STABILIZATIONS OF PERIODIC MAPS ON MANIFOLDS

David C. Royster

1. INTRODUCTION

In this paper we will study the graded unrestricted unoriented cobordism ring
of involutions, I,(Z,), and an endomorphism, I, of I,(Z,) of degree +1. We use
this endomorphism to define ideals in I, (Z,) by

& ={x+T"(x)x€ I,(Z,) and e(T’(x) =0 for 0=j<n).

The ideal </ plays a more important part in our theory than the remainder of
these ideals. We prove that I, (Z,)/<7 is a polynomial ring over MO, and over
z,.

We apply this result about I, (Z,) /2 = A(Z,) to prove Boardman’s five-halves
theorem. After noting that A(Z,) = MO, (BO), we use the results of [2] to exhibit
explicit polynomial generators for A (Z,) whose underlying manifolds generate MO,
as a polynomial ring over Z,. We then consider two filtrations on A(Z,). After
seeing how these filtrations behave on the polynomial generators for A(Z,) and
on polynomials in these generators, the Five-halves theorem and its converse follow.
We then look at an application of this theorem and its method of proof to a
conjecture about flat manifolds.

We notice that certain elements in the ideals .27, behave much like the polyno-
mials in 1 + t"in Z, [¢{]. Knowing how to factor the cyclotomic polynomials and,
hence, 1 + t” in Z, [t], we are led to a factorization of the elements x* + I'* (x*)
in 7, in an analogous manner.

2. PRELIMINARY MATERIAL

We will use I,(Z,) to denote the graded unrestricted unoriented cobord-
ism ring of smooth manifolds with involution; MO, (Z,), the graded unoriented
cobordism ring of smooth manifolds with fixed point free involutions; MO,,
the graded unoriented Thom cobordism algebra; and .#,, the graded unoriented

cobordism ring of principal O(%k) bundles with .Z, = ZMOJ.(BO (n—Jj)) and
j=0

MO, (BO (0)) = MO,,, by definition.

Conner and Floyd completely determined the additive structure of I,(Z,) in
the following theorem.
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THEOREM 2.1. [5;28.1] The sequence of MO, modules
Ly J
(2.2) 0-1,(2Z,) > A, —>MO,_,(Z,)> 0

is split exact.

Define the endomorphism I': I,(Z,) — I,,,(Z,) as follows. Consider the circle
as S'={z € C:||z]| = 1}. Take {T\M"},€ I,(Z,) and consider the manifold
S'x M" with the involutions T,(z,m) = (—~z,T(m)) and T,(z,m) = (z,m), for
2 €S' and m € M". Note that T, is free on S* X M” and T, and T, commute,
so T, induces an involution 7" on the quotient manifold M’ = (S' X M")/T,. Put
Fr{T,M*},)={T",(S'XM")/T,},={T",M },€ I,,,@,). This map is the
same on the bordism level as the one defined in [1], cf., [6]. Thus, we have
that I" is well-defined, additive, an MO,-module map, and I'(MO,) = 0. Further,
for any x,y € I,(Z,)

F(xy) = x-T(y) +T'(x) - e(y)

(2.3)
=T (x)y +e(x) T (y)

where ¢:1,(Z,)— MO, is the augmentaﬁon map. Also, if F is the fixed point
set of 7' on M" with normal bundle v, then the fixed point data of T ({T'M"},)
isv®6 U 0over FU M", disjoint, where 6 denotes the trivial real line bundle.

3. THE IDEALS <7,

Consider the following sets in I,(Z,): &, ={x+T"(x):x € I,(Z,) and
e(I'’(x)) =0 for 0 =j<n}. Since " and & are both additive, in order to show
that &7, is an ideal of I,(Z,) we need only show that y(x + I'"(x)) € .«Z, for any
y € I,(Z,). It is sufficient to see thatI' " (xy) =T'"(x) - y.If n = 1, then e (x) = 0 since
x+T'(x) Exf. Then I'(xy) =T (x) -y +e(x) -T(y) =T (x) - y. Assume the result
for n and let x + I'**"' (x) € &, ,,. Then

" (ay) =T(T@y) =T(T"x) ) =T () -y +e C"@NT () =T (x) - y,

since e T (x)) = 0.

Let # be the principal ideal in .#, generated by the element 1 + [0 — pt] .,
where 0 is the trivial real line bundle.

THEOREM 3.1. I,(Z,)/, = #,/Pas rings.

Proof. We have the following diagram of exact sequences of MO, modules.
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0 0
v v
N4 P
v Ly v
J
0O ——> I,(Z,) DU M, —> MO,Z,) —> 0

MO, T

1,(Z,) /4 My | P
4 l
0 0

p: M — I,(Z,) is the splitting map to ., from [5;28.1}. Note that both ., and
a are ring homomorphisms as well as MO,-module homomorphisms. Further still,
L, is a ring monomorphism. The maps p and J are only MO, -module maps.

We first want to show that mwo., is onto. The only elements in .#, that are
not in the image of ., are the elements of the form M"™" X D’; i.e., the trivial
r-plane bundles, 8”. Now, M~ X D° € im () ({id,M"""},). In the quotient ring
M, | Pwe identify 0 with 1; that is, identify M" ™" with M"™" X D'. We thus also
identify M"™" with M"™" X D’. Thus, under mou,, {id, M"" "}, is a preimage for
w(M"" X D").

We next need to show that ker (mwov,) = 4. To see that o] C ker (wo,), let
x+ T (x) € 4. Let F denote the fixed point set of x and let v denote its normal
bundle. I (x) has fixed point set F' U x with normal bundle v @ 6 U 6. Since (x) = 0,
x contributes nothing to the bordism class of the normal bundle over I'(x). Thus,
LE+T@) =[]+ v®@0)l,=[v— Fl, -1+ [0 pt],) € £ For the opposite
inclusion, let « € ker (wou,) be nonzero. Since v, is monic, v, (a) # 0; and since
o)) =0, (o) € Z Let v,(a) = [E+ EDO],. Now, J([E +EDO],) =0 since
the sequence (2.2) is exact. Therefore, J([£] ,) + J([£ @ 0] ,) = 0. There is no reason
to expect that [£] , would be a homogeneous element in .#, . So, let

[€] . = ©, ..., 0, Erlasoios Eram]2s 0, )

For dimensional reasons

(3.2) J ([, ®O0],) = 0.
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From [3;26.4] we have the following commutative diagram

J
M, o > MO,Z,)
@0 T lA
M, > MO, _,(Z,)
J

where A is the Smith homomorphism. From this and (3.2) we have that
J([€44m]2) = 0. But then, J([§,,,._, ®0],) =0 and hence J([¢,,,._,]1.) = 0. By
continuing thisregression argument, we get thatJ ([§,] ,) = Oforallj =&, ..., k + m,
or J([£] ,) = 0. Again, by the exactness of (2.2), we have that [£], € im (1,). Let
x € I,(Z,)be apreimage;i.e., v, (x) = [£] ,. We need to see that v, (T (x)) = [£ DO],
and e(x) =0. Now, ., T (x)=[E®D0],+ [6—> x],. Now, J(,((x)) =0 and
J([£®0],)=0, so J([0— x],)=0. Thus, e(x) =0 and +,[ (x)) = [£ DO],.
Therefore, o =pi,(a)=p([E]),+ [EDO],)=x+T(x) with e(x) =0. Thus,
a € & and & = ker (wo.,). So we have shown that the sequence of rings
and ideals

O Ly
0 ———> & — > [,@) —2—> 4, )P ——>0

is exact.
COROLLARY 3.3. I,(Z,)/4 is a polynomial ring over MO, and over Z..

Proof. Recall that .#, is a polynomial ring over MO, in a countable number
of variables, one of which is [6 — pt],. Thus, .#,/#is a polynomial ring over
MO, in a countable number of variables. Noting that MO, is a polynomial ring
over Z, completes the proof.

4. BOARDMAN'’S FIVE-HALVES THEOREM REVISITED

Let A(Z,) = I, (Z,)/.% and let MO, [[t]] = {2 [V*] ,t*: [VF] ,€ MOk}be

the subring of “homogeneous” power series of the ring of formal power series
over MO, . Note that we require that the dimension of the coefficient from MO,
be equal to the exponent of ¢ Define a map é: I, (Z,) —» MO, [[t]] by

oo

SUTM"),) = D e @ ({T,M"},)t"" .

i=0

Clearly, ¢ is additive. From the product formula for I', (2.3) and the fact that
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n

e is multiplicative, we get that £ (' (xy)) = 2 e ([’ (x)) e (T (y)). From this, we
sée that ¢ (xy) = d(x)d(y), or ¢ is multiplicaﬁge. Note: €|+ = identity.

LEMMA 4.1. ¢(24) =0, or 24 C ker (¢).

Proof: Let x +T (x) € &4; i.e., e(x) = 0. Let dim (x) = n.

oo

d+T() = ¢@) + @) =D e@ @™+ > e T @™
k=0

j=0

= e (x)t" + 2 e (07 (x)) " + 2 e(T/(x)) £+ = 0.

Therefore, ¢ induces a homomorphism ¢:A(Z,) — MO, [[t]] which is well-
defined, additive, and multiplicative. Note that I ,(Z,) injects into A(Z,) for each
n = 0. This is true because I, (Z,) injects into .#Z, by (2.2). Furthermore, stabilization
is monic so .#, injects in .#, /% Thus, I,(Z,) injects into /Z, /# = A(Z,).

As in [2], MO,(BO) may be interpreted by stabilizing .#, by ignoring the
addition of trivial line bundles. We impose the relation [£], = [£@® 6], for any
vector bundle & This is clearly the same as requiring that 1 + [6 — pt], =0 in
A@Z,). Thus, AZ,) = MO, (BO).

LEMMA 4.2. There exist elements {r,M"}, in A(Z,) for each n = 0 such that

(i) {[M"],} generates MO, as a polynomial ring over Z,, for n not of the
form 2° — 1;

(i) {{r,M"},} generates A(Z,) as a polynomial ring over Z,,.
Proof: This is [2; Lemma 16].

COROLLARY 4.3. $:A(Z,) > MO, [[t]] is @ monomorphism.
Proof. By checking ¢ on the generators from (4.2) this is clear.

Let us introduce two filtrations on A(Z,). The first, fil .., will be an increasing
filtration. We shall say that fil..({T,V"},) =k for {T\V"},€ I,(Z,)C A(Z,)
if £ is the maximum of the dimensions of the various components of the fixed
point set which are nonzero on the bordism level. There is a decreasing filtration
on MO, [[t]] given by fil (x) = n if the first nonzero coefficient in the power series
for x is the coefficient of ¢”. Thus, ¢:A(Z,) — MO, [[t]] induces a decreasing
filtration on A(Z,) denoted by fil;. For an element {7,V"}, € I,(Z,) we have
that fil;({T, V*},) =n+jif e ' ({T,V"},)) # 0 and all of the preceding powers
of ' on {T,V"}, do augment to O.

LEMMA 4.4. For the generators {v,M"}, of A(Z,) from (4.2) we have:

n
E—, if n is even

() filp({r,M"},) =
n—1

, if n is odd;
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(i) fily({r,M"},) = n.
Proof. This is clear from the construction of the generators in [2; Lemma
16].

We would like to know what happens to these two filtrations on products and
sums. The following are clear from the definitions of the filtrations.

(1) fil gp (xy) = fil gp (x) + filp(y), for any x # 0 and y # 0.
(i1) fily(xy) = filg(x) + fil ;(y), for any x # 0 and y # 0.
(iii) filzp(x + y) = max {fil . (x), fil;»(y)} if x and y have no monomials in
common.
(iv) filgx + y) = min {fil;(x), fil; (y)} if x and y have no monomials in common.

It then follows that the fixed point filtration of a polynomial in the generators
is the maximum of the fixed point filtration of its terms. For the ¢-filtration
of a polynomial in the generators, we get the minimum of the -filtrations of
its terms.

From (4.4) for any generator {7,M"},, n not of the form 2° — 1, we have that
5
fil,((wM"},) = 5— filp ({r,M"},). We cannot improve on this inequality because

the fixed point dimension of the generator {r,M°}, is 2.
THEOREM 4.5. (Boardman’s Five-Halves Theorem):

Let T be a smooth involution on a closed manifold V" of dimension n and
let k be the fixed point dimension; i.e., the maximum of the dimensions of the
various components of the fixed point set which are nonzero on the bordism level.
If V" does not bound, [V"], # 0 in MO, then n < 5k/2.

Proof. Note that {T,V"},€I,(Z,)CA@Z,). Since [V"],#0 in MO,
fil,({T, V"},) = n. Write {T,V"}, as a polynomial, p,(V"), in the generators
{r,M"},. Then,

' 5
n="fil,({T,V"},) = fil;(p, (V")) s—z—filFP(po(V"))
> fil .. ({T,V"},) > k
= —fi ) =—Fk.
2 P 2 2
Since n is an integer, we can improve this to n = [[5k/2]], the greatest
integer in 5k /2.

COROLLARY 4.6. With the same assumptions as (4.5),

—2~ kif k is even,

n=
5k — 1

if b is odd.
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COROLLARY 4.7. Let T be a smooth involution on a smooth closed manifold
V" and let fil . ({T, V"},) = k. If {V"], is indecomposable in MO, then

{2k + 1,if nisodd;
n=<

2k, if n is even.
Proof. Since [V"], is indecomposable in MO, , we have that
{(T,v*}, = {r,M"} , + decomposables.
Thus

n—1

, if n is odd;

k=fil.({T,V"},) = fil (p ({r,M"},) =
n
—, if n is even.
2

Theorem (4.5) tells us that for at least one m with
0=m=5k/2, eT"({T,V*}))#£0

in. MO, .,., where k=fil,({T,V"},). Since k<n, we actually have
that 0 = m = 3k/2.

COROLLARY 4.8. Let T be a smooth involution on a smooth closed manifold
V" and let fil,.,({T,V"},) = k. If n > 5k /2, then {T,V"}, bounds in I, (Z,).
Proof. Recall that $({T,V"},) = D e(TV({T,V"},))t"". Since n > 5%/2, by
Jj=0 _
4.5) [V*"],=¢e({T,V"},) =0. If there is a j > 0 such that «(I'’(T,V"},)) # 0,
then j > 3k/2. Otherwise, (4.5) implies that n = 5k/2. The fixed point set of

J—t
r’(T, V*},) is F(T) U U I''(V"), where F(T) is the fixed point set of T on

i=0

V”. Let j be the first integer for which e (I'/({T, V"},)) # 0. Then,
fil,(M"{T, V™), ) =n+j

and fil (T’ ({T, V"},)) = k since € (T {T,V"},)) = O for all i <j. Thus
. 5 .
fil , (T ({7, V™)) > ; fil,, T ({T, V"},)).

By (4.5), e(T’({T,V"},)) = 0. Thus, we have that &(T,V7)=0. Since ¢ is
monic, {T,V"}, =0 in A(Z,). Recalling that I,(Z,) injects into A(Z,) gives the
desired result.
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5. AN APPLICATION TO FLAT MANIFOLDS

An abstract group B is a Bieberbach group if B has a normal free abelian
subgroup of finite index. M”" is a flat manifold if =, (M") is a Bieberbach group
and the rank of the free abelian subgroup is n.

If M" is a flat manifold, then so is T'(M"). Consider the fibration
M"—-»T(M")— RP(1). We have the sequence 0 > v, (M") > 7w, TM")—>Z—> 1
is split exact. So, =, (C(M")) = w,(M") - Z, the semi-direct product. The normal
abelian subgroup of w,(I'(M")) will be the direct sum of that subgroup of mw,(M")
and the subgroup of index 2 in Z. The rank of this subgroup is n + 1.

There is a standing conjecture that all flat manifolds bound mod 2; see
[3], [4], and [7]. Let T be a smooth involution on a flat manifold M” with
fil,,({T,M"},)= 0, ie., the fixed point set is nonempty. Since M" is flat,
I'/(M") is flat for all j. If this conjecture is true, we have

bUTM™Y,) = D e @/ (T, M), )"
= > MMM, =o.

Jj=0

Since ¢ is a monomorphism, {T,M"}, = 0 in I,(Z,). Of course, if T is fixed point
free, then {7,M"}, = 0. Therefore, if the conjecture is true, then any smooth
involution on a flat manifold bounds. If the conjecture is false, then
e(T’({T,M"},)) # O for some j. Thus, there is a smooth involution on a flat manifold
which does not bound. This may be a method of constructing a counterexample.

6. FACTORIZATIONS IN I,(Z,)

In this section we shall return to the elements of the form x + I'"*(x) € &7

n—1

inl,(Z,). In.#, wehave that1 + 6" = (1 + ) (2 Bj). We should expect a similar
j=0
occurence in I, (Z,) due to (2.2).

n-—1

PROPOSITION 6.1. (x + l"(x))(z r’ (x)) =x>+T" %) if e(T’(x)) =0 for

O0=j<n.
Proof. For n = 1 this is true since 27 is an ideal.

(x+T@E)x + T (x) = 2%+ (T (x)>

Now, r@x?) =@ x) =T@®IE) = T (®)? since e(x) = 0. So,
(x + T (x))(x + T (x)) = x* + T'*(x®). By the inductive hypothesis, we assume that

n-—1

rf(x)) = x + '™ (x?)

J

(x+T (x))(
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if e (I’ (x)) = O for 0 < j < n. Assuming that e(I/(x)) = 0 for O =j<n+ 1, we have

(x + I"(x))(z rf(x)) = (x+ F(x))(z I’(x) +T" (x))
= x% + F"({cz) + 2T (x) + T ()" (x).

By repeated use of the product formula for I, (2.3), it is easily seen that
xI"™(x) = I (x*) and T'(x) " (x) = I'"** (x®). Making these substitutions gives us the
result.

Consider the polynomial ¢t* — 1 over Q and let {, denote the primitive n** root
of unity. The minimal polynomial for {, over Q is the n* cyclotomic polynomial,

denoted by @, (£). From the definition we have that t" — 1 = H ®,(t), where d|n
d|n

means that d divides n. Let ¢ denote the Euler ¢ function.

THEOREM 6.2. [8;7-2-4] If n is odd, then 2 factors in Q((,) into the product
of r distinct prime ideals of degree f, where rf &(n) and f is the smallest positive
integer such that 27 = 1(mod n).

THEOREM 6.3. [8;7-4-3] If n is even write n = 2°n’, with n’ odd. Then 2
factors in Q.(L,) in the form

2 O,y = (B, ... )%
where %, ..., %, are distinct prime ideals of Ty , of degree f with rf = ¢(n’)
and f being the smallest positive integer such that 27 = 1 (mod n').
THEOREM 6.4. [8;7-5-4] Tq(,,=2Z[L.].
Let n = 2°n’, with s = 0 and n’ odd.

)

r &(2°)
PROPOSITION 6.5. If 2 factors in Z[(,] as 22{{,] = (H ﬁ?) with the
i=1

above restrictions on r, f, and the ideals %, then

r $(29)
D, (t) = (Hp,. (t)) mod 2

with p;(t) € Z, [t] being distinct and irreducible and deg (p,;(t)) = f for i = 1,
r.

ey

Proof: We have the following diagram of rings

—

Z[4/D, 0 =2][¢]

Z1L.)/ % =%
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By (6.4) Z [{,] is a Dedekind domain. Thus &, is a maximal ideal. So, Z [{,] / &, = %
is a field; in fact, an extension field of Z,. By assumption [.%:Z,] = f. Take
{, in % and let p,(s) be its minimal polynomial over Z,. Then, p,(¢)**" divides
@, (¢) modulo 2, Doing this for each i gives us the result.

Example 6.6, n=31,s=0, $(n) =30,r=26, and f = 5.

30

1=+ DD, ) =+ 1) D ¢
i=0

=@+ DE+FEP+DE+2+ 1)
WD+ 1)
AP DEP+H 2+ 2+ £+ 1) (mod 2).

From (6.5) and the definition of cyclotomic polynomials we have

c+1=]] [ﬁpid(t))""zsd’] mod 2

d|n ig=1

where deg(p, (¢)) = f;, iu=1,...,1ry; d=2%d’; and r,f, = ¢ (d’) with f, being
the smallest positive integer with 2/¢ = 1 (mod d’) for each d which divides n.

We need some computational tools for I'. Assume thatn + m < Nande (T’ (x)) = 0
for all 0 = j < N for the next three lemmas.

LEMMA 6.7. T*(x)T™(x) = """ (x%).

Proof: 'The proof is only a simple induction argument on n and m, using only
the product formula for I" (2.3) and the assumption about the augmentations.

LEMMA 6.8. T(x)T"(x") =T" " (x""").

Proof: This is again an induction argument as in (6.7).

LEMMA 6.9. T*(x")I'™ ") =T""™ " ™).

Let p(f) be a polynomial over Z, defined by p(t) = Z a;t’, a, € Z,. Define

i=0
n

the polynomial operator p(I') by p(I)(x) = (Z aiI’i)(x) = Z aiFi(x). If g(I) is
i=0

i=0

another polynomial operator, q(I')(x) = bjl‘j (x), b; € Z,; define the product of
f=0

J
these two polynomial operators to be

n+m

pI) - ¢ =pg(D) =Y ¢TI
k=0

k
&= a;b,_; €Z,.(6.7), (6.8), and (6.9) give us that
i=0
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[pD@] - [g@)x)] = pg @)x*).

Combining this, the above lemmas, and (6.5) we have the following theorem.

ry b (21,
THEOREM6.10: Ift"+ 1= H (H D, d(t)) with the p; ,(t) not necessarily

din Vg~
distinct for different values of d and with the above restrictions of ry, f,;, and

Sy, then

Td & (2%
H <H [p;, D)) ) = x* + T"(x*)

dlﬂ- jd=1

where k = z r ¢ (2°9).

din
Example 6.11: We saw how to factor ¢*' + 1 (mod 2). The above gives us that

T +TE) = @ +TE)E+T2@) + TP @) +T 2 @) +T° @) +T 2 (x)
+ @) + T @) + TP @) + T(x) + T3 (@) +T* ()
+ PP@)(x +T(x) + ' (x)
+ I'*(x) + TP @) + T (x) +T?(x) +T3(x) + T °(x)).

REFERENCES

1. J. C. Alexander, The bordism ring of manifolds with involution. Proc. Amer. Math. Soc.
31 (1972), 536-542.

2. J. M. Boardman, Cobordism of involutions revisited. Proceedings of the Second Conference
on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Part
I, pp. 131-151. Lecture Notes in Math. Vol. 298, Springer, Berlin, 1972.

3. L. S. Charlap and A. T. Vasquez, Compact flat Riemannian manifolds I1. The cohomology
of Z,-manifolds. Amer. J. Math. 87 (1965), 551-563.

, Compact flat Riemannian manifolds III. The group of affinities. Amer. J. Math,,
95 (1973), 471-494.

5. P. E. Conner and E. E. Floyd, Differentiable Periodic Maps. Springer-Verlag, Berlin,
1966,

6. D. C. Royster, Aspherical generators of unoriented cobordism. Proc. Amer. Math. Soc.
66 (1977), no. 1, 131-137.

7. A. T. Vasquez, Flat Riemannian manifolds. J. Differential Geometry 4 (1970), 367-382.
8. E. Weiss, Algebraic number theory. McGraw-Hill, New York, 1963.

Mathematics Department, RLM 8-100
University of Texas at Austin
Austin, Texas 78712






