A GEOMETRIC CONDITION WHICH IMPLIES BMOA

David A. Stegenga

1. INTRODUCTION

The space BMOA is the collection of analytic functions on the unit disc D
which are in the Hardy space H ! and whose boundary values belong to the space
BMO of John and Nirenberg [6].

Recently, Hayman and Pommerenke [5] discovered a geometric characterization
of all regions () with the property that an analytic function with values in Q
will belong to BMOA. Their characterization uses logarithmic capacities.

At about the same time I independently discovered the sufficiency result along
with several applications and generalizations to known results. These applications
are given below along with the best norm result which involves a property of
logarithmic capacity which may be of independent interest.

2. STATEMENT OF THE RESULTS

The geometric characterization given in [5] is that there exist an r > 0 and
3 > 0 such that Cap (D(w,r)\Q) =38 for all w in Q. Here D(w,r) is the closed
disc of radius r centered at w and “Cap” denotes the logarithmic capacity of a
set.

For a region Q (Q is an open, connected subset of C) let

C D(w, Q
() = inf ap (D (w,r)\Q)
wee  Cap (D(w,r))

so that 0 =< ¢ = 1. We could replace the denominator with r since the capacity
of a disc is its radius. If in the definition of & we replace Cap with a measure,
then the condition ¢(r,) = 8 > 0 would not imply a stronger result for large r,
i.e., the ratio could remain constant. Surprisingly, the situation with capacities
is quite different.

THEOREM 1. For a region Q, lim ¢(r) = 1 provided that ¢ (r) # 0 for some
r > 0. In addition, there exists an r > 0 with 27° < ¢ (r) = 27V/°.

The next is a refinement of that given in [5].
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THEOREM 2. There are positive functions c,(t) and c,(t) defined on (0,1)
satisfying the following conditions:

Let Q be a region with 0 < a =< ¢(r) = b <1 for somer > 0. Then
e, (B)r=sup || fllx =c,(a)r

where the supremum is taken over all analytic functions on D with values in £
and ||-|| « denotes the BMO norm.

Moreover, c,(a) is dominated by a constant multiple of log 2/a and c,(b) is
bounded from below by a positive constant on the interval (0,1/2] but tends to
zero as b tends to one.

We remark that the above result restricted to the case where b is small can
be obtained by the methods in [5]. However, for small & the constants c,,c, are
not comparable and Theorem 1 is needed to guarantee that &(r) can be chosen
sufficiently large so that these constants are comparable.

COROLLARY 1. Let Q be a region with &(ry) > 0 for some r,. Then there
existanr > 0 with 27° < &(r) = 27V/° and the supremum of || f|| . for f with values
in Q) will be comparable to r.

We now give some geometric conditions of a more elementary nature which
imply BMOA. Let m,(f) denote the Lebesgue measure of the set of numbers r,
0 = r =< ¢, for which the circle |z — w| = r is contained in Q.

o m,,(r)
COROLLARY 2. The condition sup

wen r

=d<1 implies that
d(r)=1/4(1 - d).

Proof. The circular projection mapping z into |z| decreases distances and hence
decreases capacity, see Pommerenke’s book [7, Theorem 11.3, p. 337]. Taking
w to be the origin we see that the circular projection of D (w,r)\Q is a set whose
complement in the interval [0,r] has measure m,(r). Since the capacity of linear
set is at least one quarter of its length the result follows.

COROLLARY 3. If the image f(D) of an analytic function f does not contain
circles centered in f(D) of radius larger than r then f is in BMOA and || f||« < cr
for some constant c independent of f and r.

COROLLARY 4. If the vertical cross-sectional measures of f(D) are bounded
by d then fis in BMOA and || f||+ = cd.

Proof. Take Q) = f(D) and r = d then D (w,r)\Q contains a linear set of mea-
sure at least equal to d.

We remark that Corollary 3 is a generalization of Pommerenke’s result [8]
that a univalent function f is in BMOA if and only if f(D) contains no discs
of arbitrary large radii. Obviously, if a circle is contained in a simply connected
region then the entire discis also. Also, Corollary 4 is a generalization of Baernstein’s
result [2] that a nonvanishing univalent function f satisfies log f € BMOA. In
this case log f(D) has vertical cross-sectional measures bounded by 2. See also

[9].

—
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Finally, let O, (r) be the component of D (w,r) N Q containing w.

. _ area(Q,, (r))
COROLLARY 5. If Q is a region and sup————— = d” < 1 for some

we 11-]‘2

2
r > 0 then f(D) C Q implies that f is in BMOA and || f]| s = crlog a2

Proof. A calculation shows that wm,(r)> < area (Q,,(r)) and hence Corollary
2 and Theorem 2 imply the norm estimate.

A special case of Corollary 5 is the case that area (f(D)) is finite and the
resulting norm inequality is that || f||« = ¢ (area f (D))’ This problem was first
considered in [1, Theorem 1] where it is shown that finite area implies H>. Later,
this result was improved in [3] to all H” for p < . Since BMOA is contained
in H? for all p < x, see [6], the above corollary generalizes these results.

3. PROOFS OF THE THEOREMS

The proofs of Theorem 1 and Theorem 2 are based on the following lemmas.

LEMMA 1. There is a positive constant t, satisfying

1 t
* 2tr) = —— 1 4
v b exp( t—z[ogda(r) ’ D

whenever d(r) >0 and t = t,.

Proof. Assume that ¢(r/2) = 3 > 0 then Cap (D (w,r/2)\Q) = 8r/2 for all
w in Q. It follows that Cap (D (w,r)\Q) = dr/2 for all w in C. Fix an odd integer
n=2k+1land R= Q1+ n/3)r. Put

2w 1 21 1
A, = {z:R—er |z]sR;———-(m——)s arg z=< ——-(m+—-)}
n 2 n 2

form =0, 1, ..., n — 1.If nissufficiently large a computation showsthat A, contains
a disc of radius r and hence there is a subset E,, of A,,\Q with Cap (E,) = dr/2.
Then there exist a positive measure p,, on E, with unit mass and such that
the potential

Ut (2) = S log dp.,, (€)

|z — Z]
is bounded by log [2/8r] [4, p. 235].

If p=— z i, then the inequality sup U*(z) = ¢ where E = U E_, implies

the lower bound CapE= ¢ . Since E C D(0,R)\Q this will result in a lower
bound estimate for ¢ (R).



250 DAVID A. STEGENGA

Letz € E,,., then for U, = U*™ we have

T
Ur@) = — | Uy 1@ + Uy @) + Uy 1y @) + Um(z)]
n L rest
1 [ 2 1
=—|3log— + sup log ]
nl or 2 t€E, |z — (]
1] 2 * 1
=—13log—+2 log , ]
nl or m2=2 (R — 2r)|e®™ 1/ — 1|
1[ 2 ®=1)/n 1
=—]3log— +2n log - dt:l
n | or SO (R — 2r)|e*™ — 1]
k-1 1 3 1z _
Since = — — —and log |e*™ — 1|d¢ = Owe get after some simplifica-
n 2 2n o

tion that

3 2 R
sup U"(z) = — log—8—+log ——2] +log2
n

2€EE r
+ log —log R.
- 2r
n+2
We now set R = {r and assume that (1 + n/3)r=R = (1 + )r. Ift=t,

where t, is sufficiently large then the value of n will be large enough to apply
the above argument. Since n/3 = ¢t — 2 we deduce that

3 t 2 2
log b (tr) = ———[lo + lo (1-—-—)+lo 4]+lo (1——)
g — | log 20/ g ; g g 5
1 t 2
> — [log + log 4] -
t—2 & (r/2) t—2
Replacing r with 2r in the above yields (*).

LEMMA 2. If ¢(r) # 0 for some r>0 then there exists an R >0 with
25 <$pR)=<27°.

Proof. Since rd(r) is a nondecreasing function, ¢(r) has left and right limits
everywhere. In fact, by the outer regularity of capacity we see that ¢ is continuous
from the right. By (*), the set {r: ¢ (r) = 27°} is nonempty. Let R be the infimum
of this set sothat R>0,¢(R—0)=<2 %, and $(R)=d(R +0) =275

Let € > 0. Since the capacity of a semicircle of radius R is R/V 2, an open
neighborhood will have capacity bounded by (1 +e)R/V 2. Let w’' € @ and
R’ < R. If R’ is sufficiently close to R then there exists w € Q with
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Cap (D (w,R\DW',R")) < (1 +)R/V 2.
Put E = D(w,R)\Q and E’ = D(w’,R’)\Q. Then E can be split into two sets

E,,E, where E, C E' and Cap(E,) =(1 + s)R/\/ 2. Now the subadditivity of
capacity gives

1 2k /1 1/1 2R
1/lo =1/lo + og
/ gCapE gCapE1 Cap E,
2V 2
= 1/log + 1/log
apE’ 1+e

By letting R’ tend to R so that Cap E’ tends to R$(R — 0) and by letting €
tend to zero we deduce that

2 —
=1/log—— + 1/log 2V 2

1/1 =
Mlog ") &R — 0)

Since ¢ (R — 0) = 27° this implies that ¢(R) =27/, Thus, 2 °<=¢R)=2°
See [7, Chapter 11.1] for the regularity and subadditivity results used in the
above.

The author is indebted to the referee for suggesting the above lemma.

Proof of Theorem 1. Clearly (*) implies lim ¢(r) =1 and the remaining

r—o

statement is Lemma 2.
Proof of Theorem 2. 1In [5] it is shown that:
(1) $(r) = & > 0 implies || f]| « = ¢(8)r whenever f takes values in Q.

(2) There exist 0 < 3, < 1 such that &(r) = 3, implies there exists a function
f with values in Q and || f||« = cr.

Actually, the upper estimate given in [5] is of the form c¢(§,r) but an easy
dilation argument places it in the above form.
Since lim ¢ (r) =1 we can define r, = inf {r: $(r) = 8,}. Thus, there exists

r—oo

ro=r, = 2rowithdé(r;) = 8,and hence (1) impliessup || f||+ = ¢(3,) 2r,.In addition,
d(ry/2) <3, so (2) implies sup || f||+ = cry/2. Thus, the best norm estimate is
given by r,.

By (1) ¢, (¢) can be taken to be constant on [3,,1). By (2) ¢, (¢) can be constant
on (0,3,).

Let 8 <3, and ¢(r) =8. Assuming as we may that 3, is small we use
t=1log2/3=1¢,in (*) to get ¥(2(log 2/8) r) = 3, where 3, is independent of 3 < 3.
Hence by (1) || fll« =¢(,)2(og 2/3)r < c(log 2/3) r whenever f takes values in
Q. It follows that ¢,(8) can be chosen to be a constant multiple of log 2/3 on
(0,3,) and hence also on (0,1).
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Finally, we must determine ¢, (8) for 8, <3 < 1. Let 8, <38 <1 and ¢(r) 3.

Now r = 2¢r, for some ¢{. From (*) and the fact that ¢(r;) = 8, we obtain an upper
bound for ¢ in terms of 8, say 8t = {(3). Since || f|}+ = cr,/2 for some [ with
values in Q and 2r, = r, we obtain || f||. = ¢¥ @) ' . Thus, taking ¢,(3) = c¢ () "
for 3, < 8 < 1 we are done.

10.
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