STABILIZATIONS OF PERIODIC MAPS ON MANIFOLDS

David C. Royster

1. INTRODUCTION

In this paper we will study the graded unrestricted unoriented cobordism ring of involutions, $I_*(\mathbf{Z}_2)$, and an endomorphism, Γ , of $I_*(\mathbf{Z}_2)$ of degree +1. We use this endomorphism to define ideals in $I_*(\mathbf{Z}_2)$ by

$$\mathscr{A}_n = \{x + \Gamma^n(x) : x \in I_*(\mathbf{Z}_2) \text{ and } \varepsilon(\Gamma^j(x) = 0 \text{ for } 0 \le j < n\}.$$

The ideal \mathscr{A}_1 plays a more important part in our theory than the remainder of these ideals. We prove that $I_*(\mathbf{Z}_2)/\mathscr{A}_1$ is a polynomial ring over MO_* and over \mathbf{Z}_2 .

We apply this result about $I_*(\mathbf{Z}_2)/\mathscr{A}_1 \equiv \Lambda(\mathbf{Z}_2)$ to prove Boardman's five-halves theorem. After noting that $\Lambda(\mathbf{Z}_2) \equiv MO_*(BO)$, we use the results of [2] to exhibit explicit polynomial generators for $\Lambda(\mathbf{Z}_2)$ whose underlying manifolds generate MO_* as a polynomial ring over \mathbf{Z}_2 . We then consider two filtrations on $\Lambda(\mathbf{Z}_2)$. After seeing how these filtrations behave on the polynomial generators for $\Lambda(\mathbf{Z}_2)$ and on polynomials in these generators, the Five-halves theorem and its converse follow. We then look at an application of this theorem and its method of proof to a conjecture about flat manifolds.

We notice that certain elements in the ideals \mathscr{A}_n behave much like the polynomials in $1 + t^n$ in $\mathbf{Z}_2[t]$. Knowing how to factor the cyclotomic polynomials and, hence, $1 + t^n$ in $\mathbf{Z}_2[t]$, we are led to a factorization of the elements $x^k + \Gamma^n(x^k)$ in \mathscr{A}_n in an analogous manner.

2. PRELIMINARY MATERIAL

We will use $I_*(\mathbf{Z}_2)$ to denote the graded unrestricted unoriented cobordism ring of smooth manifolds with involution; $MO_*(\mathbf{Z}_2)$, the graded unoriented cobordism ring of smooth manifolds with fixed point free involutions; MO_* , the graded unoriented Thom cobordism algebra; and \mathcal{M}_* , the graded unoriented

cobordism ring of principal O(k) bundles with $\mathcal{M}_n = \sum_{j=0} MO_j(BO(n-j))$ and $MO_n(BO(O)) = MO_n$, by definition.

Conner and Floyd completely determined the additive structure of $I_*(\mathbf{Z}_2)$ in the following theorem.

Received October 23, 1978. Revision received June 1, 1979.

This work formed a part of the author's dissertation at LSU.

Michigan Math. J. 27 (1980).

THEOREM 2.1. [5;28.1] The sequence of MO** modules

$$(2.2) 0 \rightarrow I_*(\mathbf{Z}_2) \xrightarrow{\iota_*} \mathcal{M}_* \rightarrow MO_{*-1}(\mathbf{Z}_2) \rightarrow 0$$

is split exact.

Define the endomorphism $\Gamma: I_n(\mathbf{Z}_2) \to I_{n+1}(\mathbf{Z}_2)$ as follows. Consider the circle as $S^1 = \{z \in \mathbf{C}: ||z|| = 1\}$. Take $\{T, M^n\}_2 \in I_n(\mathbf{Z}_2)$ and consider the manifold $S^1 \times M^n$ with the involutions $T_1(z,m) = (-z,T(m))$ and $T_2(z,m) = (\bar{z},m)$, for $z \in S^1$ and $m \in M^n$. Note that T_1 is free on $S^1 \times M^n$ and T_1 and T_2 commute, so T_2 induces an involution T' on the quotient manifold $M' = (S^1 \times M^n)/T_1$. Put $\Gamma(\{T,M^n\}_2) = \{T',(S^1 \times M^n)/T_1\}_2 = \{T',M'\}_2 \in I_{n+1}(\mathbf{Z}_2)$. This map is the same on the bordism level as the one defined in [1], cf., [6]. Thus, we have that Γ is well-defined, additive, an MO_* -module map, and $\Gamma(MO_*) = 0$. Further, for any $x,y \in I_*(\mathbf{Z}_2)$

(2.3)
$$\Gamma(xy) = x \cdot \Gamma(y) + \Gamma(x) \cdot \varepsilon(y) \\ = \Gamma(x)y + \varepsilon(x) \cdot \Gamma(y)$$

where $\varepsilon: I_*(\mathbf{Z}_2) \to MO_*$ is the augmentation map. Also, if F is the fixed point set of T on M^n with normal bundle ν , then the fixed point data of $\Gamma(\{T,M^n\}_2)$ is $\nu \oplus \theta \cup \theta$ over $F \cup M^n$, disjoint, where θ denotes the trivial real line bundle.

3. THE IDEALS An

Consider the following sets in $I_*(\mathbf{Z}_2)$: $\mathscr{A}_n = \{x + \Gamma^n(x) : x \in I_*(\mathbf{Z}_2) \text{ and } \epsilon(\Gamma^j(x)) = 0 \text{ for } 0 \leq j < n\}$. Since Γ and ϵ are both additive, in order to show that \mathscr{A}_n is an ideal of $I_*(\mathbf{Z}_2)$ we need only show that $y(x + \Gamma^n(x)) \in \mathscr{A}_n$ for any $y \in I_*(\mathbf{Z}_2)$. It is sufficient to see that $\Gamma^n(xy) = \Gamma^n(x) \cdot y$. If n = 1, then $\epsilon(x) = 0$ since $x + \Gamma(x) \in \mathscr{A}_1$. Then $\Gamma(xy) = \Gamma(x) \cdot y + \epsilon(x) \cdot \Gamma(y) = \Gamma(x) \cdot y$. Assume the result for n and let $x + \Gamma^{n+1}(x) \in \mathscr{A}_{n+1}$. Then

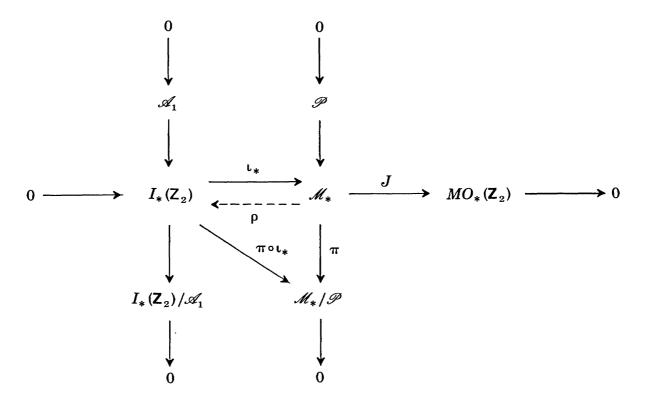
$$\Gamma^{n+1}(xy) = \Gamma(\Gamma^n(xy)) = \Gamma(\Gamma^n(x) \cdot y) = \Gamma^{n+1}(x) \cdot y + \varepsilon(\Gamma^n(x))\Gamma(y) = \Gamma^{n+1}(x) \cdot y,$$

since $\varepsilon(\Gamma^n(x)) = 0$.

Let \mathscr{P} be the principal ideal in \mathscr{M}_* generated by the element $1 + [\theta \to pt]_2$, where θ is the trivial real line bundle.

THEOREM 3.1. $I_*(\mathbf{Z}_2)/\mathscr{A}_1 \approx \mathscr{M}_*/\mathscr{P}$ as rings.

Proof. We have the following diagram of exact sequences of MO_* modules.



 $\rho:\mathcal{M}_* \to I_*(\mathbf{Z}_2)$ is the splitting map to ι_* from [5;28.1]. Note that both ι_* and π are ring homomorphisms as well as MO_* -module homomorphisms. Further still, ι_* is a ring monomorphism. The maps ρ and J are only MO_* -module maps.

We first want to show that $\pi \circ \iota_*$ is onto. The only elements in \mathscr{M}_* that are not in the image of ι_* are the elements of the form $M^{n-r} \times D^r$; i.e., the trivial r-plane bundles, θ^r . Now, $M^{n-r} \times D^0 \in \operatorname{im}(\iota_*)(\{id,M^{n-r}\}_2)$. In the quotient ring $\mathscr{M}_*/\mathscr{P}$ we identify θ with 1; that is, identify M^{n-r} with $M^{n-r} \times D^1$. We thus also identify M^{n-r} with $M^{n-r} \times D^r$. Thus, under $\pi \circ \iota_*, \{id,M^{n-r}\}_2$ is a preimage for $\pi(M^{n-r} \times D^r)$.

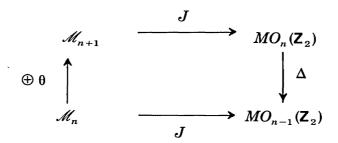
We next need to show that $\ker (\pi \circ \iota_*) = \mathscr{A}_1$. To see that $\mathscr{A}_1 \subseteq \ker (\pi \circ \iota_*)$, let $x + \Gamma(x) \in \mathscr{A}_1$. Let F denote the fixed point set of x and let v denote its normal bundle. $\Gamma(x)$ has fixed point set $F \cup x$ with normal bundle $v \oplus \theta \cup \theta$. Since $\varepsilon(x) = 0$, x contributes nothing to the bordism class of the normal bundle over $\Gamma(x)$. Thus, $\iota_*(x + \Gamma(x)) = [v]_2 + [v \oplus \theta]_2 = [v \to F]_2 \cdot (1 + [\theta \to pt]_2) \in \mathscr{P}$. For the opposite inclusion, let $\alpha \in \ker (\pi \circ \iota_*)$ be nonzero. Since ι_* is monic, $\iota_*(\alpha) \neq 0$; and since $\pi(\iota_*\alpha) = 0$, $\iota_*(\alpha) \in \mathscr{P}$. Let $\iota_*(\alpha) = [\xi + \xi \oplus \theta]_2$. Now, $J([\xi + \xi \oplus \theta]_2) = 0$ since the sequence (2.2) is exact. Therefore, $J([\xi]_2) + J([\xi \oplus \theta]_2) = 0$. There is no reason to expect that $[\xi]_2$ would be a homogeneous element in \mathscr{M}_* . So, let

$$[\xi]_2 = (0, ..., 0, [\xi_k]_2, ..., [\xi_{k+m}]_2, 0, ...).$$

For dimensional reasons

$$(3.2) J([\xi_{k+m} \oplus \theta]_2) = 0.$$

From [3;26.4] we have the following commutative diagram



where Δ is the Smith homomorphism. From this and (3.2) we have that $J([\xi_{k+m}]_2) = 0$. But then, $J([\xi_{k+m-1} \oplus \theta]_2) = 0$ and hence $J([\xi_{k+m-1}]_2) = 0$. By continuing this regression argument, we get that $J([\xi_j]_2) = 0$ for all j = k, ..., k + m, or $J([\xi]_2) = 0$. Again, by the exactness of (2.2), we have that $[\xi]_2 \in \operatorname{im}(\iota_*)$. Let $x \in I_*(\mathbf{Z}_2)$ be a preimage; i.e., $\iota_*(x) = [\xi]_2$. We need to see that $\iota_*(\Gamma(x)) = [\xi \oplus \theta]_2$ and $\varepsilon(x) = 0$. Now, $\iota_*(\Gamma(x)) = [\xi \oplus \theta]_2 + [\theta \to x]_2$. Now, $J(\iota_*(\Gamma(x))) = 0$ and $J([\xi \oplus \theta]_2) = 0$, so $J([\theta \to x]_2) = 0$. Thus, $\varepsilon(x) = 0$ and $\iota_*(\Gamma(x)) = [\xi \oplus \theta]_2$. Therefore, $\alpha = \rho \iota_*(\alpha) = \rho([\xi])_2 + [\xi \oplus \theta]_2) = x + \Gamma(x)$ with $\varepsilon(x) = 0$. Thus, $\varepsilon \in \mathscr{A}_1$ and $\mathscr{A}_1 = \ker(\pi \circ \iota_*)$. So we have shown that the sequence of rings and ideals

$$0 \longrightarrow \mathscr{A}_1 \longrightarrow I_*(\mathbf{Z}_2) \xrightarrow{\pi \circ \iota_*} \mathscr{M}_*/\mathscr{P} \longrightarrow 0$$

is exact.

COROLLARY 3.3. $I_*(\mathbf{Z}_2)/\mathscr{A}_1$ is a polynomial ring over MO_* and over \mathbf{Z}_2 .

Proof. Recall that \mathcal{M}_* is a polynomial ring over MO_* in a countable number of variables, one of which is $[\theta \to pt]_2$. Thus, $\mathcal{M}_*/\mathcal{P}$ is a polynomial ring over MO_* in a countable number of variables. Noting that MO_* is a polynomial ring over \mathbb{Z}_2 completes the proof.

4. BOARDMAN'S FIVE-HALVES THEOREM REVISITED

$$\operatorname{Let} \Lambda(\mathbf{Z}_{2}) = I_{*}(\mathbf{Z}_{2})/\mathscr{A}_{1} \text{ and let } MO_{*}\left[\left[t\right]\right] = \left\{\sum_{k=0}^{\infty} \left[V^{k}\right]_{2} t^{k} \colon \left[V^{k}\right]_{2} \in MO_{k}\right\} \operatorname{be}$$

the subring of "homogeneous" power series of the ring of formal power series over MO_* . Note that we require that the dimension of the coefficient from MO_* be equal to the exponent of t. Define a map $\phi: I_*(\mathbf{Z}_2) \to MO_*[[t]]$ by

$$\phi(\{T,M^n\}_2) = \sum_{j=0}^{\infty} \varepsilon (\Gamma^j(\{T,M^n\}_2)) t^{n+j}.$$

Clearly, ϕ is additive. From the product formula for Γ , (2.3) and the fact that

 ε is multiplicative, we get that $\varepsilon(\Gamma^n(xy)) = \sum_{j=0}^n \varepsilon(\Gamma^j(x)) \varepsilon(\Gamma^{n-j}(y))$. From this, we see that $\phi(xy) = \phi(x)\phi(y)$, or ϕ is multiplicative. Note: $\varepsilon|_{MO^*} = \text{identity}$.

LEMMA 4.1. $\phi(\mathscr{A}_1) = 0$, or $\mathscr{A}_1 \subseteq \ker(\phi)$.

Proof: Let $x + \Gamma(x) \in \mathcal{A}_1$; i.e., $\varepsilon(x) = 0$. Let dim (x) = n.

$$\phi(x+\Gamma(x)) = \phi(x) + \phi(\Gamma(x)) = \sum_{j=0}^{\infty} \varepsilon(\Gamma^{j}(x)) t^{n+j} + \sum_{k=0}^{\infty} \varepsilon(\Gamma^{k}(\Gamma(x))) t^{n+1+k}$$
$$= \varepsilon(x) t^{n} + \sum_{j=1}^{\infty} \varepsilon(\Gamma^{j}(x)) t^{n+j} + \sum_{j=1}^{\infty} \varepsilon(\Gamma^{j}(x)) t^{n+j} = 0.$$

Therefore, ϕ induces a homomorphism $\bar{\phi}: \Lambda(\mathbf{Z}_2) \to MO_*[[t]]$ which is well-defined, additive, and multiplicative. Note that $I_n(\mathbf{Z}_2)$ injects into $\Lambda(\mathbf{Z}_2)$ for each $n \geq 0$. This is true because $I_n(\mathbf{Z}_2)$ injects into \mathcal{M}_n by (2.2). Furthermore, stabilization is monic so \mathcal{M}_n injects in $\mathcal{M}_*/\mathcal{P}$. Thus, $I_n(\mathbf{Z}_2)$ injects into $\mathcal{M}_*/\mathcal{P} \approx \Lambda(\mathbf{Z}_2)$.

As in [2], $MO_*(BO)$ may be interpreted by stabilizing \mathcal{M}_* by ignoring the addition of trivial line bundles. We impose the relation $[\xi]_2 = [\xi \oplus \theta]_2$ for any vector bundle ξ . This is clearly the same as requiring that $1 + [\theta \to pt]_2 = 0$ in $\Lambda(\mathbf{Z}_2)$. Thus, $\Lambda(\mathbf{Z}_2) \approx MO_*(BO)$.

LEMMA 4.2. There exist elements $\{\tau, M^n\}_2$ in $\Lambda(\mathbf{Z}_2)$ for each $n \geq 0$ such that

(i) $\{[M^n]_2\}$ generates MO_* as a polynomial ring over \mathbf{Z}_2 , for n not of the form 2^S-1 ;

(ii) $\{\{\tau, M^n\}_2\}$ generates $\Lambda(\mathbf{Z}_2)$ as a polynomial ring over \mathbf{Z}_2 .

Proof: This is [2; Lemma 16].

COROLLARY 4.3. $\bar{\phi}: \Lambda(\mathbf{Z}_2) \to MO_*[[t]]$ is a monomorphism.

Proof. By checking $\bar{\phi}$ on the generators from (4.2) this is clear.

Let us introduce two filtrations on $\Lambda(\mathbf{Z}_2)$. The first, fil $_{FP}$, will be an increasing filtration. We shall say that $\mathrm{fil}_{FP}(\{T,V^n\}_2)=k$ for $\{T,V^n\}_2\in I_n(\mathbf{Z}_2)\subseteq\Lambda(\mathbf{Z}_2)$ if k is the maximum of the dimensions of the various components of the fixed point set which are nonzero on the bordism level. There is a decreasing filtration on $MO_*[[t]]$ given by $\mathrm{fil}(x)=n$ if the first nonzero coefficient in the power series for x is the coefficient of t^n . Thus, $\bar{\Phi}:\Lambda(\mathbf{Z}_2)\to MO_*[[t]]$ induces a decreasing filtration on $\Lambda(\mathbf{Z}_2)$ denoted by $\mathrm{fil}_{\bar{\Phi}}$. For an element $\{T,V^n\}_2\in I_n(\mathbf{Z}_2)$ we have that $\mathrm{fil}_{\bar{\Phi}}(\{T,V^n\}_2)=n+j$ if $\varepsilon(\Gamma^j(\{T,V^n\}_2))\neq 0$ and all of the preceding powers of Γ on $\{T,V^n\}_2$ do augment to 0.

LEMMA 4.4. For the generators $\{\tau, M^n\}_2$ of $\Lambda(\mathbf{Z}_2)$ from (4.2) we have:

(i)
$$\operatorname{fil}_{FP}(\{\tau, M^n\}_2) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even} \\ \\ \frac{n-1}{2}, & \text{if } n \text{ is odd;} \end{cases}$$

(ii)
$$\text{fil}_{\bar{h}}(\{\tau, M^n\}_2) = n$$
.

Proof. This is clear from the construction of the generators in [2; Lemma 16].

We would like to know what happens to these two filtrations on products and sums. The following are clear from the definitions of the filtrations.

- (i) $\operatorname{fil}_{FP}(xy) = \operatorname{fil}_{FP}(x) + \operatorname{fil}_{FP}(y)$, for any $x \neq 0$ and $y \neq 0$.
- (ii) $\operatorname{fil}_{\bar{h}}(xy) = \operatorname{fil}_{\bar{h}}(x) + \operatorname{fil}_{\bar{h}}(y)$, for any $x \neq 0$ and $y \neq 0$.
- (iii) $\operatorname{fil}_{FP}(x+y) = \max \left\{ \operatorname{fil}_{FP}(x), \operatorname{fil}_{FP}(y) \right\}$ if x and y have no monomials in common.
- (iv) $\operatorname{fil}_{\bar{\phi}}(x+y) = \min \left\{ \operatorname{fil}_{\bar{\phi}}(x), \operatorname{fil}_{\bar{\phi}}(y) \right\}$ if x and y have no monomials in common. It then follows that the fixed point filtration of a polynomial in the generators is the maximum of the fixed point filtration of its terms. For the $\bar{\phi}$ -filtration of a polynomial in the generators, we get the minimum of the $\bar{\phi}$ -filtrations of its terms.

From (4.4) for any generator $\{\tau, M^n\}_2$, n not of the form $2^s - 1$, we have that $\operatorname{fil}_{\dot{\Phi}}(\{\tau, M^n\}_2) \leq \frac{5}{2} \operatorname{fil}_{FP}(\{\tau, M^n\}_2)$. We cannot improve on this inequality because the fixed point dimension of the generator $\{\tau, M^5\}_2$ is 2.

THEOREM 4.5. (Boardman's Five-Halves Theorem):

Let T be a smooth involution on a closed manifold V^n of dimension n and let k be the fixed point dimension; i.e., the maximum of the dimensions of the various components of the fixed point set which are nonzero on the bordism level. If V^n does not bound, $[V^n]_2 \neq 0$ in MO_n , then $n \leq 5k/2$.

Proof. Note that $\{T,V^n\}_2 \in I_n(\mathbf{Z}_2) \subseteq \Lambda(\mathbf{Z}_2)$. Since $[V^n]_2 \neq 0$ in MO_n , $\mathrm{fil}_{\bar{\Phi}}(\{T,V^n\}_2) = n$. Write $\{T,V^n\}_2$ as a polynomial, $p_0(V^n)$, in the generators $\{\tau,M^n\}_2$. Then,

$$n = \operatorname{fil}_{\bar{\Phi}}(\{T, V^n\}_2) \le \operatorname{fil}_{\bar{\Phi}}(p_0(V^n)) \le \frac{5}{2} \operatorname{fil}_{FP}(p_0(V^n))$$
$$\le \frac{5}{2} \operatorname{fil}_{FP}(\{T, V^n\}_2) = \frac{5}{2} k.$$

Since n is an integer, we can improve this to $n \leq \lfloor [5k/2 \rfloor \rfloor$, the greatest integer in 5k/2.

COROLLARY 4.6. With the same assumptions as (4.5),

$$n \leq \begin{cases} \frac{5}{2} k & \text{if } k \text{ is even,} \\ \\ \frac{5k-1}{2} & \text{if } k \text{ is odd.} \end{cases}$$

COROLLARY 4.7. Let T be a smooth involution on a smooth closed manifold V^n and let $fil_{FP}(\{T, V^n\}_2) = k$. If $[V^n]_2$ is indecomposable in MO_* then

$$n \leq \begin{cases} 2k+1, & \text{if } n \text{ is odd;} \\ 2k, & \text{if } n \text{ is even.} \end{cases}$$

Proof. Since $[V^n]_2$ is indecomposable in MO_* , we have that

$${T, V^n}_2 = {\tau, M^n}_2 + \text{decomposables}.$$

Thus

$$k = \operatorname{fil}_{FP}(\{T, V^n\}_2) \ge \operatorname{fil}_{FP}(\{\tau, M^n\}_2) = \begin{cases} \frac{n-1}{2}, & \text{if } n \text{ is odd;} \\ \\ \frac{n}{2}, & \text{if } n \text{ is even.} \end{cases}$$

Theorem (4.5) tells us that for at least one m with

$$0 \le m \le 5k/2$$
, $\varepsilon(\Gamma^m(\lbrace T, V^n \rbrace)) \ne 0$

in MO_{n+m} , where $k = \mathrm{fil}_{FP}(\{T, V^n\}_2)$. Since k < n, we actually have that $0 \le m \le 3k/2$.

COROLLARY 4.8. Let T be a smooth involution on a smooth closed manifold V^n and let $fil_{FP}(\{T, V^n\}_2) = k$. If n > 5k/2, then $\{T, V^n\}_2$ bounds in $I_*(\mathbf{Z}_2)$.

Proof. Recall that $\bar{\Phi}(\{T,V^n\}_2) = \sum_{j=0}^{\infty} \varepsilon(\Gamma^j(\{T,V^n\}_2))t^{n+j}$. Since n > 5k/2, by (4.5) $[V^n]_2 = \varepsilon(\{T,V^n\}_2) = 0$. If there is a j > 0 such that $\varepsilon(\Gamma^j(T,V^n\}_2)) \neq 0$, then j > 3k/2. Otherwise, (4.5) implies that $n \leq 5k/2$. The fixed point set of $\Gamma^j(\{T,V^n\}_2)$ is $F(T) \cup \bigcup_{i=0}^{j-i} \Gamma^i(V^n)$, where F(T) is the fixed point set of T on V^n . Let j be the first integer for which $\varepsilon(\Gamma^j(\{T,V^n\}_2)) \neq 0$. Then,

$$\operatorname{fil}_{\tilde{\Phi}}(\Gamma^{j}(\{T,V^{n}\}_{2}))=n+j$$

and $\mathrm{fil}_{FP}(\Gamma^{j}(\{T,V^{n}\}_{2})) = k \text{ since } \epsilon(\Gamma\{T,V^{n}\}_{2})) = 0 \text{ for all } i < j.$ Thus

$$\operatorname{fil}_{\bar{\Phi}}(\Gamma^{j}(\{T,V^{n}\}_{2})) > \frac{5}{2}\operatorname{fil}_{FP}(\Gamma^{j}(\{T,V^{n}\}_{2})).$$

By (4.5), $\varepsilon(\Gamma^j(\{T,V^n\}_2)) = 0$. Thus, we have that $\bar{\phi}(T,V_2^n) = 0$. Since $\bar{\phi}$ is monic, $\{T,V^n\}_2 = 0$ in $\Lambda(\mathbf{Z}_2)$. Recalling that $I_n(\mathbf{Z}_2)$ injects into $\Lambda(\mathbf{Z}_2)$ gives the desired result.

5. AN APPLICATION TO FLAT MANIFOLDS

An abstract group B is a *Bieberbach* group if B has a normal free abelian subgroup of finite index. M^n is a *flat* manifold if $\pi_1(M^n)$ is a Bieberbach group and the rank of the free abelian subgroup is n.

If M^n is a flat manifold, then so is $\Gamma(M^n)$. Consider the fibration $M^n \to \Gamma(M^n) \to RP(1)$. We have the sequence $0 \to \pi_1(M^n) \to \pi_1(\Gamma(M^n)) \to \mathbf{Z} \to 1$ is split exact. So, $\pi_1(\Gamma(M^n)) \approx \pi_1(M^n) \cdot \mathbf{Z}$, the semi-direct product. The normal abelian subgroup of $\pi_1(\Gamma(M^n))$ will be the direct sum of that subgroup of $\pi_1(M^n)$ and the subgroup of index 2 in \mathbf{Z} . The rank of this subgroup is n+1.

There is a standing conjecture that all flat manifolds bound mod 2; see [3], [4], and [7]. Let T be a smooth involution on a flat manifold M^n with $\operatorname{fil}_{FP}(\{T,M^n\}_2) \geq 0$, i.e., the fixed point set is nonempty. Since M^n is flat, $\Gamma^j(M^n)$ is flat for all j. If this conjecture is true, we have

$$\bar{\Phi}(\{T,M^n\}_2) = \sum_{j=0}^{\infty} \varepsilon (\Gamma^j(\{T,M^n\}_2)) t^{n+j}$$
$$= \sum_{j=0}^{\infty} [\Gamma^j(M^n)]_2 t^{n+j} = 0.$$

Since $\bar{\Phi}$ is a monomorphism, $\{T,M^n\}_2 = 0$ in $I_n(\mathbf{Z}_2)$. Of course, if T is fixed point free, then $\{T,M^n\}_2 = 0$. Therefore, if the conjecture is true, then any smooth involution on a flat manifold bounds. If the conjecture is false, then $\varepsilon(\Gamma^j(\{T,M^n\}_2)) \neq 0$ for some j. Thus, there is a smooth involution on a flat manifold which does not bound. This may be a method of constructing a counterexample.

6. FACTORIZATIONS IN $I_*(\mathbf{Z}_2)$

In this section we shall return to the elements of the form $x + \Gamma^n(x) \in \mathscr{A}_n$ in $I_*(\mathbf{Z}_2)$. In \mathscr{M}_* we have that $1 + \theta^n = (1 + \theta) \left(\sum_{j=0}^{n-1} \theta^j \right)$. We should expect a similar occurrence in $I_*(\mathbf{Z}_2)$ due to (2.2).

PROPOSITION 6.1. $(x + \Gamma(x)) \left(\sum_{j=0}^{n-1} \Gamma^{j}(x) \right) = x^{2} + \Gamma^{n}(x^{2})$ if $\epsilon(\Gamma^{j}(x)) = 0$ for $0 \le j < n$.

Proof. For n=1 this is true since \mathcal{A}_1 is an ideal.

$$(x+\Gamma(x))(x+\Gamma(x))=x^2+(\Gamma(x))^2.$$

Now, $\Gamma^2(x^2) = \Gamma(x(\Gamma(x))) = \Gamma(x)\Gamma(x) = (\Gamma(x))^2$, since $\varepsilon(x) = 0$. So, $(x + \Gamma(x))(x + \Gamma(x)) = x^2 + \Gamma^2(x^2)$. By the inductive hypothesis, we assume that

$$(x+\Gamma(x))\left(\sum_{j=0}^{n-1}\Gamma^{j}(x)\right)=x^{2}+\Gamma^{n}(x^{2})$$

if $\varepsilon(\Gamma^{j}(x)) = 0$ for $0 \le j < n$. Assuming that $\varepsilon(\Gamma^{j}(x)) = 0$ for $0 \le j < n + 1$, we have

$$(x+\Gamma(x))\left(\sum_{j=0}^n\Gamma^j(x)\right) = (x+\Gamma(x))\left(\sum_{j=0}^{n-1}\Gamma^j(x)+\Gamma^n(x)\right)$$
$$= x^2+\Gamma^n(x^2)+x\Gamma^n(x)+\Gamma(x)\Gamma^n(x).$$

By repeated use of the product formula for Γ , (2.3), it is easily seen that $x\Gamma^n(x) = \Gamma^n(x^2)$ and $\Gamma(x)\Gamma^n(x) = \Gamma^{n+1}(x^2)$. Making these substitutions gives us the result.

Consider the polynomial $t^n - 1$ over \mathbf{Q} and let ζ_n denote the primitive n^{th} root of unity. The minimal polynomial for ζ_n over \mathbf{Q} is the n^{th} cyclotomic polynomial,

denoted by $\Phi_n(t)$. From the definition we have that $t^n-1=\prod_{d\mid n}\Phi_d(t)$, where $d\mid n$ means that d divides n. Let ϕ denote the Euler ϕ function.

THEOREM 6.2. [8;7-2-4] If n is odd, then 2 factors in $\mathbf{Q}(\zeta_n)$ into the product of r distinct prime ideals of degree f, where $rf = \phi(n)$ and f is the smallest positive integer such that $2^f \equiv 1 \pmod{n}$.

THEOREM 6.3. [8;7-4-3] If n is even write $n = 2^s n'$, with n' odd. Then 2 factors in $\mathbf{Q}(\zeta_n)$ in the form

$$2 \, \mathcal{O}_{\mathbf{Q}(\zeta_{n})} = (\mathcal{B}_{1} \, \dots \, \mathcal{B}_{r})^{\phi(2^{s})}$$

where \mathscr{B}_1 , ..., \mathscr{B}_r are distinct prime ideals of $\mathscr{O}_{\mathbf{Q}(\zeta_n)}$ of degree f with $rf = \varphi(n')$ and f being the smallest positive integer such that $2^f \equiv 1 \pmod{n'}$.

THEOREM 6.4. [8;7-5-4] $\mathcal{O}_{\alpha(\zeta_n)} = \mathbf{Z} [\zeta_n]$.

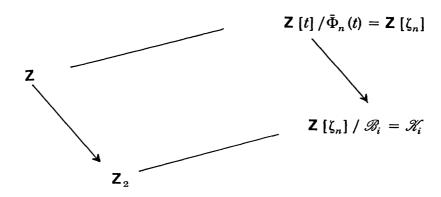
Let $n = 2^s n'$, with $s \ge 0$ and n' odd.

PROPOSITION 6.5. If 2 factors in $\mathbf{Z}[\zeta_n]$ as $2\mathbf{Z}[\zeta_n] = \begin{pmatrix} r \\ \prod \\ i=1 \end{pmatrix}^{\Phi(2^s)}$ with the above restrictions on r, f, and the ideals \mathcal{B}_i , then

$$\Phi_n(t) \equiv \left(\prod_{i=1}^r p_i(t)\right)^{\phi(2^s)} \bmod 2$$

with $p_i(t) \in \mathbf{Z}_2[t]$ being distinct and irreducible and $\deg(p_i(t)) = f$ for i = 1, ..., r.

Proof: We have the following diagram of rings



By (6.4) $\mathbf{Z}[\zeta_n]$ is a Dedekind domain. Thus \mathscr{D}_i is a maximal ideal. So, $\mathbf{Z}[\zeta_n]/\mathscr{D}_i = \mathscr{K}_i$ is a field; in fact, an extension field of \mathbf{Z}_2 . By assumption $[\mathscr{K}_i:\mathbf{Z}_2] = f$. Take $\bar{\zeta}_n$ in \mathscr{K}_i and let $p_i(s)$ be its minimal polynomial over \mathbf{Z}_2 . Then, $p_i(t)^{\phi(2^s)}$ divides $\Phi_n(t)$ modulo 2. Doing this for each i gives us the result.

Example 6.6. n = 31, s = 0, $\phi(n) = 30$, r = 6, and f = 5.

$$t^{31} + 1 \equiv (t+1)\Phi_{31}(t) \equiv (t+1)\sum_{i=0}^{30} t^{i}$$

$$\equiv (t+1)(t^{5} + t^{2} + 1)(t^{5} + t^{3} + 1)$$

$$\cdot (t^{5} + t^{4} + t^{3} + t^{2} + 1)(t^{5} + t^{4} + t^{3} + t + 1)$$

$$\cdot (t^{5} + t^{4} + t^{2} + t + 1)(t^{5} + t^{3} + t^{2} + t + 1) \pmod{2}.$$

From (6.5) and the definition of cyclotomic polynomials we have

$$t^n + 1 \equiv \prod_{d \mid n} \left[\prod_{i_d = 1}^{r_d} p_{i_d}(t) \right]^{\phi(2s_d)} \mod 2$$

where $\deg(p_{i_d}(t)) = f_d$, $i_d = 1, ..., r_d$; $d = 2^{s_d} d'$; and $r_d f_d = \phi(d')$ with f_d being the smallest positive integer with $2^{f_d} \equiv 1 \pmod{d'}$ for each d which divides n.

We need some computational tools for Γ . Assume that n+m < N and $\varepsilon(\Gamma^j(x)) = 0$ for all $0 \le j < N$ for the next three lemmas.

LEMMA 6.7.
$$\Gamma^n(x)\Gamma^m(x) = \Gamma^{n+m}(x^2)$$
.

Proof: The proof is only a simple induction argument on n and m, using only the product formula for Γ (2.3) and the assumption about the augmentations.

LEMMA 6.8.
$$\Gamma(x)\Gamma^{n}(x^{r}) = \Gamma^{n+1}(x^{r+1}).$$

Proof: This is again an induction argument as in (6.7).

LEMMA 6.9.
$$\Gamma^{n}(x^{r})\Gamma^{m}(x^{s}) = \Gamma^{n+m}(x^{r+s}).$$

Let p(t) be a polynomial over \mathbf{Z}_2 defined by $p(t) = \sum_{i=0}^n a_i t^i$, $a_i \in \mathbf{Z}_2$. Define the polynomial operator $p(\Gamma)$ by $p(\Gamma)(x) = \left(\sum_{i=0}^n a_i \Gamma^i\right)(x) = \sum_{i=0}^n a_i \Gamma^i(x)$. If $q(\Gamma)$ is another polynomial operator, $q(\Gamma)(x) = \sum_{j=0}^m b_j \Gamma^j(x)$, $b_j \in \mathbf{Z}_2$; define the product of these two polynomial operators to be

$$p(\Gamma) \cdot q(\Gamma) = pq(\Gamma) = \sum_{k=0}^{n+m} c_k \Gamma^k,$$

$$c_k = \sum_{i=0}^k a_i b_{k-i} \in \mathbf{Z}_2$$
. (6.7), (6.8), and (6.9) give us that

$$[p(\Gamma)(x)] \cdot [q(\Gamma)(x)] = pq(\Gamma)(x^2).$$

Combining this, the above lemmas, and (6.5) we have the following theorem.

THEOREM 6.10: If $t^n+1=\prod_{d\mid n}\left(\prod_{j_{d=1}}^{r_d}p_{j_d}(t)\right)^{\varphi(2^s_d)}$ with the $p_{j_d}(t)$ not necessarily distinct for different values of d and with the above restrictions of r_d , f_d , and s_d , then

$$\prod_{d \mid n} \left(\prod_{j_d = 1}^{r_d} [p_{j_d}(\Gamma)(x)] \right)^{\phi(2^s_d)} = x^k + \Gamma^n(x^k)$$

where
$$k = \sum_{d \mid n} r_d \phi(2^{s_d})$$
.

Example 6.11: We saw how to factor $t^{31} + 1 \pmod{2}$. The above gives us that

$$x^{7} + \Gamma^{31}(x^{7}) = (x + \Gamma(x))(x + \Gamma^{2}(x) + \Gamma^{5}(x))(x + \Gamma^{3}(x) + \Gamma^{5}(x))(x + \Gamma^{2}(x) + \Gamma^{3}(x) + \Gamma^{4}(x) + \Gamma^{5}(x))(x + \Gamma(x) + \Gamma^{3}(x) + \Gamma^{4}(x) + \Gamma^{5}(x))(x + \Gamma(x) + \Gamma^{2}(x) + \Gamma^{4}(x) + \Gamma^{5}(x))(x + \Gamma(x) + \Gamma^{2}(x) + \Gamma^{3}(x) + \Gamma^{5}(x)).$$

REFERENCES

- 1. J. C. Alexander, The bordism ring of manifolds with involution. Proc. Amer. Math. Soc. 31 (1972), 536-542.
- J. M. Boardman, Cobordism of involutions revisited. Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Part I, pp. 131-151. Lecture Notes in Math. Vol. 298, Springer, Berlin, 1972.
- 3. L. S. Charlap and A. T. Vasquez, Compact flat Riemannian manifolds II. The cohomology of Z_p -manifolds. Amer. J. Math. 87 (1965), 551-563.
- 4. ——, Compact flat Riemannian manifolds III. The group of affinities. Amer. J. Math., 95 (1973), 471-494.
- 5. P. E. Conner and E. E. Floyd, *Differentiable Periodic Maps*. Springer-Verlag, Berlin, 1966.
- 6. D. C. Royster, Aspherical generators of unoriented cobordism. Proc. Amer. Math. Soc. 66 (1977), no. 1, 131-137.
- 7. A. T. Vasquez, Flat Riemannian manifolds. J. Differential Geometry 4 (1970), 367-382.
- 8. E. Weiss, Algebraic number theory. McGraw-Hill, New York, 1963.

Mathematics Department, RLM 8-100 University of Texas at Austin Austin, Texas 78712

