A NOTE ON L*(I'\\SL (2, R))
Alladi Sitaram

1. INTRODUCTION

Let G be the group SL(2,R)(that is, the group of two-by-two real matrices
of determinant 1). Let I' and I'’ be discrete subgroups of G such that '\ G and
I'’\\G are compact. We shall also assume that bothT' and '’ do not contain elements
of finite order. Let o and ¢’ be the right regular representations of G on L*>(I'\\G)
and L?(I'"\\G) respectively. The purpose of this note is to give a sufficient condition
for o and o’ to be unitarily equivalent, in terms of the eigenvalues of the elements
of ' and I'’ (see Theorem 3.2 in section 3). We do this by introducing a Selberg-type
zeta function Z (s) (see section 3). Zr (s) has the same kind of relationship to
the nonspherical principal series of SL(2,R) as the original Selberg zeta function
([7]) has to the spherical principal series. (It can be seen by looking at the original
Selberg function that if the eigenvalues (with multiplicities) of I' and I'’ are
the same then the spherical principal series representations of G occuring in
L?>('\\G) and L*(I'"\\G) are the same and they occur with the same multiplicities.

2. NOTATION AND PRELIMINARIES

Let G stand for the group SL (2, R) (that is, the group of two-by-two real matrices
of determinant 1). Let I" denote a discrete subgroup of G such that:

(a) I'\\G is compact.
(b) T does not contain elements of finite order (except for the identity).

It is known (see [2, p. 11]) that under these assumptions I' contains only
hyperbolic elements. (An element v € T is said to be Ayperbolic if it has distinct,
real eigenvalues). An element y € I' is said to be primitive if it is not a positive
power of any other element of I'. Clearly any conjugate of y will also be primitive.
Let P, (e = 1,2, ...) be a complete set of representatives of the primitive hyperbolic
conjugacy classes of I'. Let p. denote the eigenvalue of P, with the larger absolute
value. Let N{P,} = u2 and let \_ = sign (eigenvalue of P,). (Note that both ei-
genvalues of P, must have the same sign).

Let
cos® sin6
K=SO(2)={( . ); 0595211}
—sin® cosO

As is well known, K is a maximal compact subgroup of G and as a symmetric
space G/ K can be identified with the upper half plane: H = {z;z € C and Im 2z > 0}.
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Then since I' is a subgroup of SL(2, R), I' acts on the upper half plane H and
under the assumptions on I', I'\NH is a compact Riemann surface and I' is its
fundamental group. Let p denote the genus of I'NH. Then again under the
assumptionon I', p > 1.

Fix a Haar measure dx on G and the counting measure on the discrete subgroup
I'. Then there exists a unique G invariant measure dx on I'\\G such that

S fdx=S (Z f(m) di
G I'\\G \vyer

Then by vol('\ G) we mean the total measure of I'\\G with respect to the measure
dx. (Note that the volume of '\NG can be computed in terms of the genus p
of I\\H). By L*(I'\\G) we mean the set of complex valued measurable functions
on I'\NG which are square integrable with respect to dx. Let ¢ be the unitary
representation of G on L>(I'\\G) given by right regular action:

(@) )y)=f(yx) forallx € G,y € T\\Gand f€ L*(IT'\\G).

Let G be the set of equivalence classes of unitary irreducible representations of
G. Then it is known ([2]) that o is a direct sum of irreducible unitary representations
of G and for any 8 € G, the multiplicity of 8 in o is finite. We shall denote
this number by m (3).

Representations of SL(2,R). Since the notation used by different authors differ
widely, we shall collect here the necessary facts concerning the unitary representa-
tions of SL (2, R). (See [5] or [11] for details). The Iwasawa decomposition G = KAN

is given by:
cosO sin0
K=SO(2)={( . ); 059_<_2'rr}
—sin6 cos0
A0
= ( ); A>O}
{ 0 1
1 ¢
01
Let

(6 e

For each A € C define the following homomorphism &, of A into C\ {0}:

()_ 2ix+1 h _(E O )EA
P, (a) =& where a = 0 1/t
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Now let ¢, , ¢, be representations of MAN defined by:
by | 5 is trivial, &y |4 = &y, &y | is trivial,
&, | 5 is the unique non trivial character of M,

7|4 = by, by | w is trivial.

Let wr; (respectively ) be the representations of G induced by the representa-
tions &, (respectively &, ) of MAN. The representations {w, } are called the spherical
principal series of G and the representations {w, } are called the non-spherical
principal series of G. If \ is real or if A is purely imaginary and |A| <1/2 then
wy is irreducible and infinitesimally equivalent to a unitary representation.
is equivalent to a unitary representation if and only if A\ is real. {m, },og are
all irreducible except when A = 0. w, is the direct sum of two non-equivalent
irreducible unitary representations which we will denote by D, ,, and D_,,, (see
[5]). Recall that = € G is said to be a discrete series representation if it occurs
as a subrepresentation of the right (or left) regular representation of G on L*(G).
Then we have the following fact: Any 8 € G is equivalent to one of the following
representations:

(a) the trivial representation

(b) m, for some X real or A purely imaginary and || < 1/2
(c) w, for some A real and nonzero

(d D 1/2

(e) D_y/»

(f) a discrete series representation.

The Selberg trace formula. Let x,,, be the character of K(=S0(2)) defined

as follows: x, ,, (U,) = e*°*/* where
0 0
cos— sin—
2 2
0 0
—sin — cos —
2 2

We say a function f on G ‘transforms according to the character x, ,,’ if

fRxE') =X,1,2(k) fX)X1,2(k'), forallxe Gk € K.

We will now define the concept of a Fourier transform for functions transforming
according to the character x,,,. Let f € L'(G) transform according to the character
X1/2- Then the Fourier transform is a function f defined on C by:

f (\) = trace T, (f) (if it exists).

Then, retaining the notation introduced earlier, we have the following version
of the Selberg trace formula for a suitable class of functions f that transform
according to the character x,,, (see [2]):
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co

2 m,f @) = (2p—2 S r f (r) coth wrdr

- GO

Ng(klogN {P.})logN {P,}
+ 2
>; 2 N{P}** - N (P} *?

where g(u) =E—S e ™ f(r)dr,r, are the real numbers such that =,
T

k = 1,2,... are precisely those non-spherical principal series representations of
SL(2,R) occuring in the decomposition of L?>(I'\\G) under the right regular
representation o of G on L*(I'\\G), and m & 1s the multiplicity of ™, in o.

—o0

(Note. (i) The class of functions for which the trace formula is valid are called
admissible functions (see [2]).

(ii) If N is real w, and w_, are equivalent. Hence if x € {r,},_, then
—x € {rk};:zl'

(iii) As observed already m, is not irreducible. In fact w, =D, ,® D_, ,,.
However it can be shown (see for example [8]) that mult (D, ,,,0) = mult(D_,,,,0).
Hence it is meaningful to talk about the multiplicity of =, in o.

(iv) Selberg’s original trace formula [7] was for K-biinvariant functions.
However one can derive a general trace formula for a function f transforming
according to any character of K (see [2]). If we take the character to be x,,,
then there is no contribution from the discrete series representations and we get
the formula given above.)

Finally we recall some well known facts about the original Selberg zeta function
Z . introduced in [7]. (Proofs can be found in [3], [4] or [1])

oo

Z(s) = f[ [Ja-~@y—™.

=0

Z (s) has ‘trivial’ zeros at —% for £ = 0,1,2, ... of multiplicity (22 + 1)(2p — 2).
Apart from this Z.(s) has zeros 1/2 + ir,, £ = 1,2,... of multiplicity m, where
'n':; are precisely the spherical principal series representations of SL (2, R) occuring
in L*(I'\\G) with multiplicity m, (i.e., the occurence along with multiplicities of

the spherical principal series representations of SL (2, R) is completely determined
by Z(s).

3. A SELBERG TYPE ZETA FUNCTION AND AN APPLICATION

We retain the notation of section 2. Let I' be a discrete subgroup of G as
in section 2 (i.e., I'\\G is compact and I" does not contain elements of finite order).
In analogy with the Selberg zeta function of the previous section consider the
‘zeta’ function defined by

Zzew =[] [] 0 - ¥ ®3 ") e (9)

a=1 n=0
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Then we have the following theorem for our zeta function which tells us that
Z.(s) bears the same kind of relationship to the nonspherical principal series
as the original Selberg zeta function Z.(s) bears to the spherical principal series.

THEOREM 3.1. The infinite product (*) converges for Re s > 1 to a holomorphic
function Zr (s). Further Z.(s) can be extended to an entire function and has the
following zeros:

(a) ‘trivial’ zeros at s = —n + 1/2 of multiplicity 2n(2p — 2) (where p is the
genus of T\NG/K),n = 1,2, ...

(b) ‘Spectral’ zeros at s = 1/2 + ir, of multiplicity m,, k= 1,2, ... (where w_
are precisely the nonspherical unitary principal series representations of G occuring
with multiplicity m, in the decomposition of L>(I\G) under the right regular
representation of G).

The proof of the above theorem is carried out exactly as the corresponding
proof for the original Selberg zeta function. The only difference is that instead
of using the original trace formula of Selberg for a K-biinvariant function one uses
the trace formula given in section 2 for functions transforming according to the
character x,,,. Since several authors have given proofs of the properties of the
original Selberg zeta function we will not repeat the proof here. (see [1], [3],
[4] or [8]).

We now give an application of Theorem 3.1. Let I and I'’ be discrete subgroups
of G such that I'\\G and I'"\\G are compact and such that I' and I’ do not have
elements of finite order. Let P,, N{P_ }, p,, A\, be defined for I" as in section
2. Let P’, N{P’},n.,\. be similarly defined for I'’. Let ¢ and o’ denote the
right regular representations of G on L>(I'\\G) and L*(I'"\\G) respectively. Then:

THEOREM 3.2. If (after a suitable reordering if necessary), n., = p!, a =
1,2,..., then o and o’ are unitarily equivalent.

Proof. As observed in the introduction it is known ([2]) that o (resp ¢’) is
a direct sum of irreducible unitary representations of G and that for any 3 €
G, mult (3,0) (resp mult (3,0”")) is finite. Therefore to show ¢ and ¢’ are unitarily
equivalent it is enough to show that for any 8 € G, mult (3, ¢) = mult (3,0”).

If p, =p. for all a then N {P_} = N {P! } for all a. However this would mean
that the Selberg zeta functions Z,. = Z,.. and hence the spherical principal series
representations occuring in L*('\\G) and L*(I'"\\G) are the same and they occur
with the same multiplicities (see the last part of section 2). Since the ‘trivial
zeros’ of the Selberg zeta function determines the genus we have

genus ((\N\G/K) = genus(I''\G/K).

However this implies vol ('\NG) = vol (I'"\G). Again it follows from the work of
Gelfand and Langlands (see [10, p. 174]) that if = is a discrete series representa-
tion of G then the number of times = occurs in L?>(I'\\G) is completely deter-
mined by vol (I'\\G). Thus the proof of our theorem is complete once we show
that if 3 is a non-spherical principal series representation of G then

mult (8,0) = mult (5,d’).
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Now under the assumption p, = p. for all a, we have N{P,} = N{P/} and
A. = A, for all a. Hence the Selberg type zeta functions introduced in Theorem
3.1 are the same for I' and T'’/; i.e., Zr = Zr. and hence by (b) of Theorem 3.1
if 8 is a nonspherical principal series representation of G,

mult (3, o) = mult (3,5")

and the proof of our theorem is complete.

Remarks. (i) The fact that the numbers N {P_} determine the occurence of
the spherical principal series representations has also been observed by Mckean
in {6]. The numbers N {P_} can also be given a differential geometric interpretation
(see [6]) and in fact if N{P_ ,} = N{P.)} for all o, T and I'’ are isomorphic (see
[9D).

(ii) If o and ¢’ are unitarily equivalent it is a conjecture of Gelfand [2, p. 87]
that I' and I'’ should be conjugate.
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