THREE-HOLED SPHERES AND RIEMANN SURFACES

Frederick P. Gardiner

INTRODUCTION

Let Rbe a compact Riemann surface of genus g bigger than one. A Jenkins-Strebel
differential ¢ on R is a holomorphic, quadratic differential on R all of whose
noncritical, horizontal trajectories are closed. Such a differential gives a natural
way of decomposing R into annuli whose boundaries consist of the critical, horizontal
trajectories of ¢.

In this article two procedures are given for constructing analogous holomorphic,
quadratic differentials on R which are associated with a decomposition of the
surface into three-holed spheres. In one case, it turns out that one again obtains
Jenkins-Strebel differentials. In a second case, the form of the differentials so
constructed is not known.

The first section summarizes certain facts about uniformization of three-holed
spheres. Such domains can be uniformized by deleting three intervals from the
real axis and there are simple inequalities for expressing compactness in terms
of the endpoints of these intervals. The compactness condition is needed for a
normal families argument used in section 3. That the uniformization can be achieved
by removing three intervals was already observed by Jenkins in [8].

In the second section, variational formulas for certain natural functions on
T# (R), the reduced Teichmiiller space of a Riemann surface R, are derived.

In the third section, these variational formulas are used to construct global
quadratic differentials on a surface of genus g naturally associated with a partition
of that surface into 2g — 2 three-holed spheres.

1. UNIFORMIZATION OF THREE-HOLED SPHERES

Let R be a Riemann surface of finite type. This means it can be obtained
from a compact surface by deleting a finite number of continua. The reduced
Teichmiiller space of R, T*(R), is defined in [6] and so is the space Q(R) of
holomorphic, quadratic differentials on B which are real with respect to boundary
uniformizers along the boundary of R. Let g be the genus of R, m be the number
of deleted continua each of which contains more than one point, and n be the
number of deleted continua each of which consists of exactly one point. (m is
the number of “holes” and n is the number of “punctures.”) Let p be the real
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dimension of the continuous group of conformal self-mappings of R. In most cases
p = 0. It turns out that 77 (R) is homeomorphic to a real Euclidean space of
dimension 6g — 6 + 3m + 2n + p. Our objective in this section is to describe T% (R)
and @ (R) in the case where g = 0, m = 3, and n = 0. In this situation p is
necessarily equal to zero.

It is well-known that any two three-holed spheres (Riemann surfaces for which
£ =0,m = 3, and n = 0) are quasiconformally equivalent. To describe the Teichmuller
space for such a surface one needs to pick a base Riemann surface. Our choice
is

R = R(a,, by, ¢o) = C — {(=,0] U [1,a,] U [bo,c0}}
and
1<a,<by,<cg.

This R can be viewed as one sheet of the compact surface of genus two associated
with the equation w?=z2(z—- 1z — a,)(z2 — by)(z — ¢p). In this case it is obvious
that a basis for the real vector space Q(R) is {dz®/w?, 2dz* /w? z°dz*/w®}.

Pick ‘any other triply connected Riemann surface R* and a quasiconformal
orientation preserving homeomorphism ffrom R onto R*. Let & be a local parameter
on R*. Then the complex dilatation pw = (hof)./(hof), will be a measurable
function, defined independently of A, satisfying ||p|.. < 1. Conversely, given any
complex measurable function . on R satisfying [uf. < 1 there will exist a
homeomorphic solution w to

(1) . / w;= pw,.

This solution is unique if one requires it to fix 0, 1 and oo, [3]. From this existence
theorem one realizes the abstract Riemann surface R* as C= C U {«} with the
three quasiconformal segments w([—x,0]), w([1,¢a,]), and w([b,,c,]) removed.

Let M(R) be the set of all measurable functions p on R satisfying |u|. < 1,
where, as usual, we think of two functions being the same function if they are
equal except on a set of measure zero. T* (R) is M(R) factored by an equivalence
relation, [6]. Let ., and p, be elements of M(R) and w, and w, be the corresponding
normalized solutions of (1). One says that p, is equivalent to p, if there is a
quasiconformal homeomorphism A4 from R to R homotopic to the identity on R
and a conformal mapping f from w,(R) to w,(R) such that fow,(2) = w,o h(2)
for all zin R.

Now let M, = {pn in M(R);(Z) = . (2)}. M, consists of symmetric elements of
M (R). Consider the natural mapping ®: M, — T* (R) which sends p to its equivalence
class. It is clear that every surface in the image of ® can be realized as C with
three segments on the real axis, (—«,0], [1,a*], and [b*,c*] removed, where
l<a*<b*<c*

THEOREM 1. ® is a surjective, real-analytic mapping and T” (R) is bi-analyti-
cally equivalent to V= {(a, b,c) E R®>;1 <a < b<c}.
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Proof. The surjectivity of ® is equivalent to saying that every equivalence
class in T*(R) is realizable by a symmetric Beltrami differential. This is a
consequence of Jenkins’ result in [8]. It was pointed out to me by the referee
that it is also a consequence of Teichmiiller’s theorem and the observation that
the Teichmiiller-Beltrami differential k|¢|/¢ will be in M_ for any ¢ in @(R)
because elements of @ (R) are symmetric.

Let w, be the unique normalized solution of (1). The continuous and analytic
dependence of w,(a,), w,(b,), and w,(c,) on p is shown in [3]. Obviously, for
i in M these are real numbers.

For p in M, let [p] be its equivalence class in 7% (R). Let ¥:T*(R) » V be
defined by ¥([r]) = (w, (a,), w,(b,), w, (c,)). So we have the diagram

o v
(2) M,» T*R)—> V.

To complete the proof of the theorem we show that ¥ is a well-defined, bi-analytic
homeomorphism.

i) Proof that ¥ is well-defined. Suppose pn, and p, are in M, and w, and
w, are the corresponding symmetric solutions of (1). If ., and p, are equivalent,
then f= w,o how, " is a conformal mapping from R (a,, b,, c,) onto R(a,, b,, c,)
which takes the homotopy class of «, into the class of a,, the class of B, into
B., and the class of vy, into v,, where «;, 8, and v, are the simple loops indicated
by figure 1. ‘

Let A, be the extremal length in R, = R(a,, b;, ¢;) of the family of smooth
curves freely homotopic to «,. Let B; and C; be the extremal lengths of the
corresponding families associated to 3; and v,;, respectively. The homotopy condition
on f implies that it preserves these families of curves and so A, =A4,, B, =B,,
and C, = C,. Since there are explicit formulas for the quantities (a — 1)b/(b — a),
(c — b)/(b— a), and ¢ in terms of the quantities A, B, and C, respectively, (this
is formula (8) in section 2), one finds that

(a1 - l)bl/(bl - al) = (az - 1)b2/(b2 - a2)-

(c, — 8,)/(by — a,) = (cy — b,) /(b — a,)

and

Figure 1.
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Since 1 < @; < b; < ¢,, it is obvious that these equalities imply a, = a, and b, = b,,.
This shows that ¥ is well-defined.

ii) Proof that ¥ is locally bianalytic. Let x = w, (x,) and

wu+tv(x0) - wp_(xO)
£, [v] = lim

t—0 t

In the next section we will give formulas for ¢, Bu, and ¢, and we will see
that for every My {a,,b,, ¢,} forms a basis for @(R,). Here R, has the obvious
definition; R, = C — ([—«.0] U [1,w, (a,)] U [w, (b,),w, (cy)]). But Q(R ) is the
fiber of the cotangent space to T (R) at the point [p], (see [6]).

iii) Proof that ¥ is injective. We must show that if i, and p, are in M,
and if w, (x) =w,, (x) for x =0, 0, 1, a,, by, and ¢,, then p, is equivalent to
Pe. Form A=w, o w;;. Obviously, h preserves «, 0, 1, a,, b,, ¢, and A preserves
the segments (—x,0], [1,a,], [b4,c,]. Hence 2 is homotopic to the identity of
R.

iv) Proof that ¥ is surjective: One must show that R(e,, b,, ¢,) is quasiconfor-
mally homeomorphic to R(a, b, ¢) by a symmetric mapping. There is, for example,
the mapping w = u + iv where v(x + iy) = y and

(x for —o=x=<1,
\ 1+ (x—1) forl=x=< a,,
a, —
) b—a
u(x+iy) = < a+ (x — a,) for a,= x= b,,
by — a,
b+ (x — by) for by = x= ¢,
Co— 0y
c+ (x—¢p) for x= ¢,.
\

Now suppose that w is a quasiconformal mapping from R, = R(a,, b,, ¢,) onto
R, = R(a,, b,, c,), but that R, and R, are not necessarily conformal. Suppose
w takes the class of o, to the class of a, and similarly for 8, and ;. Let p = w_/w,
and K = (1 + ||n)l..)/(Q — ||n]l.). The following lemma is a well-known property
of K-quasiconformal mappings, [1].

LEMMA 1.1. K 'A,=A,=KA, and the same inequality is true with A
replaced by B or C.

At this point we will focus attention on just one three-holed sphere R(a, b, c),
so we can drop the subscripts in our notation. One has the following lemma.

1
LEMMA 1.2. I. 16exp(—2w/C)+1=c= Eexp wC/2) + 1,
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(a—1)b 1
II. 16exp(—2nw/A)=—"—=—exp(mA/2),
b—a 16

III. 16exp (—2w/B) =

1
= —exp (wB/2).
—-a 16 P /

Proof. The idea is to use a basic inequality for the Teichmuller annulus, the
complement in C of [—1,0] U [r,) where r > 0. Let A(r) be the extremal distance
from [—1,0] to [r,]. In [2, page 76] the following two inequalities are derived:

3) 16r =exp 2wA(r)) =16 (r+1)
and
1
(4) 16/r=exp (nw/2A(r)) = 16 (1+—).
r

The first inequality is a good one for large values of r and the second for small
values of r.

In order to prove inequality (I), we delete the interval [a,b] from the surface
R and obtain the annulus € — ([—%,0] U [1,c]). Let C, be the extremal length
of the family of smooth curves homotopic to v in this annulus. From the comparison
principle C = C,. On the other hand, the extremal metric p, for the extremal
length problem C, is symmetric under conjugation. In fact p, =V |¢| where ¢
= dz’/2(z — 1)(z — c), the Jenkins-Strebel differential for this annulus. So, given
any curve freely homotopic to v, one can reflect part of this curve across [a,b}
and obtain a homotopic curve of equal p,-length lying in R — [a,b], except for
some (unimportant) boundary points. Hence, C = C,,. /

By the transformation z+— (z — 1)/ (1 — ¢), the annulus R — [a,b] is taken to
the Teichmiller annulus with r = (1/(c — 1)) and A(r) = (1/¢). Applying (3) and
(4) one obtains (I).

Actually, in [2, page 76] there is an explicit formula for r in terms of A(r).
We have already used this fact in the proof of theorem 1.

To prove (II) we follow the same line of argument as we did in proving (I)
to see that the extremal length A is unchanged if [c¢,»] is removed from R. The
1 z—a
transformation z - 1 . takes R — [c,] into a Teichmiiller annulus with
a— 2

1 b—a
r= 1 . 5 and A{(r) = 1/A. Then (3) and (4) yield (II).
a - .

The proof of (III) is analogous.

LEMMA 1.3. SupposeR,=R(a,,b,,c,)=C — ([-»,0] U [1,a,]U [b,,c.])
where 1 <a,<b, <c, is a sequence of three-holed spheres. Suppose there is a
constant € > 0 such that the extremal lengths A,,B,, and C, all lie between €
and 1/e. Then there is a surface R, = R(a,, b,, c,) with 1 < a, < b, < ¢, which
is an accumulation point of the surfaces R .
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Proof. This is a straightforward consequence of the inequalities in lemma 1.2.
(I) says the numbers c, are bounded, so we can pick a convergent subsequence
of (a,, b,, c¢,) which we still denote by (a,, b,,, ¢,) and let (a,, b,, ¢,) be the limit.
Obviously 1 = a, = b, = ¢, and we must show that these are strict inequalities.
Inequality (I) shows that 1 <c¢, <. From (IIl), one sees that a,=b6,=1 is
impossible so b, > 1. Then from (II), one obtains 1 < a, < b,. Finally, using (III)
again, b, < ¢,.

Remark. The modular group of 7% (R) is the permutation group on three letters.
Viewed as acting on V, it is generated by v and ¢ where

’ ¢c ¢c—1 c¢c—a
(5) 7(a, b, c) = (-——, , ) and
b b-—1 b-—a
c—a b—1 ¢c—a b c—a)

b

b—a ¢c—1 b—a ¢ b—a

a(a,b,c) = (

It is easy to check that ° = ¢® = the identity.

2. VARIATIONAL FORMULAS

If & is a differentiable function from 7% (R) to R, there will be a differential
¢ in Q(R) for which

(6) h(tpn) = h(0) + Re (t S S n(z) ¢(2) dxdy) + o(8).

R

As shorthand for this equation, we write & = ¢(2) dz°.

Consider the function c(tp) = w,, (c). An important formula from Teichmiller
theory says that

1 clc—1) .
7 ¢ =—— dz".
w 2(z— 1)z —¢)

Our objective is to find C for the function C(tp) on T (R) where C is the extremal
length described in section 1. As has already been pointed out, C is not affected
if one deletes from R the interval [a,b]. Thus, there is an explicit functional
relationship between C and c given by

q = exp (—2w/C)

1 1 o 1 _ q2n—l 8
= I — | =Flg.
c—1 16q ,,_, 1+¢q

8)

This formula is derived in [2, page 74-76]. Essentially the same formula appears
in [5, page 429]. From (7) and (8), one finds that
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o C?c dz’® '
C2n?qF (@)e—1) zz—1(z—¢)

Since F’(q) < 0 (where 0 < g <1), we can write

dz*
? 2{z — 1)(z — ¢)

(9) C=-p where p, is a positive constant.

It is possible in a very similar way to derive formulas for the derivatives
of the functions A (¢{n) and B(¢p). The results are

dz’®
Y2 - 1Dz—-a)z—b)

A=+p
(10)
dz*®
P - —o

B=—

where p, and p, are positive constants.

Remarks. 1. Formula (7) remains valid if ¢ is replaced everywhere by a or
b. One therefore sees that {a, b, ¢} is a basis for Q(_R). A translation argument,
as illustrated in [1, page 105], then shows that {¢,, b,, ¢, } is a basis for Q(R ).

2. We have found three functionals A, B, and C, defined in terms of extremal
length, such that 4, B, and C form a basis for @ (R), where R is a triply connected
domain. For a general Riemann surface, the analogous problem is unsolved. For
example can one find 3g — 3 functionals A,, ..., A,,_; on T(S) such that
A,, ..., A;,_; forms a complex basis of @(S), where S is a compact Riemann
surface of genus g and where the functionals are defined in terms of extremal
length?

We now give variational formulas for functionals defined in terms of the Poincaré
length on R. Let X be the Poincaré length of the Poincaré geodesic freely homotopic
to a. Let Y and Z be the corresponding lengths for B and v, respectively. Let
G be the universal covering group for R and let G act on U, the upper half
plane. Let K(a) be the multiplier of a primitive element in a conjugacy class
corresponding to o, with K (a) > 1. Let a(a) and b(a) be the attracting and repelling
fixed points of such an element and c¢(a) the center of its isometric circle. Then

: . K(a)[p]
11 X = (log K -
(11) 1] = (log K())  [1] K
1 SS w(Q) didn
m (L — ala)(L— ble)({— c(a))

(o

One can use Poincaré theta series to express X as a quadratic differential on
R. The formula is
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(12) X= ! @( . ) dz*
T o\ - ale)e - b —ca) /

where @F(z) = 3 F(Az)) A’ (z)® and where the sum is taken over all A in G. The
derivation of (11) is a routine matter if one starts with the equation

A" - b z2—0b
(13) = K"
. A"(2) — a z—a

where A* = w*A(w")™! and w" is the unique quasiconformal selfmapping of U
normalized to fix a, b, and © and where K" is the multiplier of A". With this
normalization, one has the basic formula

— -b déd
(14) 0] =_(z a)(z—b) SS n(l)dédn

(C—alg—bIL—2)

aw
[+

Differentiating (13) one finds that

K (b—a)A
(15) — = .
K (—a)z—b)A’

On the other hand, differentiating w"* (4 (z)) = A* (w"(z)), one finds that

16) A B w(A (2)) b(2)
A aw ¢

Substitution of (16) and (14) into (15) yields (11).

Formulas for Y and Z are obtained simply by taking formula (12) and replacing
a by B or v. It is known that the quantities X, Y, and Z are moduli for 7% (R),
[10]. It is not obvious how to see by direct means that {X, Y, Z} is a basis for
@ (R). This will not be important in the application intended here.

3. QUADRATIC DIFFERENTIALS ON A COMPACT SURFACE ASSOCIATED
WITH A PARTITION INTO TRIPLY CONNECTED DOMAINS

By a partition of a compact surface S of genus g bigger than or equal to
2, we mean a set of 3g — 3 nonfreely homotopic, nonintersecting loops on S. It
is obvious that 3g — 3 is the maximal number of such loops and that the surface
cut along these loops becomes a set of 2g — 2 three-holed spheres,

(R;1=i=2g— 2}

Let each surface R, be marked with loops &,, ;,5; homotopic to its boundary
components. Another system of disjoint marked three-holed spheres
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{(R;1=i=2g—-2}

in S is called compatible if each R, is homotopic to R, in such a way that o,
is homotopic in S to &; and similarly for B; and v,. As in section 1, A;, B; and
C; will be the extremal lengths in R, of the families of curves whose elements
are homotopic to «;, B;, and v;, respectively. Let 6g — 6 positive numbers q,, r;,
and s;, 1 =i < 2g — 2, be given and form the function -

2g~2

(17) P({R} = z q:A;+r.B;+5,C,.

i=1

THEOREM 2. For a given surface S, a given system of marked, disjoint,
three-holed spheres {R;; 1= i< 2g — 2} and a given system of positive constants
{qg;yr;, s;;1=i=< 2g— 2}, there exists a compatible system {R;} for which the
function P({R,}) in (17) is minimum.

Proof. Step 1. The numbers 4,;, B;, and C; may be assumed to be bounded
above. To see this, take a system {R,} and let P=q,A, + r,B, + 5,C,. Let {R,}
be any compatible system for which P({R;}) = P. Then obviously A, = P/q,,
B,=< P/r,,and C, = P/s,.

Step 2. The numbers A;, B;, and C; are bounded below by a positive number
€ depending only on the surface S. To see this let A(I';) be the extremal length
of the family I'; of curves in S homotopic to ;. By the comparison principle

A;= A(T)).

The extremal metric for the extremal length problem A(I';) is the square root
of the absolute value of the Jenkins-Strebel differential of the associated annulus.
The quantity A (I';) m equals the Poincaré length around this annulus in the Poincaré
metric for this annulus. But the Poincaré metric for the annulus is bigger than
the Poincaré metric Ag for S. A geodesic in the family T'; for the metric A g will
have length greater than or equal to € > 0. The constant € > 0 can be chosen
independently of the family of curves I'; just so long as I'; is not homotopically
trivial.

Step 3. Let P=infX q;A; + r;B; + s,C, where the infimum is taken over all
marked families {R,} compatible with {R,}. We now show there is a marked
family which achieves this minimum.

Pick a sequence of marked families {R,,} for which

P =lim 2 q,A,, +rB,, +5,C,,.

Let f,,(2) be the unique holomorphic, univalent function from the uniformizing
domain D,, = C — ([-»,0] U [1,a,,] U [b,,,c;,])into R, which makes the homo-
topy classes «, 3, v in figure 1 correspond to the homotopy classes «,,, B,,, and
Yin of R;,. By lemmas 1.1 and 1.3, one can pick a subsequence of (e¢,,, b,,, ¢;,)
which converges for each i. We label the subsequence with the same letter n
and let (a;q, b9, c;o) be the limit of this sebsequence; 1 < a;, < b;, < ¢;,. Now
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pick a further subsequence for which the functions f,,(z) converge normally for
each i in the domains D, = € — ([~%,0] U [1,a;,] U [b,0,¢,0]). It is obvious that
the functions f,, form a normal family since the universal covering of S is the
unit disc. Let f; be the normal limit of f,,. By the Hurwitz theorem, f; is either
univalent or constant. If f; were identically equal to a point p on the surface
S, then for a small disc containing p one could find an integer n, such that f;, (a)
would be contained in that disc. But then f,, (a) would be homotopic to a point
and not homotopic to ;. Hence f; cannot be constant.

Step 4. Let R, = f,;(D,). Clearly, by definition of R, the minimum P is achieved
by P({R,}). It is also clear that the domains R, are marked by letting o, = f,(a),
B;=f:(B) and v, = f;(v). The domains R, are disjoint, since if R, meets R, for
example, then one could pick a sufficiently large n for which R,, meets R,, and
this would contradict the fact that {R,,} forms a compatible system. Finally, each
R, is freely homotopic to R, in a manner which preserves the markings. To see
this observe that f;, (a) ~ &; and for sufficiently large n, f,, () will lie in an annular
neighborhood of a; and will be freely homotopic to «;. Therefore, a; ~ &, and similarly,
B;~ B;and v, ~¥,;.

Definition. The positive.cone of @(R;) is the set of linear combinations of
the form a,A; + a,B; + a,;C; where a,,a,, and a, are positive constants.

. Remark. It has been pointed out to me by Steve Kerckhoff that the trajectory
structure of any quadratic differential ¢(z) dz® in Q(R) is quite easy to describe
in terms of the roots and leading coefficient of the real quadratic polynomial
p(z) in the expression

p(2)
2(z— 1)(z—a)(z— b)(z—¢) '

¢(2) =

In the case at hand, where ¢ (z) is in the positive cone of @ (R), ¢ (z) is a Jenkins-Strebel
differential with three characteristic annuli homotopic to the three boundary
contours of R. The positive cone consists of the positive differentials defined by
Jenkins in [8]. As a consequence, the differentials constructed in the following
theorem turn out to be Jenkins-Strebel differentials on S.

THEOREM 3. Let {R;} be a compatible system of disjoint, three-holed spheres
which minimizes the quantity P({R;}) in formula (17). Then there exists a global
quadratic differential ¢ in Q(S) such that ¢ restricted to R is an element of the
positive cone of Q(R,) for each i and U R, = S.

Proof. We will use repeatedly theorem 1 from [7]. Let g, = q;A; + r,B; + 5,C,,
so ¢, is in the positive cone of @ (R,).

Step 1. ¢, is an element of @Q(S). To show this let L(R;) be the space of
all measurable, Beltrami differentials with support in R; and bounded in the

supremum norm. Let N, be the set of all u in L(R;) for which Re S S e dxdy =0

4 &)
for all ¢ in @(S). If we show Re S S ¢; dxdy = 0 for all p in N, then it follows
that ¢; is in Q(S).
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Suppose, contrariwise, that there is a p. in L(R;) for which

i) Re S S @; dxdy <0

and

ii) Re K S ep dxdy =0 for all ¢ in Q(S).

Then one could find a curve of Beltrami differentials v(£)(z) which are identically
zero for z not in R, and for which v(f) = i + o(f) in the L _-norm and for which
S, = S as an element of T(S), [7]. Along the curve S, ), the terms

q;A;+r;B;+s,C;

remain the same for j # i and the term ¢,A; + r;B; + s;C; becomes smaller for
small ¢ > 0. But this contradicts the minimality of P.

Step 2. There exists a positive constant ¢; such that ¢; = c;¢,. If not, there

would exist w, in L(R,) such that S g ¢,p,dxdy < 0 and S S @;i; dxdy > 0. Let

R, Ry

u; be an element of L(R;) for which S S i@ = — S S ;¢ for all ¢ in Q(S) and

R; Ry
let p=p; +p,.
Thus, i) w is orthogonal to Q(S),
ii) the support of p. is contained in R ,UR,
iii) S S e, dxdy < 0,
R,
and
iv) S S ne;dxdy = S S W dxdy = — S S Wy, dxdy < 0.
R; R, Ry

Now pick a curve v(¢) = tn + o(¢) for which S= S ,, as an element of 7'(S) and
supp v(¢) C R, U R,. Along this curve, for small enough values of £, the two terms
q.A,+r;B,+s5,C,and q,A; + r;B; + 5,C; are decreased and all the other terms
are unchanged and so P is made smaller for a compatible system on a conformally
equivalent, similarly marked surfaces. This contradicts the minimality of P.

Step 3, U R,=S. If not, let D be an open disc inS — U R;. Then pick p, in
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L(R,) for which Re S S 1@, dxdy < 0 and p, in L(D) for which

S S B¢ dxdy = — X S p1¢ dxdy

for all ¢ in @Q(S). Then the differential p = p, + p, will be orthogonal to Q(S)
and a deformation in the direction of p will decrease the termgq, A, + r, B, + s,C,
and leave all the other terms in (17) fixed. This would be a contradiction.

Remarks. 1. If the quantity X=gA;,+ r;B,+s;C; is replaced by
29X, +r; Y, +s,Z, where X;, Y, and Z; are the Poincaré lengths discussed in
section 2, the same technique can be used to construct a global quadratic differential
on S associated with this quantity. It is no longer clear however that the result
will yield a Jenkins-Strebel differential.

2. It is obvious that each of the boundaries of each of the triply connected
domains comes equipped with a pair of antipodal points. It would be natural to
try to associate the 6g — 6 real moduli of S with the moduli of the 2g — 2 triply
connected domains, the 3g — 3 conditions on the lengths of their boundaries and
the 3g — 3 rotations of the boundaries.

Note added in proof: Recently, by considering Dehn Twists, Scott Wolpert has
found the solution to the problem suggested in Remark 2 of Section 2.
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