FUNCTIONAL INTEGRALS RELATED TO
A NONCONTRACTION SEMIGROUP

T. F. Lin

1. INTRODUCTION

Since the controversial Feynman path integral (see [3,6]) appeared, functional
integral representations for solutions of certain initial value problem u, = Au + vu
have been extensively studied. There are essentially two types of integral repre-
sentations. In one type of representation, A is the infinitesimal generator of a
contraction semigroup S, such that S,1 =1, ||S,|| = 1. The measure involved in
the integration is a probability measure which is associated with a diffusion process
(see [5,1]). For generalization to the nonhomogeneous case, see [10]. In other
types of representations, A is associated with a semigroup of operators S, such
that S,1 =1 and ||S,|| = ¢ > 1. The integration is carried out with respect to a
finitely additive set function (see [7,2]). We will study here a type where A generates
a semigroup of operators S, such that S,1 =1 and ||S,|| < e* for some « € R".
The measure to be used in the integration is a measure, perhaps complex or signed,
with total measure 1. Note that the condition S,1 =1 is indispensable in the
construction of measures or set functions on function spaces. The difference between
the above three cases is the norm of S,.

Throughout this article, unless otherwise specified, X denotes a compact metric
space with metric p, C = C(X) denotes the space of all real continuous functions
on X with supremum norm and A denotes a closed linear operator on C with
domain Z(A) dense in C and containing all constant functions.

It will be shown that if A satisfies the following conditions:

(1.1) Af(xy) = af(x,) if f(x) = || f]l, wherea € R™,
(1.2) A — A maps Z (A) onto C for each A > «,
(1.3) Al=0,

then the solution of the initial value problem

=A
(1.4) {“t(t’x) u(t,x) + vlx)u ¢, x),

u(0,x) = f(x),

0=t=T <o v e C, fE€ Z(A), has a functional integral representation.
The solution can also be expressed as
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(1.5) u(t,x) = S Q¢ x,dy)f(y)

X

where @ (¢, x,dy) is a transition function, that is, it is measurable in (¢, x) for
fixed dy, a measure in dy for fixed (4, x), and satisfies the Chapman-Kolmogorov
equation.

The above result can be extended to the case where C is the space of complex
continuous functions. It can also be extended to the case where X is a separable
locally compact Hausdorff space by applying compactification and metrization.
However, then, the space C should be modified such that every element in C
has a continuous extension when X is compactified. For example, if X = R, then
C should be the space of all continuous functions on R which have limits as
| x| approaches infinity.

Conditions (1.1) and (1.2) are standard in the theory of semigroups of operators.
They permit A to generate a semigroup of linear operators. If A is not closed,
one has to assume that R (A — A) is dense in C. Condition (1.3) makes it possible
to construct a measure on the function space @ = X'®”!, In section 2, it is shown
that A is associated with a process x(f,w) which is Markov in the sense defined
in [9]. One of the main tasks of this article is to show that the integration of
a measurable function of x(f,w) with respect to dt makes sense. This is done
in section 3. Indeed, it is proved there that x(f{,w) is stochastically equivalent
to a process which is right continuous and has no second kind of discontinuities.
In the last section, the functional integral representation of u(¢ x) is derived.
The transition function @ (¢, x,dy) is defined as

0

(1.6) QU,x,F)=E,, {Ip(x (t)) exp { S v(x(r)) dr]}

where I, denotes the indicator function of Borel set F' C X.

Operators which satisfy conditions (1.1) — (1.3) can be found easily. For example,
let X={0,1,2,...}, C= {all convergent sequences}, vy € R and n be a positive
integer. Then the operator A defined by

Af@) =~ (: )(—l)kf(x + k)

satisfies condition (1.1} — (1.3) with a = 2" |y|. For other examples, see [8].

2. MARKOV PROCESS

Let B denote the space of all real bounded measurable functions on X with
supremum norm. For f, € B, n = 0, denote f, = w — limf, if q(f,) = limq (f,) for
each finite measure g on X. Let A satisfy conditions (1.1) — (1.3).
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LEMMA 2.1. For each A > a, R, = (\ — A) "' is a well defined linear operator
from C to Z(A) such that |R,|= (\ — a)~'. Moreover, if \,n > «, the resolvent
equation R, — R, = (n — N R, R, holds.

Proof. Suppose that (\ — A)f=0. Let x, € X be such that |f(x,)| = ||f]. If
fxo) =|fll, then Af(x,) = Af(x,) =af(x,) by assumption (1.1). Since A > a,
I fll = f(xo) = 0. If f(x,) = —||fll, replace f by —f to obtain the same result.
Therefore, A\ — A is one-to-one. From assumption (1.2), R, = (\ — A) ' is well de-
fined on C. To show that |R,| = (\ — @) 7%, let g = R, f. Assume that g (x,) = ||g].
Then A\g — Ag = fand A\g(x,) — f(x,) = Ag(x,) = ag(x,). Hence

(N — @) g(x,) = flxo) = || f]l-

This implies that (A — o) [|R, f|| = | f|. Again, if g(x,) = —| g||, replace f by —f and
g by —g to get the same inequality. Thus, (\ — a)||R,|| = 1. This proves the first
part of Lemma 2.1. The proof of the second part is routine.

From the assumptions imposed on A and Lemma 2.1, the Hille-Yosida theorem

applies. The operator A generates a strongly continuous semigroup of linear operators
S, on C such that, for ¢ = 0, '

2.1) IS, = e

Furthermore, for each x, R, f(x) is the Laplace transform of S, f (x). From assumption
(1.3) and the uniqueness of the Laplace transform, it follows that, for each { = 0,

2.2) S,1=1.

For each (f,x), S,f(x) is a bounded linear functional on C. By the Riesz
representation theorem, there exists a finite measure P (¢, x,dy) such that

X

(2.3) S, flx)= S Pt x,dy)f(y)

for f € C. Since S,f(x) is continuous in (¢, x), it is measurable in ({, x). Therefore,
it is clear that P (¢, x,dy) is measurable in (f,x). By (2.1),

(2.4) |P|(t,x, X) < e**

for ¢t = 0, x € X (where “|-|” denotes the total variation of a measure). It is
trivial from (2.3) that S, can be extended to the space B such that inequality
(2.1) still holds and that, for f, € B, n = 0,

(2.5) S,f,=w-lmS,f, if f,=w-limf,.

For fixed 0 < T < oo, (2.1), (2.2) and (2.5) imply that the following theorem
is true (see [8, Theorem 2.1]).

THEOREM 2.2. There exists a Markov process x(t,»),0=t=T,» € Q = X",
which has P(t,x,dy) as its transition function and which satisfies
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(2.6) E{f(x(t+3s)]|ox(),0=r=s)} =S,f(x(s))

for0=s=t+s=T,f€B.

Note that the conditional expectation used in (2.6) is defined in [9], which
is a generalization of the ordinary conditional expectation.

3. INTEGRABILITY

In this section, it will be shown that the process x(f, w) obtained in Theorem
2.2 1s stochastically equivalent to a process whose sample functions are right
continuous and have no discontinuities of the second kind. For r > 0, x € X, let
B, (x)={y € X,p(y,x) <r}.

LEMMA 3.1. For fixed r > 0,
lim | P|(¢, x,B.(x)) =0
t—0

uniformly in x.

Proof. Let x be fixed and let f € C be such that f(x) =1, |f||=1and f=0
on B! (x). Then

(3.1) S PO,x,dy)f(y) =f(x) = I,i'? S, fx) = 1ir{)1 S P, xdy)f(y).
e - = X
By assumption on f and (3.1), one has

(3.2) liminf | P|(¢, x, B, (x)) = 1.
t—0

Inequalities (2.4) and (3.2) imply that
lim sup | P|(¢, x, B; (x)) = lim sup | P, x,X)
t—0 t—>

— lim inf | P|(¢,x,B, (x)) < lime*' — 1 = 0.
t—0 t—0

Therefore | P|(¢, x, B, (x)) converges to 0 as ¢ — 0. The proof of the uniformity of
convergence is similar to that of ordinary probability measures (see [4, II, p.
114, Remark]).

COROLLARY 3.2. Foreachr >0,

lim inf |P|(¢, %, B, (x)) = 1.

—0 x€X

Proof. From the fact that P(t,x,X) = 1 and inequality (2.4),
1= |P|({tx B,.(x) + | P|(t, x,Bi(x)) < ™.

Therefore, Corollary 3.2 follows from the above inequalities and Lemma 3.1.
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ForOst<s<TletF =c{x(r),t=r=s},F' =F, F=Fand F= F#,.
If x € X, let P,, denote the standard measure constructed from the transition

function P(-,-,dy) on %, which is concentrated on the set {x(¢) = x}. That is,
if F={(x(¢,),..,x(¢,)E G} witht=t, < ..<t, =T, G€E a(X"), then

(3.3) P, (F)= S S []P¢ - tiosyicnndy)
G i=1
where {, =t y,=x. For Ost=<s=<r=7T,x € X, let P, denote the restriction
of P, , on % . Then, it follows from (2.4) and definition (3.3) that
(3.4) | PTQ) < e 77,
LEMMA 3.3. Forr >0,
lim | P, (x(t) € B; ()} = 0

uniformly in x.

Proof. Let F = {x(¢t) € B,(x)}. For arbitrary € > 0, by Corollary 3.2, there
exists & > 0 such that |P|(t,x,B,(x))=1—¢€ for 0 < t = 3, x € X. Let P’ denote
the restriction of P, , on o(x(£)). Then

| P‘|(F) = | P |{x(t) € B,(x)} = | P|(,x, B, (x)).
Therefore, for 0 = ¢t < 3, x € X,
| PYL|(Fy = |P(F)= 1 —e.
The above inequalities and (3.4) implies that
(3.5) [Poil(F)=e*—1+¢€
for 0 = t = 3, x € X. Let x be fixed for a moment. If D € % is a cylinder

set, there exists a cylinder set D, in %" and an % "-measurable function p,, bounded
by exp {a (T — t)}, such that (see [8, Lemma 2.2])

P, (DF°) = S p.dPyt.
FcD,
Combine the above equality with (3.5), one obtains that
| Py (DF)| < e™™ (™ — 1 +¢)

for 0 = ¢ = 3. Therefore, from the definition of the total variation of a measure,

[Py |(F°) < 2e*T™ (e — 1 +¢)
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for 0 = t = 3. The above inequality holds for all x € X. Since € is arbitrary,
Lemma 3.3 follows by letting ¢ — 0.

Let 0 =t = s < s+ h = T. By the facts that the transition function of
x(t) is time homogeneous and %, C %,, it is easy to see that
(3.6) | P, .| {x(s + h) € B (x)} = |P,.[{x(t + h) € B:(x)}
forx € Xand r > 0. Let

a(r,h) =sup{|P, . |[{x(®) €E B/(x)},0=s=t=s+h=T x€ X).

Then Lemma 3.3 and (3.6) imply that
THEOREM 3.4. For eachr > 0, a(r,h) > 0ash | 0.
THEOREM 3.5. For r > 0, uniformly in x,

(3.7) Lim | Py, | {p (x(¢ + h), x(8) = r} = 0.

Proof. Consider 0 <¢ + h <t = T first. Utilizing property (3.3) and inequalities
(3.6), (2.4), one obtains

P,, t+ h),x(t) =
3.9 | Py | {pxt+ h),x(®) =r)

< =0 S |Po, | {x(|2]) € BI(} | Pg " [{x(t + h) € dy}.
X

Since |Pgt"|(Q) =e* for all 0 < ¢ + h = ¢, x € X and since the integrand
in (3.8) converges uniformly to 0 as ~ — 0 by Lemma 3.3, (3.7) follows from
(3.8) by letting A 1 0. For the case that 0 =t <t + h =T, the proof is similar
but simpler.

THEOREM 3.6. The process x(t) is stochastically equivalent to a process whose
sample functions are right continuous and without the second kind of discontinuities.

Theorem 3.6 is a consequence of Theorems 3.4 and 3.5. Since the proof is
parallel to that of ordinary probability space case, the reader is referred to [4,
1, pp. 180-184].

From Theorem 3.6, one can assume that x(f) has right continuous sample
functions which have no second kind of discontinuities. Therefore, integration
of v(x(t)), v € C, with respect to dt makes sense. This property will be used
in the next section.

4. INTEGRAL REPRESENTATION

Let u(t,x) = U(t)f(x) be the unique solution of (1.4). From the perturbation
theorem, U(¢) f(x) is the unique solution of the equation
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U)f=S@f+ (S~ VU,

4.1)
( voyf =1

{2l

where S(f) = S,, V is the operator defined as Vg(x) = v(x) g(x) and where “+
denotes the convolution of operator valued functions of £. When expressed in terms
of the transition function P(¢ x,dy), (4.1) becomes

t

u(t,x) = S P(t,x,dy)f(y)+g dsg Px,s,dy)v(y)u(t —s,y),
X

X o

(4.2)
u(0,x) = f(x).

The solution of this integral equation can be expressed as an infinite series
whose (n + 1)-th term is bounded by ¢"||v]|"e* (n)) ™, n = 0.

LEMMA 4.1. Let w(t, x) denote the functional integral

(4.3) E,, {f(x(t)) exp { S v(x(r)) dr]}.

Then w(t, x) satisfies equation (4.2).

Proof. 1t is clear that w(0,x) = f(x). By applying Fubini’s theorem and taking
the conditional expectation given .#°,

w(t,x) —E, {fx@)} = Eo,x{f(x(t))liexp (S v{x(r)) dr) — 1]}

0

= EOJ{ X dsv(x(s) E, .., [exp ( 8 v(x(r)) drf(x(t))) ] }

Since the process x(¢) is time homogeneous,

Es,x(s){f(x(t))exp [ S v(x(r)) dr]} = w(t — s,x(s)).

s

Therefore,

w(t,x)—E, (flx()} = Eo,x{ S v{ix(s) w(t — s,x(s)) ds}

()

= X dsg P(s,x,dy)w(t — s,y) v(y).
P

0

This proves that w (£, x) satisfies equation (4.2).

By uniqueness, w(t,x) = u(¢,x). Therefore, the solution of equation (1.4) has
a functional integral representation (4.3). If @ (¢, x, F') is defined as in (1.6), then
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(4.3) becomes (1.5). By the uniqueness of solution for (1.4), @ (¢, x, F) satisfies the
Chapman-Kolmogorov equation. This fact can also be obtained directly by using
the conditional expectation and the definition of @ (¢, x, F).

THEOREM 4.2. The solution u(t,x) of equation (1.4) admits an integral
representation (1.5) where Q (¢, x,dy) is a transition function defined by (1.6).
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