A CRITICAL GROWTH RATE FOR
FUNCTIONS REGULAR IN A DISK
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1. INTRODUCTION

Suppose that k(r) is a positive continuous non-decreasing function of r on
0 = r < 1, which satisfies

(1) R(ry > wasr— 1.

We consider the class A*“” of functions f(z) regular in
U= {z]|z| <1}.

and which satisfy there

(2) log | f(2)| = k(]z]).

We start by remarking that A*"” always contains functions of unbounded
characteristic in U. Thus BAGEMIHL, ERDOS and SEIDEL [1, Theorem 5] have
shown that, if a is a small positive constant and the sequence n; of positive integers
grows sufficiently rapidly,

f@=all {1 — (—z—) } e A%,
n=1 1- l/ni

On the other hand f(z) has n; zeros on the circle |z| = 1 — 1/n,, and so,
if p,, are the moduli of the zeros of f(z), the p, do not satisfy the BLASCHKE
condition

(3) D 1=p,) <

Hence f(z) cannot have bounded characteristic.

Nevertheless H. S. SHAPIRO and A. L. SHIELDS [3] proved that if
fz) # 0 and f € A¥™ with k(r) = 1 — r)7% for 0 < b < 1, then (3)
holds for the real positive zeros p, of f(z), and hence for the moduli of the
zeros on a fixed radius arg z = 0. In this paper we obtain the precise condition
on k(r) for this latter result to hold.
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2. STATEMENT OF MAIN RESULT

Definition 1. If k(r) is a positive continuous nondecreasing function of r for
0 = r < 1, then the class A“**” will be called S.-S. (SHAPIRO-SHIELDS) if and
only if (3) holds for the positive zeros p, of any f(2) in the class.

We proceed to prove the following
THEOREM. A necessary and sufficient condition for the class A" to be

S.-S. is that
Yo k()
dr < o,
1-r

o

4) J= S

3. PROOF OF THE SUFFICIENCY

The sufficiency of (4) is actually an almost immediate consequence of an earlier
result by the authors [2]. We need to recall [2, p. 179]

Definition 2. Suppose that there exists a function z = ¢(w), which is regular
in U, real and increasing on the segment [0,1] of the real axis and
$(0) =r, =0, &b(1) = 1 and

[d(w)| < 1in U.

Suppose further that

[1—-¢w)| <C;|1 -—w], 0=|w| <1l
Suppose next that f(z) is meromorphic in U and that
Trfle®dwN=C,, 0=0=2mr0<r<1

where T'(r,¥) denotes the NEVANLINNA characteristic of Y(w) in |w| < r, and
C,, C, are positive constants. Then we say that f(z) haslocally bounded characteristic,
(l.b.c.) in U.

We proved [2, Theorem 5].

THEOREM A. If f € A% and (4) holds then f has lL.b.c. and we may take
ro=1/e and C,, C,/J” absolute constants.

We take this opportunity to close a slight gap in our proof of Theorem A.
With a suitable ¢ satisfying the above conditions we actually showed [2, p. 137]
that

2

: 1 (% . 1
(5) — K log™ | f{d(e™)} | dh= — S k(lde™)d\ = C,.
2 2

T Jo 0
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What needs to be proved however is

1 (" _
(6) -é-— X log™ | f{d@re™)}| d\ = C,, o<r<l1.

™ Jo

If f{d(w)} is regular in |w| = 1, (6) is a consequence of (5). In the general case
we apply (5) to f(tz) instead of f(z), where 0 < ¢ < 1. Clearly, since f(z) € A%
and k(r) is increasing, f(tz) € A*”. We deduce from (5) that

1 (% .
— S log* | f{tb(e™)}|d\ = C,,
21

(o)

and since f{¢$(2)} is regular in |z| = 1, we deduce

1 2w
(7 —_ g log* | f{tdb(re™)}|d\ = C,, o0<r<1,0<t<1.

™ Jo

If |w| = r, where r < 1, then |$(w)| < r,, where r, < 1. Also log™ | f(2)| is continuous
for |z| < r,. Thus log™ | f{td(re™)}| is a continuous function jointly in ¢, 0 <t <1,
and \, 0 =\ = 2w when r is fixed, 0 <r < 1. Thus we may allow ¢ to tend to
one under the integral sign in (7) and deduce (6). By applying the above argument
with f(ze®®) instead of f(z), we deduce that f(z) has lLb.c. with C,, C,, as in
Theorem A.

We now deduce the sufficiency of (4) for (3) to hold. Let p, be those zeros
1

of f(z) which satisfy — < p, < 1. Since ¢(w) increases from r,=1/e to 1 as w
e

increases from O to 1, there exists r, such that 0 <r, <1 and &(r,) = p,,. Thus
if ¥(w) = f{d(w)}, then T(1,¥(w)) = C,, and ¥(r,) = f(p,,) = 0. Thus

Z(l—rn)<oo.

Also in view of Definition 2 we have
1-p,<C,1-r,),
and we deduce (3).
With a little effort one can by the same method prove a corresponding result
for those zeros z, of f(z) which lie in a STOLZ angle arg(1 — 2) < —121 — 3 for a

fixed 3. It is a consequence of the conditions on ¢ (w) in Definition 2 and follows
in particular from the explicit construction of é(w) in [2, pp. 192-193], that the

1
image of ¢(w) covers a sector S(r,8) = (2|0 <|1 —z| <r,arg(1 — 2) < ? — 8}, for

any positive 8, where r = r(3) depends on 3. Further ¢ (w) is univalent in the
inverse image of S(r,d) and
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1 - ¢(w)
——

1—w

C, asd (w)— 1in S(r,3).

Here 0 < C = C,. Thus, for large n, f{d(w)} has a zero w,,, in U, where
1—2,=(C+ o)1 —w,), as n — oo,

In particular
™ 1
larg (1 — w,)| <— ——3, I1—-2z,|<2C|1 —w,|
2 2
for large n. We deduce that for large n
1
11—z, |<|1—-2,|<2C]1-w,|< 3Ccosec5—8 a-|w,).

Since f{® (w)} has bounded characteristic, we deduce again that

D A=z, <o,

where the sum is taken over those zeros lying in a STOLZ angle bisected by
the positive axis, or by any radius.

4. PROOF OF THE NECESSITY

Preliminary Results. In order to prove the necessity we need to construct
a conformal mapping which is a slight adaptation of one used by us in our previous
paper [2]. The main difference is that we need at present a symmetric map,
whereas for [2] an unsymmetric map was necessary. We shall indicate the
differences which this involves in our definitions. The arguments are almost
identical. Suppose then that k(r) is again positive, continuous and increasing in
[0,1), that 2(0) = 1 and

Sl | k(r)
(8) dr = + oo,
o 1-r

We define a function (&) for £ = 0 as follows. Let r be the unique number, such
that

] | k@) ( v .| BO) )
(9) et = instead of e™* = in [2, (3.13)]
1—-r 1-r

and set

e (&) =V {(1 = Nk} .
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We then define ¢,(£), £5(£) and €(£) in terms of &,(§) just as in [2, pp. 188 and
189], namely

€, (€) = min (1,¢, (£)),

£

(10) es(f) = aez(g)/{l + S e2(t)dt}, 0<a<l.

0]
g, = inf e3{), n=2; ¢,=0,n<2,

n—2)A, <t = (n—1A,
where A, = 16,000, and

(11) ex) = ¢, N—1)A,<x<nA,

e(x) = min (e,,e,,,), x=nA,.

We then consider as in [2] that map from the domain A in the { = £ + i) plane
given by

1
(12) |ﬂ|<§-('n+€(€)), —<E< + o,
onto the strip S in the s = ¢ + i7 plane given by
am
(13) |7|<;, —w0 <o <+ o,

which is symmetric, i.e. ¢ = % o correspond to £ = + o and s(0) = 0. However the
function u(z) which we now consider is given by

(14) u(z) = —ecosm, (instead of u = —e**sin 2y in [2, (3-9)]),

where s, { are related as above and

1+2
(15) s=o+ i1=log
1-2
1 1+2 o
instead of s = — | log +i— }in [2, (3.3)] }.
2 11—z 2

With the above definitions we can prove

LEMMA 1. If u(z) is the function defined by (14) and the constant a in (10)
ts chosen sufficiently small, then we have

(16) u(z) = k(jz|),z € U.
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This result is the analogue of Lemma 7 of [2] and the proof is quite similar
and uses the properties of the conformal map from A to S. The difference between
our present and our former construction are indicated in (9), (14) and (15). We
go briefly through the main steps of the argument which leads to (16). We start
by proving that for 0 < ¢, < t, < o, we have

(17) g, (t,) = e?“ 7 ¢ (¢)),
and
(18) S g, (§)dE = oo,

The argument is similar to that given in the proof of [2, Lemma 5]. We deduce

just as in [2, Lemma 6] that if ¢, =¢,=<¢, + 1, we have g, (£,) = ;e"zea(tl) and

further that g €5 (£)dt = . These results lead to ¢,,, > A, ¢,, where A, is an
0
absolute constant, and

(19) X e(t)dt = oo,

o
The argument is given in [2, p. 190].
To complete the argument for Lemma 1 we prove the analogues of (4.3) and
(4.4) of [2]. Namely if u(re’®) is given by (14) and u > 0, we deduce that
u(re®) < e, (£)e®
(instead of u(re’®) <e,(£)e* in [2, (4.3)]) and

1—r<e,(§)e

(instead of 1 — r<e,(£)e >* in [2, (4.4)]). The proof is then completed as in [2,
p-p- 190, 191] with the differences indicated above. In the present case it is sometimes
possible to prove somewhat sharper inequalities, but it is probably simplest to
stick to the results of [2].

LEMMA 2. If o, & are related as above with (x) satisfying (11) and (19)
then

o—§&E—> —wasE— + oo,

This is LEMMA 2 of [2].

We note that in view of the above construction, we have
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w
(20) OSE(t)Sl<—2—, -0 < t< 4 oo,
We deduce
1+w 3w
LEMMA 3. Let U, = {w: arg 1 < —4—} Then there exists a domain G,
- w

such that U C G C U,, which is symmetric with respect to the real axis and
such that

(21) log |g{d(2)}] = k(]2]), |2| <1,
where
w+1
(22) g(w) = exp { }
w-—1

and w = &(z) maps U conformally onto G, so that &(—1) = —1, $(0) = 0 and
&(1) = 1. Further

1 —
(23) im 20
r-1- 1 —r

We define w by

24 =1
(24) = log ——

v
Evidently A, given by (12), contains the strip |n| < E, and is contained in

In| < 'Z"n' in view of (20). Thus if w, { are related as in (24), then A corresponds
to a domain G in the w-plane which contains U and is contained in U,, since

iy 3w
U and U, correspond to |n| < E— and || < —Z— respectively by (24).

Let w = ¢(2) denote the correspondence between w and z, when w and { are
related by (24), s and { by that map from the strip (13) into A given by (12),
which was discussed above, and z and s by (15). Then w = ¢(z) clearly maps
U onto G. Also z= —1, 0, 1 correspond respectively to s = —, 0, %0, { = —oo, 0,
and so w = —1, 0, 1. Clearly w = &(2) is real for real z and so symmetric.

Next, in view of (14), (22) and (24) we have

u = —e*cosn = Re {—e*} = log |exp(—e*)]

w+1
7| = log |g(w)].

= log |exp

w—.
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Thus u(z) = log |g{$(2)}|, and (21) follows from (16).
Finally (23) follows from Lemma 2, and the proof of Lemma 3 is complete.
Next we need the following elementary

LEMMA 4. Forz € U\Uand 0 <r <1 we have

z—r 1-r z+1
(25) log =2 Re .
1—rz 1+r z—1
. z+1 1+r
We write { = X a= . Then (25) reduces to
z—1 1-r
L a+{ 2R§ ™ | (] i
og = —Rel, —<l|argl| <—.
a—{ a 4 2

We write { = a(x + iy), so that 0 < x = | y|. Then our inequality becomes

1 1+ x)>%+y°
<

—log ————— = 2x.
2 1—x)?2+y°
or
1 1+¢
— log = 2x
2 1-1¢
where
2x 2x 1
t= = <
1+2°+y® 1+2¢° V2
Thus
1 1+¢ 1.1
— log =t+—t +— + ..
2 1-—1¢ 3 5
1 1, 1, 1 ¢
=t+8|—+—t"+—t"+— .
3 5 7 91—t
1 1 1 1 313 3 1 3
=t+8|—+t—+—+—|=t+—<t+—t.
3 10 28 36 630 2
Hence
1 , 1+¢ 2x (1 2x* )
—1lo = b
2 81t 142 1 + 2x%)*

2x(1 + 6x° + 4x*)
= = 2x

1+ 6x% + 12x* + 8x°
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as required.
Finally we use (23) to prove
LEMMA 5. There exists a sequencer,,n = 1,2, ..., such that
@ o<r,<1,

= 1
(ii) Q1-r,) =—,
2 2
and
(i) > (1-p,) =+,
n=1
where &(p,) = r,,, and &(2) is the function occurring in Lemma 3.
For every positive integer p we choose ¢, so that
0<1-6@,)<2”'1-t)<27?
Such a choice of £, is possible in view of (23). We then define %k, to be the integral

part of (1 — tp)—l, and define k&, of the numbers p, to be equal to ¢, for each
. The resulting sequence p,, is then rearranged to be non-decreasing. Then

%1
2(1—;),.)—21@ (1-t,) ZZET

which proves (iii). Finally if r, = $(p,), we have (i) and

N N P N R
;(l—rn)=;kp(1—¢(tp))<1;2 k(1 tp)_;2 =~

which is (i1). This proves Lemma 5.

5. COMPLETION OF PROOF OF THEOREM 1

Let r, be the sequence constructed in Lemma 5 and let

oo

r,—w
Bw) =[] ———.
ne1 1 —r,w
The product converges in the whole plane apart from poles and zeros and
w =1, and B(w) is meromorphic in the closed plane except at w = 1. Also we

have |[B(w)| <1, w € U, and in view of lemma 4 we have for w € U,\U

w+l \1—-r, w+1
log |B(w)| < 2Re > = Re
w—1:=1+r

w—l'
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Thus if g, & are as in Lemma 3, we have for z € U

|B{d(2)}| = |g{d(2)}| = exp k(|2]),
so that B{$(2)} € A*“”. On the other hand B {¢(z)} has zeros at the points z = p,,,
which do not satisfy (3). Thus A*“” is not S.-S.

We have assumed so far that 2(0) = 1. In the general case we apply the above
construction with 2, (p) = k(p) + C, where C = 1 — k(0). Then if £, (z) is the corres-
ponding function, we have in U

log | f1(2)] = k(|z]) + C,
and the positive zeros of f,(z) do not satisfy (3). Thus

f@)=e"°f,(2)

satisfies (2), but the positive zeros of f(z) do not satisfy (3). This completes the
proof that (4) is necessary, and the proof of our Theorem.
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