THE THEORY OF MOTION GROUPS

Deborah L. Goldsmith

INTRODUCTION

In 1962 in his Ph.D. thesis, David M. Dahm defined the group of motions
with compact support of the compact subspace N in the manifold M to be the
group of essentially different ways of continuously moving N in M, so that at
the end of the motion, N has been returned to its original position. This paper
is mostly my exposition of Dahm’s unpublished work.

It was the idea of Hurwitz (see [18]), and later of Fox (see [12]), to envisage
abraid (see Figure 1) as a continuous 1-parameter family of changing configurations
of n distinct points in the xy-plane, where at each time ¢, the configuration is
given by the intersection of the braid with the plane at height z = {,. Thus, the
motion group .# (M,N) has its origins in the Artin braid group ([1], [2], [3]
and [4]).

The sections of this paper are

1. The Braid Groups

2. Motion Groups Defined

3. Properties of Motion Groups

4. The Dahm Homomorphism

5. The Group of Motions of a Collection of n Unknotted, Unlinked Circles
in R?

The background and motivation of the braid groups is discussed in Section
1. In Section 2 I define and give examples of motion groups. Section 3 is mostly

a list of short exact sequences containing the group of motions as a term, from
which this group may be computed. Section 4 defines a homomorphism

D: A#(M,N)— Aut (w, (M — N))

from the group of motions of N in M, to the automorphisms of w (M — N) induced
at the end of the motion.

The main result of the paper, in Section 5, is the following calculation: Let
C=C,U..UC,CR®’be a collection of n unknotted, unlinked circles in R®.
Let F(x,,...,x,) denote the free group on n generators, x;,¢ =1, ...,n; note that
(R = C)=F(x,...,x,).

THEOREM 5.4. The group of motions .# (R3 C) of the trivial n-component
link C in R® is generated by the following types of motions:
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Figure 1

> Xy-plane

R;: turn the it circle over. This motion induces the automorphism
. -1
PiX, DX, X, > X,, k#1.

T,: interchange the i™ and (i + 1)* circles. The induced automorphism is
TAX, DX, X X, X, X, kF L+ L
Aij: pull the i circle through the j** circle. This motion induces the automor-

y . -1
phism 0l X, XXX, Xy Xy, k#1.

The homomorphism D: .# (R? C)— Aut(F(x,,...,x,))is an isomorphism onto the
subgroup generated by p,, 7;, o, 1= Lj=n,i#J.

The maps and spaces in this paper are in the topological category; subspaces
N C M" are assumed to be compact, and M" is assumed to have no boundary.
Whenever the P.L. or differentiable categories are invoked, it will be to make
use of extra structures on N and M which, in the particular cases being considered,
it may be assumed exist. (For example, it is proved by Lashof, Moise, and others
(see [9]), that there is little difference between the three categories, if n = 3.)

The idea of a motion group was first conceived by R. H. Fox, and later made
rigorous by his student, David Dahm. I am publishing Dahm’s work because I
feel that the motion group is a useful mathematical concept, and to lay the
groundwork for a subsequent paper ([17]) in which I compute the group of motions
of a certain class of nontrivial links in S3

For the convenience of the reader we now list the notation used in the remainder
of the paper. The first six entries are introduced in Section 2 and the second
six in Section 3. Let M be a manifold, and let N C M be a compact subspace
in the interior of M.

1. E(M,N) is the space of embeddings of N in M, with the compact open
topology.

2. H(M) is the space of self-homeomorphisms of M, with the compact open
topology.
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3. 1,,: M — M is the identity map.
4. H(M,N) is the subspace {h € H(M): h(N) = N}.

5. H (M) C HM) and H_(M,N) C H(M,N) are the subspaces of homeomor-
phisms with compact support. These are topological groups.

6. iy: N— M is inclusion.
Let N,, N, C M be compact, disjoint subspaces.
7. (M) is the group = (H _(M);1,,).
8. #(M,N) is the group w, (H_(M,N);1,,).
9. H' (M,N) = {h € H_(M,N) and h: M — M is orientation preserving}.
10. #* (M,N) = w,(H] (M,N);1,,).
11. H (M,N,,N,)={(h€ H M): h(N;,)=N, i=1,2}
12. #M,N,,N,)==,(H,(M,N,,N,)1,,)

1. THE BRAID GROUPS

The definition of Artin’s braid groups, B, , is well-known (see [6], [7], [12],
[15], [16]). Hurwitz showed (in [18]) that B, could be viewed as the fundamental
group of a certain configuration space. This is, historically, the first motivation
for general motion groups. These terms are defined as follows:

(1) A configuration of n distinct points in the complex plane is any collection
{z,,...,2,} of n distinct complex numbers.

(2) The configuration space of n distinct points in C is the quotient space
C X ... X C\.diagonal modulo the actioun of the permutation group S(n) on n-tuples
—

n times
(z,...,2,) of complex numbers (disregard the order of the components.)

(3) Let ¢ be a particular configuration of n points in C. A motion of ¢ in C
is a loop in the configuration space based at ¢.

(4) The group of motions of ¢in C (which Hurwitz proved in [18] to be isomorphic
to B)) is the fundamental group of the configuration space of n distinct points
in C, based at ¢.

2. MOTION GROUPS DEFINED

The braid group as a group of motions admits an obvious generalization; that
is, replace C by any manifold, and replace ¢ by any compact subspace N C M
contained in the interior of M. For example, a motion of N = the trefoil knot
in M = S3 is illustrated in Figure 2.

Figure 2. Rotate the trefoil knot by 2w/3. Two motions are “multiplied” by
following one by the other. We will now make these ideas more precise.
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A

Figure 2

The analogue of the configuration space of n points in the complex plane is
the quotient space E(M,N)/h ~ h’ if h(N) = h(N’). There are several reasons
why it would be incorrect to define a motion to be a loop in this space. The
topology of E(M,N) is unmanageable. (This is unlike the differentiable category,
in which the same quotient space is the base of a fiber bundle with total space
E(M,N) and fiber H(N). See [20].) Also, we would like motions of N in M to
be extendable to motions of a neighborhood of N in M. This is violated by the
space E(M,N)/~ when M = 8? and N = any knot K; for then there is a path
in E(S% K) beginning with the knotted embedding i, and ending with the un-
knotted circle in S3, which pulls the knot taut on the string until it “pops.” This
path cannot be extended to a tabular neighborhood of K.

Now I will present Dahm’s definition of a motion group.

Definition 2.1. A motion of N in M is a path f, in H_(M) such that f,=1,,
and f, € H_(M,N). .

Definition 2.2. A stationary motion of N in M is a path f, in H_(M,N) (thus,
the configuration of N in M remains the same for all ¢. See Figure 3.)

Figure 3. A stationary motion of the trefoil knot: slide K along itself.
Y.«
J
Figure 3

Definition 2.3. The product g o f of two motions f,g of N in M is the path

{f2z 0=<t=<1/2
8o¢-1/2°f1 1/2=t=1.

Definition 2.4. The inverse g~ of a motion g of N in M is the path Bq1-4n°& L.

Definition 2.5. Two motions f,g, of N in M are equivalent (denoted by f= g)
if g7'of is homotopic, keeping endpoints fixed, to a stationary motion. (Thus,
stationary motions are equivalent to the trivial motion f, = i, for all ¢.)
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PROPOSITION 2.6. The set of equivalence classes of motions of N in M, with
multiplication induced by o, forms a group. (We will denote this group by .# (M, N).

Proof. # (M,N) is the relative fundamental group =, (H_(M), H_ (M,N),1,,).

Remark 2.7. The relative first homotopy “group” =, (G,S,e) is generally just
a set of homotopy classes of paths in G which begin at ¢ € S and end in S. Group
multiplication may be defined on the set when G is a topological group, S C G
is a subgroup, and e € G is the identity element, by using the multiplication
in G. This can be done in one of two ways: paths f,g may be multiplied pointwise,
(g-f),=8,°f, or as in Definition 2.3. It is not hard to show that the paths
g - f and g o f are homotopic, relative to their endpoints.

The following proposition should convince the reader that the definition of
a motion agrees with our original notion of a loop in a configuration space:

PROPOSITION 2.8. Let f,g be motions of N in M. Then f=g if and only
if f is homotopicto ', wheref' is a motion of N in M such that for allt, f, (N) = g, (N).

Proof. Since f= g, by Definition 2.5 and Remark 2.8 f is homotopic to g's,
where s is a stationary motion of Nin M. Let f’ = g-s. Then for all ¢, f; (N) = g,(N).

Now suppose f is homotopic to f’, with f; (N) = g,(N) for all . Then s =g~ - f’
is a stationary motion of N in M, and g "' o fis homotopic to s, so f = g by Definition
2.5.

EXAMPLES OF MOTION GROUPS

Example 1. The group of motions .# (M,p) of a point p in a manifold M
is the fundamental group 1, (M;p) of M based at p.

Example 2. The group of motions of n distinct points P= {p,,..,p,} C M
in a connected manifold M is the braid group B, (M).

We are already aware of Hurwitz’ proof that B_(C) is the fundamental group
of the space of configurations of n points in the manifold C. Examples 1 and
2 follow from Lemma 2.9, whose proof is left as an exercise for the reader.

LEMMA 2.9. The restriction map
(H.M),H (M, P),1,,)— (E(M,P),E(P,P),1,)

induces isomorphisms on all relative homotopy groups.

Lemma 2.9 is immediate if one first proves that any k-isotopy of n distinct
points in a manifold M, (that is, a continuous family of embeddings of n distinct

points into M parametrized by the k-simplex) extends to a k-isotopy of all of
M.

Example 3. If n > 2, then #/(M,P) = ® = (M;p,).
i=1
Example 3 asserts that the braiding phenomenon disappears in manifolds of
dimension greater than 2. A proof appears in [10].
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The final and most interesting example, the group of motions of n unlinked,
unknotted circles in R?, is computed in Section 5. Generators are the motions
which flip a circle, exchange two circles, and move one circle through another.

3. PROPERTIES OF MOTION GROUPS

Some general properties of motion groups which will be used in later sections,
are presented here.

Definition 3.1. The homomorphism d: .# (M,N)— #(M,N) is defined by
a([f1) = [f.], where f is a motion of N in M.

PROPOSITION 3.2. The following sequence is exact:

: ; .
w, (H,M,N);1,)— =, (H (M);1,)—> A (M,N)— %(M,N)L # (M).

Proof. This is just the long exact sequence for relative homotopy groups.

COROLLARY 3.3. Let M = S" or R", n# 4. Then the following sequence is
exact:

d
m (H (M, N);1,) > w (H (M);1,)—> A4 (M,N)—> Z#" (M,N)— 1.
Proof. wy (H} (8"); 15:) = 7w, (H(R")) = 1 if n # 4. Clearly,

image (3) C #* (M, N).

PROPOSITION 3.4. Suppose there is a subset K C M with the following two
properties:

(i) There is a 1,,-based path h in H(M) with h (N) C K.

(ii) Given any motion f of N in M such that f, = 1,,, there is a homotopic
motion g = f such that for all t, g,| K = 1.

Then the following sequence is exact:

d
1-> #AWMN)> Z#ZM,N)—> Z#M).

Proof. (Due to Dahm) An element in ker(d) can be represented by a 1,,-based
loop in H(M). By (ii) there is then a homotopic motion f, such that f,|K = 1.
We will show that f = the trivial motion. ‘

First define the following homotopy of f:

Ps,t: hs(3t) 05t51/3
= fae-1/3° A, 1/3=t=2/3
= Rty 2/3=t=1
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This is continuous because f, = 1,,. For all s, P, , = P, ; = 1,,, so that P, , is indeed
a homotopy. P, = f, and P, is a motion which pulls N into the subset K along
h,(N), holds N constant, and then pushes N back along (A ™") .(N). This description
of the motion P, strongly suggests that it is equivalent to the trivial motion of
N in M. To show that this is the case, we define the motion 7, equivalent to

P
T,,= hg, 0=t=1/3
=1,0h, 1/3=t=2/3
= h3[1_” 2/3=t=1.

T, is equivalent to P, by Proposition 2.8, because for all ¢, To,.(N) =P, ,(N). Now
T, = trivial motion by the homotopy T, ,:

T,, = hy, 0=<t=1/3
= h, 1/3=t=2/3
= Raysa-0) 2/3=t=1

Thus, f trivial motion. This means the image of w, (H (M);1,)— #(M,N) in
the exact sequence of Theorem 3.2 is the same as the image of 1 - .# (M, N).

Example 3.5. R”" is a manifold satisfying the hypothesis of Proposition 3.4,
where the subset K may be taken to be a neighborhood of infinity.

COROLLARY 3.6. The sequence 1 —» .# (R",N)— # " (R",N)— 1 is exact.
Proof. This follows from Corollary 3.3 and Proposition 3.4.
PROPOSITION 3.7. If h € H_(M), then # (M,N) = .# (M,h(N)).

Proof. h defines a homeomorphism
(H,M),H (M,N),1,)— (H_(M),H (M,h(N)), 1,,)

by h’—hh’h™' whenever h’ € H_(M); this induces an isomorphism
M (M,N) > A M,k (N)).

COROLLARY 3.8. If N, N’ are ambient isotopic subspaces of M,
then # (M,N) =.#4(M,N’).

Now let N, N, C M be a pair of disjoint subspaces.

Definition 3.9. The group of motions of the pair (N ,N,) in M (denoted
A (M,N,,N,)) is the relative fundamental group w, (H, (M), H (M,N,,N,); 1,,).

In Proposition 3.10, let e: #Z(M — N ,N,)— A (M,N_ ,N,) be induced by the
map (H (M- N,),HM—- N,,N,), 1y n5)—> H,M),H (M,N,,N,),1,) which
sendseach h € H_ (M — N,)toits extensione(h) € H_(M),such thate(h)|N, = 1N1'

Letp,: #(M,N ,N,)— .# (M, N,)be induced by the map
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(H,(M),H (M,N,,N,),1,)— (H (M), H (M,N,),1,,)

which sends each h € H (M,N,N,) to h € H_(M,N ).

PROPOSITION 3.10. Suppose N,,N, are disjoint compact subspaces of M.
Then the following sequence is exact:

e
A (M~ N,,N,)— #M,N,,N) 3 2 M N,

Proof. Let f be a motion of (N,,N,) in M such that [f] € ker(p,). Then
f=/f" where [’ is a stationary motion of N, in M. By [19], there is path g in
H,(M — N,,N,) such that for all ¢, g,|N, = f’| N,. By Proposition 2.8, e(g) = f’.
So, image(e) = ker(p,).

4. THE DAHM HOMOMORPHISM

The Dahm Homomorphism is a map D: .# (M, N) — Aut (w,(M — N)) if M is
non-compact, and a map D: .# (M, N)— Out(w,(M — N)) if M is compact (and
therefore closed, since dM = (). The first map was defined by David Dahm in
his Princeton thesis ([10]).

1. In the first case, D is defined as follows:

Since M is non-compact, we may choose a path p:(0,1) - M — N such that
the path p(x) approaches an end of the manifold M as x— 0. Suppose f is any
motion of N in M. Since f, has compact support and the unit interval is compact,
there is an ¢ > 0 such that for all x <e¢, and for all £ € [0,1], f,(p(x)) = p(x).
Now f,: (M — N,p())— (M — N, p)) induces an automorphism

(fy)s:7, (M — N;pE))— w, (M — N; p(e)).

Define B, . () = (f))«.

If ¢’ <e, then let b, = p(et + &’ (1 — t)) be the segment of p between & and
¢’. There is a natural 1s0m0rphlsm¢> w, (M~ N;p(e)) >« (M N; p(¢’)) obtained
by mapping a loop g based at p(e) to the loop bgb™' based at p(c’). Now

doB, . (flod' = B, (f), since f, leaves b fixed. Thus B,.(f) and B, . (f) are
the same automorphism, modulo the isomorphism ¢.

Next, let p’: (0,1) > M — N be a different path such that p’(x) approaches
the same end of M as the path p, as x— 0. If f is a motion of N in M, then
there is an € > 0, and a path 3: [0,1] — M — N, such that 3(0) = p(e), 3(1) = p’ (¢),
Vxf(d(x)) =8(x), and for all x=eg, for all ¢t € [0,1], f,(p(x)) =p(x) and

f,(p' (x)) = p’ (x).

Then B, (f) is the same as B, (f), in the same sense that B, .(f) and B, (f)
were shown to be the same. We see that (f,).:7 (M~ N)—> =, (M N) is well-
defined, up to the choice of an end of M. Fix an end of the mamfold M, and

define B(f) = (f,)«-
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Let g be a motion of N in M such that f = g, then B(f) = B(g) since
fi,8,:(M,N)— (M,N)
are isotopic homeomorphisms in H (M, N). Then define
D: A#(M,N)— Aut(wm, (M — N))

by D([f]) = B(f). The map D is a homomorphism because B(go f) = (g;)«° (f1) %>
and because B(f ') = (f,)x '

2. In the second case, D is defined as follows:

Let f be a motion of N in M. Then f= g, where g is a motion of N in M
satisfying V¢ g,(e) = e, for some point e € M — N. Define

B(f) = (g1)sim (M — N;e)—> w, (M — N;e).

Now B, is well-defined, up to composition with inner automorphisms of
w, (M — N;e). SoB,(f) € Out(w, (M — N;e)).

Suppose e’ € M — N is a different basepoint, and let 5: [0,1] - M — N be an
arc between e and e¢’. Then f= g, where g is a motion of N in M such that for
all s,t € [0,1], g,(b(s)) = b(s). Now if &: w, (M — N;e)— w, (M — N;é') is defined
asin 1, then B _(f) and B, (f) are really the same outer automorphism of w, (M — N),
in the sense that ¢ o B_(f) o b~ =B, (f).

Define D: .# (M,N)— Out(w,(M — N)) by D([f]) = B.(f). The proof that D
is a homomorphism is essentially the same as in 1.

5. THE GROUP OF MOTIONS OF A TRIVIAL LINK
OF UNKNOTTED CIRCLES IN R?

Letthetriviallink C = C, U ... UC, C R®bea collection of n unknotted, unlinked
circles, C;. The exact position of C is irrelevant to the calculation of .# (R3,C),
by Corollary 3.8; so we will assume that C is contained in the xy-plane, in the
unit cube I* C R% Let x; C I°, i =1,...,n — 1, be the portion of the plane y = ¢,
contained in I°, where the plane y = ¢, separates C; from C,,,. Denote by R,
the region between X;_, and X, in I°, containing the component C,. Let [, ...,1,
be vertical line segments between the planes z =0, z = 1, such that I, touches
C; (thus, [, C R, i=1,..,n). Let D,,...,D, be disks in the xy-plane such that
aD, = C,.

Choose a basepoint e € R’ — I°. Let b, C CI(R® — I°) be a line segment which
joins e to /;, and let %; be a small circle winding once about C,, which intersects
l;. Then m, (R® — C;e) is the free group F(x,,...,x,) on the generatorsx,,i = 1, ...,n,
where x; may be represented by a loop which runs around k; once, and then runs
back to e along /; and b,.

If the link C has only one component (as in Proposition 5.1), we will drop
all subscripts.
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PROPOSITION 5.1. Let C C R?3 be an unknotted circle. Then the Dahm homo-
morphism

D
M (R%,C)— Aut(F(x)) =2,

is an isomorphism.

.+ Proof. D is surjective, because the motion which flips the circle C induces

the automorphism x — x~1.

By Corollary 3.6 and Section 4, D factors as follows:
d
# (R?,C)— #*(R? C)— Aut(F(x)),

where 9 is an isomorphism. Therefore, D is shown to be injective if we can prove
that for each homeomorphism f & H. (R? C) such that f,: F(x)— F(x) is the
identity, f is isotopic in H} (R? C) to 1.

The proof will proceed in three steps.
Step 1. f=f'"in H! (R? C) such that f|(R® — I®) = id, and f(I) N intD = Q.

Proof. We may assume that f(R — I°) = identity (since f has compact support),
and by [9], we may assume that fis a P.L. homeomorphism. Consider a projection
of C and f(I) onto the plane z = —1. We may arrange this so that all points
of intersection in the projection are double points. We may put a parameter on
! so that f(/(0)) is the point at which I/ touches C and f(I(1)) is the endpoint
on the plane z = 1. We may arrange the projection so that f(I(1)) lies outside
the projections of the circle and so that f(Il(e)) lies outside the projection of the
circle for e close to 0.

There are four steps involved in the process of unwinding f(I).

(i) There exists an isotopy moving f(/) in such a way that the new projection
is identical to the old projection except that if f(I(¢,)) is a crossing point and
f(¢;)) is the other point at the crossing then the new f(I(¢,)) lies over f(I(t,))
if and only if ¢, < ¢,. To see this suppose that f(l(¢,)) lies over f(l(¢,)). We move
f((¢,)) and a neighborhood of it back along f(I) by isotopy until we reach a small
neighborhood of the point where f(I) touches C. Then we move this piece of arc
over f(D) and back along the other side of f(D). Then we move the arc back
along f(l) to its original position in the projection. Step (i) does not change the
projection of f(l).

(ii) We now look at the overpasses and underpasses of f(I) with C in the
order in which they occur. We will write o for an overpass and u for an underpass.
We may then write a sequence of o’s and u’s to represent the crossings as they
appear in order. For example, ouuo means an overpass followed by two underpasses
followed by an overpass. If o is never followed by o and u is never followed by
u then proceed to step (iii). Otherwise we eliminate the pairs of similar crossings.
Since between the two crossings f(I/) lies under the preceeding part of f(I) and
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over the following part we may move f(I) so that the two crossings disappear.
At the conclusion of step (ii) f(!) crosses C in fewer places than before. Return
to step (i). This process must terminate since there are only a finite number of
crossings. Hence, we will eventually proceed to step (iii).

(iii) We either have no crossings of (/) with C, in which case we proceed
to step (iv), or we have ouou . . . ou or uouo . . . uo as our pattern of projections.
By rotating the points in the neighborhood of C around C (a precise definition
of this operation is given below) we may produce a diagram in which we have
Uo .. .Uuoou .. .ouor ou . . .ouuo . . . uo as our pattern of projection.

We now return to step (i). When step (iii) is next reached there will be no
more crossings of f(I) and C and so step (iv) will be reached.

By rotation we now mean that we pick a tubular neighborhood N = C X D?
of C. (Here, D? is the unit disk in R®.) Then on each meridial disk ¢ X D? of
N perpendicular to C, at ¢ € C, we move the points within radius 1/2 around
the center by a complete rotation of 2m. For points at distance s, 1/2 =s =<1,
we move the points a rotation of 4w (1 — s).

(iv). f’(l) now crosses C at no points at all. Hence f’ (/) N intD = Q.
Step 2. [’ =f"in H} (R?C) such that f’|R®> — I’ = id and f”| D = id.

Proof. We may assume that f’|C = id, since #*(C) =1, and every isotopy
of C may be extended to an isotopy of R3, without destroying the properties of
[’ (mamely, f’ is P.L., and f’|(R® — I®) = id). Now if f’(D) and D have disjoint
interiors, then f' (D) U D is a P.L. 2-sphere in I3, which bounds a 3-cell B (by
the Schoenflies theorem, [8]). There is then an isotopy of f’ to f” in H' (R?,C)
which has its support in a neighborhood of B, and which moves f’ (D) onto D. = f”(D).
It is an easy matter to adjust f” so that f”| D = id. Therefore, it remains to eliminate
circles of intersection of f’ (D) with int(D).

Let ¢ be an innermost such circle in D. Let d C D be the disk such that dd = ¢,
and let d’ be the disk intercepted on f(D) by c. Since (intd) N (intd’) =@, the
above argument implies the existence of a 3-cell & C I® bounded by the 2-sphere
d U d’'. Now b does not contain C, because d N d’ is disjoint from f’(l) (this
follows from the property f’ () N intD = @). There is an isotopy, with support
in a neighborhood of b, which moves d’ through b onto d, and then past d to
the other side of D, thereby removing at least one circle of intersection of f'(D)
with int(D) (namely, ¢) without creating any new ones. In this way, all of these
circles may be removed.

Step 3. f” = 1pin H} (R, C).

Proof. The map f” is isotopic in H} (R3,C) to f”, which is the identity on
a 3-cell neighborhood N(D) of D. The space between I® and N(D) is S? X I,
by the annulus theorem. Step 3 now follows from a lemma of Gluck’s [13].

THEOREM 5.2. The Dahm homomorphism D: (F?",C) - Aut(F(x,...,x))) is
injective.

Proof. As in Proposition 5.1, we need only to show that if f € H! (R® C) is
a homeomorphism inducing the identity automorphism
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[« Fx,,..,x )—> F(x,..,x,),

then f is isotopic in H} (R® C) to 1,s. The proof of this proceeds in three steps.
Stepl. f=f"in H! R?C)where f|R>—I°)=id,and f(l,)C R, i=1,...,n.

Proof. As in Step 1, Proposition 5.1, we may assume that f [(R3 —I?) =id,
and that fis a P.L. homeomorphism.

Let \, denote the arc f(J,). Take a projection of I’ to the plane z= —1 in
which there are no points of higher order than double points in the projection

of ( U )\,-) U C. Parametrize A\, i = 1,...,n, so that \,(0) lies on C;,. We may
i=1

assume that for small values of the parameter, the projection of \; lies outside
the projection of C,, i =1,...,n. (If this is not so, we can arrange for it to be
so by a small isotopy of A;.)

We will show that for each \,, 1 = k& < n, there is an isotopy which is supported

in I°, moving \, into R,, without moving ( U )\,-) U C. Once this has been shown,
i#£k
the proof of Step 1 will be complete.

Consider the overpasses, 0;,, and the underpasses u;, of the projection of A,
with the projection of C; as they occur in order on \,. We show that we can
move A, so that o, is not followed by o; and u; is not followed by u;. If this
condition is met, we will have each o; followed or preceded by u; and each u;
followed or preceded by o,. Now the projection of A, cannot cross the projection
of C; an odd number of times in succession. So there exists a natural pairing
of the crossings of the same index so that we may write x; for o; followed by
u; and x; ' for u, followed by o,. Hence the patterns of crossings can be expressed
by writing W= xii xf:. Notice that W is a reduced word in F'(x,,...,x,) since
0; is not followed by o; and u; is not followed by u;. However, if we are to have
that the induced automorphism f, : F (x,, ...,x,) = F(x,,...,x,) is the identity, then
we must have W= x; for some s. Hence if we move \, in such a fashion that
no o, follows o; and no u; follows u, then \, crosses no circles except C,.

We shall only show that the isotopy exists which removes pairs of overpasses.
The same argument removes underpasses.

Move that part of A\, between the crossings so that A\, lies entirely over all
\;, i# k. This is done by moving a small piece of X\, along \, until we reach
C,. Then we move this piece along one side of the disk f(D,), over the boundary
of this disk, and back along the other side of f(D,). Then move the piece back
to its original position in the projection. The projection has not been disturbed
except that A, now lies above X\,.

Now move A, so that the part of A\, between the two crossings lies entirely
above the rest of A\,. This is done without disturbing the projection in the same
manner as in the preceding argument, using the disk f(D,) instead of f(D,). At
the conclusion of the operation we have the part of A, between the crossings
lying entirely over the rest of the projection. Hence we may move A, so as to
remove the two overpasses. This reduces the total number of overpasses and
underpasses by two. Hence this operation will terminate.
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This shows that we can move \, so that its projection intersects only C,. Move
A, without disturbing the projection so that A, lies above A;, i # k. This is done
as above. Then, since the projection of A, lies above the rest of the projection,
with the exception of C,, we may move A, into the region R,. In none of these

isotopies has the region R® — I°, or the graph | {J A i) U C, been moved.

ik

U x.=id

i=1

Step 2. f'=f"in H} (R®,C) satisfying f”|(R® — I*’) = id and f”

Proof. The proof is by induction. Suppose f’ is a P.L. homeomorphism satisfying
f/IRR=I’)=id, f\)CR,i=1,...,n, and f’|X,=id if i <k We will show
that f'=f” in H (R% C) such that f” is a P.L. homeomorphism satisfying
f/IR*—I*)=id, f"\) CR,,i=1,..,n,and f"|X,=id, i < k.

Suppose [intX,] N f'(X,) =@. Then, by the Shoenflies theorem [8], there
is a 3-cell B C I’ whose boundary is the P.L. 2-sphere X, U f’(X,). Now B is

disjoint from U \; (wWhere \; = f"(l;), as in Step 1), because \; C R,, i =1,...,n,
i=1
and therefore A\, N X, =@,i=1,...,n. (Clearly A, N f'(X,) =@ sincel, N X, =@,
t=1,..,n) Thus B is also disjoint from C, as well as from U X, (because
i<k

f’ U X, =id). There is an isotopy of f’ to f” in H} (R®,C), supported in a
i<k

neighborhood of B, which moves f’(X,) through B, onto f"(X,) = X,. Clearly,
this isotopy moves neither R*—1I°, C, nor |J \;; hence f’|(R®—I°)=id,

i=1
f"\,) CR,,i=1,..,n, and f"(X,) = X,. From here, it is easy to alter f” in a
neighborhood of X ,, so that f’| X, = id.

If [int(X,)] N [f (X,)] # @D, then choose an innermost circle of the intersection
in X,, and proceed as in Step 2 of Proposition 5.1. This completes the induction
step.

Step 3. f’ = 1gsin H! (R? C).
Proof. Apply Proposition 5.1 to the restrictions f”’|R;, i=1,...,n.

Now let the motions R,2,T;, A ., and their induced automorphism

ije
Pi»Tir &y € Aut(F(xy,...,%,)),

respectively, be those defined in the Introduction.

THEOREM 5.3. Let T(F) be the subgroup of Aut(F(x,,...,x,)) consisting of
all automorphisms of the form a:x;— qixj(i,qfl, t=1,...,n, where j(i) is some
permutation of the numbers 1, ...,n. Then T (F') is generated by the automorphisms
Pi» Ti» 0y, L=0, = n, i #j.

Proof. (This is an adaptation of an argument due to Artin. See [3] or [7],
Theorem 1.9, p. 30.) It suffices to show that each automorphism a: x,— ¢;x;q;}
is a product of the o, i # j.
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We assume that ¢,x;q;" is a reduced word in F(x,,...,x,) and hence g, is
a reduced word. We will show that « is a product of a; by induction on the
sum of the lengths of the g, where by length we mean the number of letters

in q;. Let I(g) be the length of q. Our induction is on 2 l(q,;).
i=1

Since a is an automorphism, there exist &, i = 1,...,n, such that «(§;) = x,.

Let &, = [] x4&2 where M (i,j) # (i, + 1). Then

Jj=1

vi
_ _ W) 1
x;=alg) = H qnij) Xniip Dnii-
j=1

Since q,x;q; "' is a reduced word and since A\ (i,j) # \ (i,j + 1) we must have
cancellations operating only at the places where the ¢’s meet.

If we write the above expressions as x, = ... g, x%iq ! g;x!q;"... we must have
one of four cases:

1) g;'=ax;q;',0or 2) g;'=ax;'q;'or 3) qg,=q;x,a,0r 4) q,=q,x'a,
where a is a reduced word. By changing i to j and taking reciprocals of equations
(3) and (4) we reduce the number of cases to be considered to two.

In both cases we have I(g;) =l(a™") + 1+ l(q,), and so I(g;) > l(g;a™'). If
case (1) holds, then
Qo Xy qrXiqy,  k#AL
X 4;%9779:%:9719,%9; =q,a 7 x,aq; "
and the lengths of the ¢’s for aa; is smaller than those for a.
If case (2) holds, then

o X, > %, G, k#i
x> ;%705 q:%,9; ¢,;%,9; =q;a” x;aq;
and the lengths of the ¢’s for aa ;' is smaller than those for a.

Proof of Theorem 5.4. The proof is an immediate consequence of Theorems
5.2 and 5.3.

This provides us with a complete classification of the motions of unknotted,
unlinked circles in 3-space.
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