G}(\mathfrak{g}/p\mathfrak{g}) = \max \left\{ \left[\left[\frac{\dim H^1(G,M)}{\dim M} \right] \right] + \rho_M : M \text{ irreducible } \mathsf{F}_p G\text{-module} \right\}$$

(ii) If $1 \to R \to F \to G \to 1$ is a finite presentation of G, then

$$egin{aligned} d_{\mathbf{F}_p}\left(ar{R}/par{R}
ight) &= \max \left\{ \left[\left[rac{\dim H^2\left(G,M
ight) - \dim H^1\left(G,M
ight)}{\dim M}
ight]
ight] \ &-
ho_M + dF \colon M ext{ irreducible } \mathbf{F}_p G ext{-module}
ight\}. \end{aligned}$$

3. SOME LEMMAS AND THE FIRST PROOF FOR THE HYPERELEMENTARY CASE

LEMMA 1. Let $1 \to H \to G \xrightarrow{\pi} Q \to 1$ be a relatively prime extension with Q nilpotent. Let $p \in \pi(Q)$ and suppose M is an irreducible F_pG -module. Then $H^i(G,M) = 0$ for $i \geq 0$ unless $M = \mathsf{F}_p$. In this case $H^i(G,\mathsf{F}_p) \cong H^i(Q,\mathsf{F}_p)$.

Proof. Let Q_p be a Sylow p-subgroup of Q. Since Q is nilpotent, there exists a projection ρ of Q onto Q_p . Let $\tilde{H} = \text{kernel of } \rho \circ \pi$. Then the order of \tilde{H} is relatively prime to p and since M is an elementary abelian p-group, $H^i(\tilde{H},M) = 0$ for i > 0. The Lyndon spectral sequence of the extension

$$1 \to \tilde{H} \to G \to \stackrel{\rho \circ \pi}{\to} Q_n \to 1$$

therefore collapses and we have $H^i(G,M)\cong H^i(Q_p,M^H)$, $i\geq 0$. Since \tilde{H} is normal in G,M^H is a G-invariant subspace of M and hence by the irreducibility of M must be (0) or M. If $M^H=0$ we are done, so assume $M^H=M$, i.e., we may consider M as an irreducible \mathbf{F}_pQ_p -module. But every mod p representation of a p-group has a fixed point. (Construct the split extension Γ of M by Q_p and use the class formula for the action of the p-group Γ on M by conjugation.) Therefore $M^{Q_p}\neq (0)$ and so by irreducibility $M^{Q_p}=M$. Since $M^{Q_p}=M^G$, we must have $M=\mathbf{F}_p$. The last statement follows from the fact that for $i\geq 0$, $H^i(G,\mathbf{F}_p)\cong H^i(Q_p,\mathbf{F}_p)$. But

from the universal coefficient formula it follows, since Q is nilpotent and therefore the direct sum of its Sylow subgroups, that $H^i(Q_p, \mathbf{F}_p) \leftarrow H^i(Q, \mathbf{F}_p)$ for i > 0.

Remark. For Q a p-group it is not difficult to see that

- (i) dim $H^1(Q, \mathbf{F}_p) = d(Q)$
- (ii) dim $H^2(Q, \mathbf{F}_p)$ dim $H^1(Q, \mathbf{F}_p) = d(H_2(Q, \mathbf{Z}))$.

See, for example, Gruenberg [5, Chapter 7].

LEMMA 2. Let $1 \to H \to G \to Q \to 1$ be a relatively prime extension with H nilpotent. Let $p \in \pi(H)$ and H_p the Sylow p-subgroup of H. Then if M is an irreducible \mathbf{F}_pG -module,

- (i) M is trivial as H_p -module,
- (ii) $H^i(G,M) \cong H^i(H_p,M)^{G/H_p}$ for $i \ge 0$.

Proof. H_p is normal in G since it is characteristic in H. Again since M is a mod p representation of H_p , $M^{H_p} \neq (0)$ and so $M^{H_p} = M$ by the irreducibility of M. As for (ii), since M is an elementary p-group, $H^q(H_p, M)$ is a F_p -vector space for all q. Now the order of G/H_p is relatively prime for p, so

$$H^{s}(G/H_{p}, H^{t}(H_{p}, M)) = 0$$
 for $s > 0, t \ge 0$.

This collapse of the Lyndon spectral sequence gives the result.

From the last lemma we see that we must investigate the action of G/H_p on $H^t(H_p, M)$. This is especially easy in the case H_p is cyclic.

LEMMA 3. Suppose $1 \to \mathbf{Z}/n \to K \xrightarrow{\pi} K' \to 1$ is an exact sequence of groups. Let $p \mid n$ and suppose M is an $\mathbf{F}_p K$ module which is trivial as an $\mathbf{F}_p (\mathbf{Z}/n)$ -module. Then for each $s \geq 1$, $H^{2k-1}(\mathbf{Z}/n,M) \cong H^{2k}(\mathbf{Z}/n,M)$ as K'-modules.

Proof. If $1 \to A \to B \to C \to 1$ is an exact sequence of groups and N is a left (right) B-module, the left (right) action of C on $H^*(A,N)$, $(H_*(A,N))$ is obtained as follows: Resolve the trivial A-module Z over ZA, $P_* \to Z$. Tensor with ZB over ZA to obtain a resolution of $ZB \otimes_{ZA} Z = ZC$. "Lift" right multiplication by $c \in C$ to a chain map $f_*^c : ZB \otimes_{ZA} P_* \to ZB \otimes_{ZA} P_*$. After taking $Hom_{ZB}(-,N)$, $(N \otimes_{ZB} -)$, the resulting induced map gives the action of $c \in C$ on C on C over C on C on C one sees easily that the action of C on C on C over C on C on

In our case \mathbb{Z}/n acts trivially on M and since p|n, both the maps $1 + \rho + ... + \rho^{n-1}$ and $\rho - 1$ are zero. Therefore $H^c(\mathbb{Z}/n, M) \cong M$ and the above action of $q \in K'$ on $H^{2k-1}(\mathbb{Z}/n, M)$ and $H^{2k}(\mathbb{Z}/n, M)$ is given by $q \cdot m = xa^k m$ with $\pi x = q$.

These lemmas together with the results of Section 2 give

THEOREM 3. Let $1 \to \mathbf{Z}/n \to G \to G_p \to 1$ be a hyperelementary group.

- (i) $d_G(\mathfrak{g}) = d(G_p)$ unless G is a nonabelian extension of relatively prime cyclic groups, in which case $d_G(\mathfrak{g}) = 2$.
 - (ii) If $1 \to R \to F \to G \to 1$ is any presentation of G,

$$d_G(\bar{R}) = d(F) + d(H_2(G_n, Z)).$$

Proof. For the prime p we have by Lemma 1 and the remark immediately following that $d_G(g/pg) = d(G_p)$ and $d_G(\bar{R}/p\bar{R}) = dF + d(H_2(G_p))$. For the primes q dividing n, Lemmas 2 and 3 show dim $H^2(G,M) - \dim H^1(G,M) = 0$ for all irreducible \mathbf{F}_qG -module M. This gives (ii). As for (i), we note that if M is an irreducible \mathbf{F}_qG -module, q|n, then by Lemma 2(i), M is trivial as a $(Z/n)_q \simeq Z/q^t$ -module and $H^1(Z/q^t;M) \simeq M$. Therefore

$$\dim H^1(G;M) \simeq M^{G/\mathbf{Z}/q^t} \leq \dim M.$$

It follows from Theorem 2 that $d_G(g/qg) \leq 2$ for q|n. If $d(G_p) \geq 2$, then

$$d_G(\mathfrak{g}) = d(G_p)$$

from Theorem 1. On the other hand if $d(G_p) = 1$, then G_p is cyclic. If G is cyclic, $d_G(\mathfrak{g}) = d(G_p)$. Otherwise G is nonabelian and $d_G(\mathfrak{g}) = 2$.

4. THE GENERAL RESULT

We have seen from Lemma 2 that if we are interested in relatively prime extensions where the subgroup is nilpotent, then we must investigate irreducible G-modules which are trivial when restricted to a subgroup. We therefore consider the following situation.

Let k be a commutative ring, $1 \to H \to G \xrightarrow{\pi} Q \to 1$, an exact sequence of groups and M a left kG-module. Q acts on the left of $H^s(H,M)$ and on the right of $H_s(H)$. Suppose M is trivial as an H-module. We can then define a left Q-module structure on $\operatorname{Hom}(H_s(H),M)$ by $(q \cdot f)(z) = qf(zq)$. Also since M is a trivial H-module, the universal coefficient theorem gives a (non-naturally) split exact sequence

$$0 \to \operatorname{Ext}(H_{s-1}(H), M) \to H^s(H, M) \stackrel{\sigma}{\to} \operatorname{Hom}(H_s(H), M) \to 0$$

where σ is given by $\sigma\{f\}(\{z\}) = \{f(z)\}.$

LEMMA 4. With the above Q-module structures, σ is a homomorphism of Q-modules. Moreover the induced action on $E \in \text{Ext}(H_{s-1}(H), M)$ is given by

$$E^{q} = q^{*}E_{q_{+}} = \operatorname{Ext}(R_{q}, L_{q})(E)$$

where R_q , L_q are the actions of q on $H_{s-1}(H)$ and M respectively.

Proof. Referring to Lemma 3 for the description of how to compute the action of $q \in Q$ on $H^*(H,A)$ and $H_*(H,B)$, it is easy to see that if one uses the Bar construction, $B_*(H)$, for P_* , the maps $f_n^q : \mathbf{Z}G \otimes_H B_n(H) \to \mathbf{Z}G \otimes_H B_n(H)$ can be chosen to be $f_n^q (1 \otimes [h_1| \dots |h_n]) = x \otimes [h_1^r| \dots |h_n^r]$ where $\pi x = q$ and $h_i^x = xh_i x^{-1}$.

Define $\bar{f}^{\,q}$ and $\tilde{f}^{\,q}$ by the following diagrams (the horizontal maps are the natural isomorphisms)

Then \bar{f}^q induces the action of q in $H^*(H,M)$ and \tilde{f}^q induces the action of q on $H_*(H)$. An easy calculation using the above description of f^q for the Bar construction of H shows that the following diagram is commutative (the horizontal maps are the natural isomorphisms). Recall M is trivial as an H-module. $P_H = \mathbf{Z} \otimes_H P_*$.

That is, the action of q on $H^*(H,M)$ can be computed from the chain map $\operatorname{Hom}(\tilde{f}^q,L_q)$ on $\operatorname{Hom}(P_H,M)$.

Now the universal coefficient theorem for H with a trivial coefficient module M is obtained by using the natural homomorphism of $\operatorname{Hom}(P_H,M)\cong\operatorname{Hom}_H(P_\star,M)$ and then applying the usual universal coefficient theorem to the complex, P_H , of free abelian groups. We recall this proof [9].

Let K be a chain complex of free abelian groups, C_{\star} the cycles and B_{\star} the boundaries. Then the middle column in the following diagram induces the universal coefficient sequence.

In our case $K_{\star} = P_H$ and it is obvious that i^*, j^*, ∂^* commute with Hom (\tilde{f}^q, L_q) . The result now follows immediately.

In what follows we shall assume N and M are left G-modules (we interchange right and left by $g \cdot n = n \cdot g^{-1}$) and the action of G on Hom(N,M) and Ext(N,M) are as given above, i.e., by $Hom(g^{-1},g)$ and $Ext(g^{-1},g)$ respectively.

PROPOSITION 1. Let $0 \to N_1 \xrightarrow{\alpha} N_2 \xrightarrow{\beta} N_3 \to 0$ be an exact sequence of G-modules and G-maps. Let M be a G-module. The following is then an exact sequence of G-modules.

$$\begin{array}{cccccc} 0 & \to & \operatorname{Hom} \left(N_{3}, M \right) \overset{\beta^{\, \star}}{\to} & \operatorname{Hom} \left(N_{2}, M \right) \overset{\alpha^{\, \star}}{\to} & \operatorname{Hom} \left(N_{1}, M \right) \\ \overset{\Delta}{\to} & \operatorname{Ext} \left(N_{3}, M \right) \overset{\beta^{\, \star}}{\to} & \operatorname{Ext} \left(N_{2}, M \right) \overset{\alpha^{\, \star}}{\to} & \operatorname{Ext} \left(N_{1}, M \right) & \to & 0. \end{array}$$

Proof. The above 6 term sequence is natural with respect to maps of short exact sequences.

LEMMA 5. Let N be a finitely generated G-module, M an F_p G-module. Suppose F_p G is semisimple, then

$$\operatorname{Ext}(N,M)^G \simeq \operatorname{Hom}_G(_pN,M)$$
 where $_pN = \{n \in N : pn = 0\}.$

Proof. Let $f: (\mathbf{Z}G)^m \to N$ be an epimorphism of G-modules and let $\tilde{K} = \text{kernel } f$ which is a free abelian group. f induces an epimorphism

$$1 \otimes f : (\mathbf{F}_n G)^m \to \mathbf{F}_n N = \mathbf{F}_n \otimes N$$

whose kernel we denote by K. Consider the following exact diagram of G-modules and maps.

The middle row gives by Proposition 1 a 6-term sequence of G-modules (in fact \mathbf{F}_pG -modules since M is a \mathbf{F}_p -vector space)

(1)
$$0 \to \operatorname{Hom}(N,M) \to \operatorname{Hom}((ZG)^m,M) \to \operatorname{Hom}(\tilde{K},M) \to \operatorname{Ext}(N,M) \to 0$$

which terminates since $(ZG)^m$ is **Z**-free.

Now, since M is p-elementary, if A is any abelian group, the inclusion of $\operatorname{Hom}(\mathsf{F}_pA,M)$ into $\operatorname{Hom}(A,M)$ is an isomorphism, and we will identify $\operatorname{Hom}(\mathsf{F}_pA,M)$ and $\operatorname{Hom}(A,M)$ in the following without further comment.

Since F_nG is semisimple, (1) splits completely and we obtain

(2)
$$\operatorname{Hom}(\mathsf{F}_{\scriptscriptstyle D} N, M) \oplus \operatorname{Hom}(\mathsf{F}_{\scriptscriptstyle D} \tilde{K}, M) \simeq \operatorname{Hom}((\mathsf{F}_{\scriptscriptstyle D} G)^m, M) \oplus \operatorname{Ext}(N, M).$$

The map $\tilde{K} \to K$ factors though $\mathsf{F}_p \tilde{K} = \tilde{K}/p\tilde{K}$ and so we have an epimorphism $\gamma \colon \mathsf{F}_p \tilde{K} \to K$ with kernel isomorphic to $\tilde{K} \cap p(ZG)^m/p\tilde{K}$ as a G-module. Consider the following exact ladder of G-modules.

$$0 \longrightarrow \tilde{K} \cap p(ZG)^{m}/p\tilde{K} \longrightarrow p(ZG)^{m}/p\tilde{K} \longrightarrow p(ZG)^{m}/\tilde{K} \cap p(ZG)^{m} \longrightarrow 0$$

$$\downarrow^{\kappa} \qquad \qquad \downarrow^{\tilde{f}}$$

$$0 \longrightarrow_{p} N \longrightarrow N \longrightarrow pN \longrightarrow pN \longrightarrow 0$$

where κ is induced as follows.

$$0 \longrightarrow \tilde{K} \longrightarrow (\mathbf{Z}G)^{m} \xrightarrow{f} N \longrightarrow 0$$

$$\stackrel{\sim}{\longrightarrow} p \qquad \qquad \downarrow^{p} \qquad \qquad \downarrow^{\kappa^{-1}} \qquad \qquad \downarrow^{\kappa^{-1}} \qquad \qquad \downarrow^{\kappa} p \qquad$$

Since $(\mathbf{Z}G)^m$ and \tilde{K} are free abelian, multiplication by p is an isomorphism onto $p\tilde{K}$ or $p(ZG)^m$. By the 5 lemma, κ is an isomorphism. Also \bar{f} in (*) is an isomorphism. The right-hand square in (*) commutes since $p\kappa([px]) = pf(x) = \bar{f}([px])$. Therefore κ induces by the 5 lemma an isomorphism of $\tilde{K} \cap p(ZG)^m/p\tilde{K}$ with pN. This give an exact sequence of \mathbf{F}_pG -modules $0 \to pN \to \mathbf{F}_p\tilde{K} \to K \to 0$ which again splits and so

(3)
$$\operatorname{Hom}(\mathbf{F}_{p}\widetilde{K},M) \simeq \operatorname{Hom}(K,M) \oplus \operatorname{Hom}(_{p}N,M)$$

From (2) and using (3) we have

(4)
$$\operatorname{Hom}(\mathbf{F}_{p}N,M) \oplus \operatorname{Hom}(K,M) \oplus \operatorname{Hom}(_{p}N,M) \simeq \operatorname{Hom}((\mathbf{F}_{p}G)^{m},M) \oplus \operatorname{Ext}(N,M).$$

Since $(\mathbf{F}_p G)^m \simeq \mathbf{F}_p N \oplus K$, the Krull-Schmidt theorem gives

(5)
$$\operatorname{Hom}\left({}_{n}N,M\right)\simeq\operatorname{Ext}\left(N,M\right).$$

Taking fixed points gives the result.

COROLLARY. Ext
$$(N,M)^G \simeq \operatorname{Hom}_G(\mathbf{F}_p N, M)$$
 if N is finite.

Proof. $0 \to_p N \to N \xrightarrow{p} N \to \mathbf{F}_p N \to 0$ is an exact sequence of abelian groups with G-action. We will show ${}_p N \simeq \mathbf{F}_p N$ as $\mathbf{F}_p G$ -modules. Let N(p) = p-torsion of N, then $0 \to_p N \to N(p) \xrightarrow{p} N(p) \to \mathbf{F}_p N \to 0$ is exact. The proof will be by induction

on the exponent of N(p). If exponent N(p) = 1, then $N(p) \stackrel{p}{\to} N(p)$ is the zero map, so we are done. Assume exponent N(p) = e + 1 > 1. Now if $0 \to A \stackrel{\alpha}{\to} B \to C \to 0$ is an exact sequence of G-modules and maps, the snake lemma applied to the ladder

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

$$\downarrow^{p} \qquad \downarrow^{p} \qquad \downarrow^{p}$$

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

gives a 6-term sequence of F_pG -modules

$$0 \rightarrow {}_{p}A \rightarrow {}_{p}B \rightarrow {}_{p}C \rightarrow \mathsf{F}_{p}A \rightarrow \mathsf{F}_{p}B \rightarrow \mathsf{F}_{p}C \rightarrow 0.$$

Letting B = N(p) and $A = \{n \in N : p^e n = 0\}$ and using the complete splitting of the above sequence together with the induction hypothesis and the Krull-Schmidt theorem gives $_p N \simeq \mathbf{F}_p N$ as $\mathbf{F}_p G$ -modules.

Let now $1 \to H \to G \to Q \to 1$ be an exact sequence of groups and let N be a subgroup of H which is normal in G. Denote G/N by Q_N and consider the diagram

$$1 \longrightarrow N \longrightarrow G \longrightarrow Q_N \longrightarrow 1$$

$$\downarrow^i \qquad \qquad \downarrow^{\pi}$$

$$1 \longrightarrow H \longrightarrow G \longrightarrow Q \longrightarrow 1$$

In this situation we have the following lemma.

LEMMA 6. (i) Let A be a left G-module if $q \in Q_N$ and $u \in H^i(H,A)$, then $i^*(\pi(q) \cdot u) = q \cdot i^*(u)$.

(ii) Let B be a right G-module, if $q \in Q_N$ and $z \in H_i(N,B)$, then

$$i_{\star}(z\cdot q)=i_{\star}(z)\cdot \pi(q).$$

Proof. Let $P_{\star} \to \mathbf{Z}$ be a projective resolution of \mathbf{Z} over $\mathbf{Z}H$ and hence over $\mathbf{Z}N$. Let $\gamma : \mathbf{Z}G \otimes_N P_{\star} \to \mathbf{Z}G \otimes_H P_{\star}$ be a "lift" of $\pi : \mathbf{Z}(Q_N) \to \mathbf{Z}(Q)$. For $q \in Q_N$, denote by

$$f_{\star}^{q}: \mathbf{Z}G \otimes_{N} P_{\star} \to \mathbf{Z}G \otimes_{N} P_{\star}$$
 a "lift" of $R_{q}: \mathbf{Z}(Q_{N}) \to \mathbf{Z}(Q_{N})$

and by

$$f_{\star}^{\pi q} \mathbf{Z} G \otimes_{H} P \to \mathbf{Z} G \otimes_{H} P_{\star}$$
 a "lift" of $R_{\pi q} : \mathbf{Z}(Q) \to \mathbf{Z}(Q)$.

Then $f^{\pi q} \circ \gamma$ and $\gamma \circ f^q$ are chain homotopic since they are both "lifts" of

$$R_{\pi a} \circ \pi = \pi \circ R_a$$
.

Since the map induced by inclusion $i: N \to H$ can be computed using γ , the results i) and ii) follow.

We are now in a position to prove the main result of this paper. Recall the following definitions. Let \mathbf{F}_pQ be semisimple and M an irreducible \mathbf{F}_pQ -module. Let $\tau_M=$ number of occurrences of M in \mathbf{F}_pQ and if A is any \mathbf{F}_pQ -module, let $\tau_M(A)=$ number of occurrences of M in A. Define $\beta_s(A)=0$ if for every irreducible module $M\neq F_p$, $\tau_{F_p}(A)\geq \lceil\!\lceil \tau_M(A)/\tau M\rceil\!\rceil+(-1/2)^{s+1}$ and let $\beta_s(A)=(-1)^{s+1}$ otherwise. Define

$$\alpha_s = \max_{\substack{p,q \text{primes}}} \left\{ d_Q(F_p H_s(N)) + \beta_s(F_p H_s N), d(H_s(Q_p)) \right\}$$

where Q_q is a Sylow q-subgroup of Q.

Obviously only the primes $p \in \pi(N)$ and $q \in \pi(Q)$ make any contribution to α_s .

THEOREM 4. If $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ is a relatively prime extension with N, Q nilpotent, then

- (i) $d_G(\mathfrak{g}) = \alpha_1$
- (ii) If $1 \to R \to F \to G \to 1$ is any finite presentation of G, $d_G(\bar{R}) d(F) = \alpha_2$.

Proof. We know from Theorems 1 and 2 that it is sufficient to evaluate the numbers

$$\left[\!\!\left[\frac{\dim H^1(G,M)}{\dim M}\right]\!\!\right] \qquad \text{and} \qquad \left[\!\!\left[\frac{\dim H^2(G,M) - \dim H^1(G,M)}{\dim M}\right]\!\!\right]$$

for M an irreducible F_pG -module and $p \in \pi(G)$. Let $q \in \pi(Q)$, then from Lemma 1 and the remark following it, the only contribution will occur when $M = F_q$ and this will be $d(Q_p)$ in the first case and $d(H_2(Q_q))$ in the second.

Let $p \in \pi(N)$. If M is an irreducible $\mathbf{F}_p G$ -module, then Lemma 2 says M is trivial as an N_p -module $(N_p = p \text{ Sylow-subgroup of } N)$ and

$$H^{i}(G,M) = H^{i}(N_{p},M)^{G/N_{p}}.$$

From Lemma 4, the universal coefficient sequence

$$0 \to \operatorname{Ext}(H_{s-1}(N_p), M) \to H^s(N_p, M) \xrightarrow{\sigma} \operatorname{Hom}(H_s(N_p), M) \to 0$$

is an exact sequence of G/N_p -modules and in fact, since M is an elementary p-group, a sequence of $\mathbf{F}_p(G/N_p)$ -modules. Since $p \notin \pi(G/N_p)$, $\mathbf{F}_p(G/N_p)$ is semisimple so the sequence splits. Taking fixed points we have

(1)
$$H^s(G,M) \cong H^s(N_p,M)^{G/N_p} \cong \operatorname{Hom}_{G/N_p}(H_s(N_p),M) \oplus \operatorname{Ext}(H_{s-1}(N_p),M)^{G/N_p}$$

Since $H_s(N_p)$ is finite for s>0, the corollary to Lemma 5 gives for s>1

$$(2) Hs(G,M) \cong \operatorname{Hom}_{G/N_p}((\mathbf{F}_p H_s(N_p), M) \otimes \operatorname{Hom}_{G/N_p}(\mathbf{F}_p H_{s-1}(N_p), M)$$

while for s = 1 we have

(3)
$$H^{s}(G,M) \cong \operatorname{Hom}_{G/N_{p}}(\mathbb{F}_{p}H_{1}(N_{p}),M).$$

Because N is nilpotent, $N=\bigvee_p N_p$ and since the homology of a p-group is annihilated by p^K in positive dimensions, we have $H_s(N)=\bigvee_p H_s(N_p)$ for s>0. Hence the inclusion $i\colon N_p\to N$ induces an isomorphism $i_*: \mathsf{F}_pH_s(N_p)\to\mathsf{F}_pH_s(N)$ for s>0. I claim that $\mathsf{F}_pH_s(N_p)$ is trivial as an N/N_p -module. This follows from Lemma 6 for if $z\in\mathsf{F}_pH_s(N_p)$ and $q\in N/N_p=\ker\pi: G/N_p\to G/N$, then

$$i_{+}(zq) = i_{+}(z)\pi(q) = i_{+}(z).$$

Since i is an isomorphism $z \cdot q = z$ and $\mathbf{F}_p H_s(N_p)$ is trivial as an N/N_p -module. Now recall M is an irreducible $\mathbf{F}_p G$ -module and that it is trivial as an N_p -module. Consider $\mathrm{Hom}_{G/N_p}(\mathbf{F}_p H_s(N_p), M)$ and suppose it is different from zero. Let

$$0 \neq f: \mathbf{F}_p H_s(N_p) \to M.$$

Since M is irreducible as $\mathbf{F}_p(G/N_p)$ -module, f is an epimorphism. Let $m \in M$ and $q \in N/N_p$, m = f(z), $z \in \mathbf{F}_pH_s(N_p)$ and $q \cdot m = f(z \cdot q) = f(z) = m$. That is $M = M^{N/N_p}$ or M is trivial as an N-module. Therefore the only irreducible \mathbf{F}_pG -modules to be considered are those which are trivial as N-modules, i.e., irreducible \mathbf{F}_pQ -modules. Recalling that $\mathbf{F}_pH_s(N_p) \cong \mathbf{F}_pH_s(N)$ is also an \mathbf{F}_pQ -module, we obtain the formulas $(\rho_M=0)$ if $M=\mathbf{F}_p$, $\rho_M=1$ otherwise).

(i)
$$d_G(g) = \max_{p,q} \left\{ \left[\frac{\dim \operatorname{Hom}_{\mathbf{F}_p Q}(\mathbf{F}_p H_1(N), M)}{\dim M} \right] + \rho_M, dQ_q \right\}$$

$$(ii) \quad d_G(\bar{R}) - d(F) = \max_{p,q} \left\{ \left[\left[\frac{\dim \operatorname{Hom}_{\mathsf{F}_p Q}(\mathsf{F}_p H_2(N), M)}{\dim M} \right] \right] \right. \\ \left. + \rho_M, dH_2(Q_q) \right\}$$

where M is an irreducible \mathbf{F}_pQ -module and Q_q is a Sylow q-subgroup of Q.

Now it is obvious that

for any Q module A and also that $\max_{M \text{ irr}} \llbracket \tau_m(A)/\tau_M \rrbracket = d_Q(A)$. Using these observations, it is not difficult to show

$$\max_{M \text{ irr}} \left\{ \left[\left[\frac{\dim \operatorname{Hom}_{\mathsf{F}_p Q}(A, M)}{\dim M} \right] \right] + (-1)^{s+1} \rho_M \right\} = d_Q(A) + \beta_s(A).$$

It follows that the right-hand sides of (i) and (ii) are α_1 and α_2 respectively.

Since $\beta_s(A) \leq 1$, we have the following corollary. (Compare to the hyperelementary case.)

COROLLARY. If
$$\max_{q} dH_s(Q_q) > \max_{p} d_Q(\mathbf{F}_p H_s(N))$$
, then $\alpha_s = \max_{q} d(H_s(Q_q))$.

We conclude this paper with the following obvious question: What is the significance of the α_s for $s \ge 3$?

Addendum. It has been observed by the referee that the proof of the above theorem yields a calculation for $d_G(g)$ and $d_G(\bar{R}) - d(F)$ also in the case Q is not necessarily nilpotent. In the definition of α_s , replace $d(H_s(Q_q))$ by $d_Q(g)$ if s=1 and by $d_Q(\bar{S})-d(E)$ if s=2, where $1\to S\to E\to Q\to 1$ is any finite presentation of Q. With this definition of α_s , Theorem 4 remains correct even if Q is not nilpotent. In order to see this one merely observes that the first half of Lemma 1 shows that if M is an irreducible \mathbf{F}_pG -module with $p\in\pi(Q)$, then either $H^i(G;M)=0$ for all i or M is an irreducible Q-module and

$$H^{i}(G;M)=H^{i}(Q;M).$$

On the other hand if M is an irreducible \mathbf{F}_pQ -module, then M is irreducible as a G-module and again $H^i(G;M)=H^i(Q;M)$. It follows from Theorems 1 and 2 that

$$\max_{p \in \pi(Q)} \left\{ \left[\left[\frac{\dim H^1(G; M)}{\dim M} \right] \right] + \rho_M : M \text{ irreducible } \mathsf{F}_p G\text{-module} \right\} = d_Q(\mathfrak{g})$$

and

$$\max_{p \in \pi(Q)} \left\{ \left[\left[\frac{\dim H^2(G; M) - \dim H^1(G; M)}{\dim M} \right] - \rho_M : M \operatorname{irr} \mathsf{F}_p G\operatorname{-module} \right] \right.$$

$$= d_Q(\bar{S}) - d(E)$$

and the result follows.

REFERENCES

- 1. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956.
- 2. M. J. Dunwoody and A. Pietrowski, *Presentations of the trefoil group*. Canad. Math. Bull. 16 (1973), 517-520.
- 3. D. B. A. Epstein, Finite presentations of groups and 3-manifolds. Quart. J. Math. Oxford Ser. (2) 12 (1961), 205-212.
- 4. K. W. Gruenberg, Über die Relationenmoduln einer endlichen Gruppe. Math. Z. 118 (1970), 30-33.

- 5. ——, Cohomological topics in group theory. Lecture Notes in Math., Vol. 143, Springer, Berlin, 1970.
- 6. ——, Relation modules of finite groups. Regional Conference Series in Math., No. 25, Amer. Math. Soc., Providence, R.I., 1976.
- 7. ——, Symposia Mathematica, Vol. XVII (Convegno sui Gruppi Infiniti, INDAM, Roma, 1973), pp. 215-224, Academic Press, London, 1976.
- 8. K. W. Gruenberg and K. W. Roggenkamp, Decomposition of the relation modules of a finite group. J. London Math. Soc. (2) 12 (1975/76), no. 3, 262-266.
- 9. S. MacLane, Homology, Academic Press, New York; Springer, Berlin, 1963.
- 10. R. G. Swan, Minimal resolutions for finite groups. Topology 4 (1965), 193-208.
- 11. J. W. Wamsley, The multiplicator of finite nilpotent groups. Bull. Austral. Math. Soc. 3 (1970), 1-8.

Matematisk Institut Aarhus Universitet Aarhus, Danmark

Current address: Department of Mathematics University of Maryland College Park, MD 20742