BOUNDARY VALUE ESTIMATION OF THE RANGE
OF AN ANALYTIC FUNCTION

D. L. Burkholder

Let S be a set of complex numbers and G a function analytic in D = {|z| < 1}.
Denote the nontangential limit of G at e, if it exists, by G(e'®) and write
G (e*®) € S a.e. to mean that, for almost all B the limit does exist and belongs
to S.

We seek conditions under which
(1) GE®)ESae.>GMDCS.

Neuwirth and Newman [12] showed that if S is the positive real axis, then
(1) holds for all G in the Hardy class H'/%. Hansen [8] gave a more general
approach to such results and showed, among other things, that if S is the comple-
ment of the sector {re®:r=0,0= 0 =< w/p}, where p > 1/2, then (1) holds for all
G € H".

Now suppose that F is also analyticin D and p > 0. If F (D) N G (D) is nonempty
and G (e’ )¢F (D) a.e., then

2) GeH'>Fe R’
[1, Theorem 4.4]. Hansen’s method, somewhat strengthened, can be described as
follows: If .# is a family of functions analytic in D such that U FD) is a

dense subset of C — S and F&EH for all F € % then (1) holds for all G e H".
This assertion follows at once from the statement containing (2) and easily yields
the above examples and related results.

It is classical that if S is the imaginary axis, then (1) holds for all G € H'.
Tepper and Neuwirth [13], who also study (1), ask the question whether H' can
be replaced by a larger class of functions.

We show here that in all of these examples H” can be replaced by the larger
class M? defined below and give related results and extensions. For example, if
S is compact and € — S is connected, then (1) holds for all G € M'*8 (see Corollary
3). Also, if u is harmonic in the half-space R7"' = R” X (0,%) and has a vanishing
nontangential limit at almost every x € R", then, under a similar mild condition,
u vanishes everywhere on R (see Theorem 3).
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198 D. L. BURKHOLDER
1. BASIC TOOL:

If0 < a <1, let Q,(0) be the interior of the smallest convex set containing
the circle |z] = « and the point e'®. The nontangential maximal function of G
is defined by

N. (@O = sup,, 1GE]-

The following theorem, in which m denotes Lebesgue measure on [0,2w), pro-
vides a tool for the study of the range of G.

THEQREM 1. Let ¥ and G be analytic in D with F (D) N G(D) nonempty
and G (e'°) € F (D) a.e. Then
1+ |a] 1+ |bf
1—|a] 1-|b]

(3) m(N_(F) >\) =c, m(N, (G) >\), A>0,

for all a,b € D such that F (a) = G (b). The choice of the positive real number c_
depends only on «.

The case F(0) = G(0) is proved in [2]. Our proof there rests on the conformal
invariance of Brownian motion, the relation between the nontangential maximal
function and the Brownian maximal function, and the relation between nontangen-
tial convergence and convergence along a Brownian path to the boundary. To
make the result accessible to a wider audience, we give a nonprobabilistic (but
parallel) proof of Theorem 1 here.

2. SOME CONDITIONS UNDER WHICH (1) HOLDS

Let @ be a function that is defined and positive for all large positive A. For
convenience, denote by M® the class of all functions G analytic in D such that

lim inf ® W) m (N, (G) > \) = 0.

A—»c0

This class is independent of o (see (18) below, for example). If ® (\) = AP, write
MP for M®.

THEOREM 2. Suppose # is a family of functions analytic in D such that

i) U F (D) is a dense subset of C — S and (ii)) F € M® for all F € % Then (1)

Fe#

holds for all G € M?.

Proof. Suppose that G € M® and G (e'®) € Sa.e. but G(D)4S. Then G is
nonconstant so G(D) is an open set containing a point of C — S. By (i), there
is an F € # such that F(D) N G(D) is nonempty and G(e'’) ¢ F(D) a.e. Now
using Theorem 1 and the assumption G € M®, we see that F € M®. But this
contradicts (ii). Therefore, G(D) C S.’
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Note that if G(D) C S, then G (D) C S°, the interior of S, or G is constant.
COROLLARY 1. IfG € M' and ReG (e'®) = 0 a.e., then G is constant.

Proof. Let F(z) = (1+2z)/(1—2z). Then N_(F)(6) = N ,(Re F}6) ~1/6as6 0,
where N, denotes the radial maximal operator, so

liminf \m(N_(F) > \)>0.

A—»0

Since F (D) = {Re z > 0}, the family .# = {F, —F} satisfies the conditions of Theorem
2 relative to M' and S = {Re z = 0).

COROLLARY 2. If S is the complement of the sector {re'’:r >0, |0] < /2p},
where p = 1/2, then (1) holds for all G € M".

Proof. Here let # = {f} where f is analytic in D and satisfies f* = F, the
function of the above proof. Now use [N_ (f)]” = N_ (F) to complete the proof.

To see that H® C MP", let G € HP. Then, by a result of Hardy and Littlewood
[9, Theorem 27], N, (G) € L”(0,2mw). Therefore, by the Lebesgue dominated conver-
gence theorem,

APm(N, (G) >\ = S IN_ . (G®)|?Pdm— 0

(N, (G)=>Ar},

as A — o, so G € M”. By Remark 4(d) below, H” # M".

If S is replaced by any rotation or translation of S, Corollary 2 remains true.
So Corollary 2 contains the above mentioned results of Neuwirth and Newman
and of Hansen. Hansen’s other results in [8] remain true and are strengthened
if H” is replaced by M". This includes his improvement of the Gehring-Lohwater
theorem on asymptotic values.

COROLLARY 3. Let S be a bounded set such that C — S is a connected dense
subset of C — S. Then (1) holds for all G € M™%, .

Here S denotes the closure of S.

Proof. We can assume that S C D. For each a € D — S, there is a simple
closed analytic curve in D such that S,, the union of the curve and the bounded
component of its complement relative to C, satisfies S C S, C D but a ¢ S,. This
follows from the connectedness of € — S. The domain C — S, is doubly connected
and is bounded by the above simple closed analytic curve and the point at infinity.
Accordingly, there is an analytic function F, mapping D onto € — S, such that

F, (e®) e S, a.e. (for example, see [7, Chapter 6]). Since U F,(D)=C —Sis
_ aeD-8

dense in € — S, the family % = {F,:a € D — S} satisfies condition (i) of Theorem

2. Relative to M'*%, condition (ii) is also satisfied as we now show. Let f = exp F

where F is the function defined in the proof of Corollary 1. Then

N, (f) = exp N_(Re F) = exp N, (Re F)
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S0

4) lim inf (log ) m (N _ (f) > A) > 0.

A—0

But F, () & f(D) = {|z| > 1} a.e. and F, (D) N f(D) is nonempty. Therefore, by
Theorem 1, F, must also satisfy (4). So # satisfies the conditions of Theorem
2 and the proof is complete.

3. PROOF OF THEOREM 1

We shall divide the proof into several steps, each with some independent interest.

Let U be an open subset of C and u a function nonnegative and superharmonic
inU.IfE C C, let®", denote the family of all nonnegative superharmonic functions
v on U such that u = v on E N U. The réduite (or reduced function) of u relative
to E in U is defined by

Riy@ =inf{v@@:veE ®S,}, z€U,

and this classical notion is central to what follows.

The letter ¢ will always denote a positive real number but not necessarily
the same number from one use to the next. If its choice depends on a parameter,
this will be indicated by a subscript.

LEMMA 1. IfF is a function analytic in D, then
(5) m (Na F)>\)= c, R{!g(z)|>>‘) (0)

and, for all a € D,

1+
(6) Rin” ™ O =c :a' Ryp '™ (@) .
— ja

LEMMA 2. IfF is analytic in D and F (D) C W, an open subset of C, then
(7) R{F@>N (@) < RUIWZ* (F (a)), a€ D.

LEMMA 3. If G is analytic in D and, for some b € D, G(b) € W, an open
subset of C, but G () € W a.e., then

8) R (G () = R{5™™ (b).

LEMMA 4. If G is analytic in D, then, for allb € D,

1 1+ b
(9) R{!G(Z)I>A) (b) = —
P 4a 1 — |b]

m(N, (G) >\).
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To prove Theorem 1, suppose that F and G satisfy the assumptions of the
theorem and F (a) = G (b). Then

R:!]F;(Z)IN\) (a) < R(IES(Z)I>U (b) .

For F nonconstant, this follows from Lemmas 2 and 3 with W = F (D), and, for
F constant, the inequality is trivial: If the left-hand side is not equal to zero,
then |G (b)| = |F (a)| > A and both sides are equal to one.

Therefore, in view of Lemmas 1 and 4, Theorem 1 follows.
We shall prove the above lemmas in the following order: 2, 3, 4, 1.

Proof of Lemma 2. Letu € ®!%/"™, Then u(F) € ®{5®1>*) 50 that
R{E?'™ = u(P),

which implies (7).

Proof of Lemma 3. First, under the conditions of the lemma,
(8" RIW=" (G (b)) = R{5“'=" (b).

If |G (b)| = \, each side is one, so, to prove this, we can assume that |G (b)] < A.

Let W, CW,C ... be a sequence of bounded open sets such that
G(b) e W;1W, W, C W, and each point of W, is a regular boundary point for
the solution of the Dirichlet problem in W;. Such a sequence exists [11, Corollary
8.28]. Let u; = Rﬂ&'f” . From the definition of the réduite, it follows that u; = u;,,
on W; so we may define u, on W by setting u, = 11(112 u;,,, on W;, j= 1. Then, as

we shall show,

(10) RV =u,
and
(11) y; (G (b)) = R{E®"™= (b) ,

and (8") will follow.

To prove (10) and (11), we shall use the following properties of u;: u; is nonnega-
tive and superharmonic on W, u; = 1 on {jw| = A} N W;, and v, is harmonic on
{lw] <A} N W, with

(12) lim u;(w) =0 if |lw,| <\, w, € W,
wEW‘;

These follow from the fact that each point of {jw| =\} N W, is regular for
{lw] <A} N W, [11, Theorem 8.26] so that here u; is already lower semi-continuous,
hence superharmonic (see Theorem 9.25 and Lemma 7.11 of [11]).
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Therefore, u, is nonnegative and superharmonic on W and u_,=1 on
{lw| = A} N W. That is, u, € & =M which gives (10).

To prove (11), let v € ®UIS@1=Y and

(13) f (z,) = lim inf [v (z) — u;(G (2))], z, € 0B,

z€B

where B is the component of {|G(z)] <A} N G™* (W;) containing b. Note that v
is superharmonic in B C D and u;(G) is harmonic in B with u;(G) =1 there. If
z, € D N 9B and |G(z,)| =\, then v (z,) = 1 so, by the lower semi-continuity of
vin D, f(z,)=v(z,)—1=0. If z, € D N 0B and |G(z,)| <\, then G(z,) € aW;
so, by (12), f(z,) = v (z,) — 0 = 0. Therefore,

(14) f(z,) =0, z, ED N oB.
The other part of the boundary of B is small:
(15) wy (@D N 8B) = 0,

where p, is harmonic measure relative to B at the point z. To see this, let a,D
denote the set of all e such that either the nontangential limit of G at e® does
not exist or G(e®) € W. Let 9,B = (6D N 4B) — 8, D. By the assumption of the
lemma, p.(3,D) =0 and, as we shall see below, 8,B is countable. Therefore,
p> (8D N 8B) = 0 and we can conclude that p. (3D N 8B) < u” (8D N 4B) = 0.

To show that d,B is countable, we follow a line of argument similar to that

of Hansen [8, page 191].Let Q2 (0) = {z € Q_ (0): |z] > 1 — 1/n}. Foreache® € 9 B,

G(2) > G(e*) € W,asz—e”,z € Q_ (0), so there is a positive integer n = n(0)

such that Q] (0) is disjoint from G—I(Wj), hence disjoint from B. Suppose that

d, B is uncountable. Then there are numbers 0, < 6, < 6, in [0,27) with e’ € 3_B

and n(0,) = n, say, such that no two of the { (6,) are disjoint. The connected
3

set B is a subset of one of the components of D — U Q> (6, ). Therefore, at least

. k=1
one of the e’ cannot be a boundary point of B, which is a contradiction. Therefore,

d,B is countable.

The function f, defined by (13), is lower semi-continuous on 8B, hence Borel
measurable, and is bounded from below. Therefore, the upper solution for the

Dirichlet problem in B corresponding to the boundary function f is S fdul [11,

aB

Theorem 8.13].. Since, by (13), v — u; (G) is in the upper class of f,
S fdul =< v(b) — u; (G (b)) .
aB

By (14) and (15), the integral on the left is nonnegative. Therefore, u; (G (b)) = v'(b),
which implies (11), and completes the proof of (8’).
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To obtain (8), replace A by A\ + 1/n in (8’) and use the fact [5, page 111]
that if U is an open set of C and E, C E, C ... are subsets of C with union E,
then
(16) Rin TRy asnfow.

Proof of Lemma 4. Let E = {6 € [0,27): N_(G)(®) > A} and v be the Poisson
integral of the characteristic function of E:

1 1-r? o
v(z) =— 5 dt, z=re" .
2n Jg1—2rcos(0—t)+r

Let B = w/2a. Then v is harmonic in D and, as we shall show,
(17) Bv=1 on{|G@|>M\).

Therefore, Bv € &{'51>" and

1+r
R{Z"M (2) = Bv () =L dt,
. 2n 1 —1v g

which implies (9).

To show (17), fix z satisfying |G (z)] > A. If |z| < a, then E = [0,2%) so v(z) = 1
and Bv(z) = 1 holds trivially. If |z| >a,let E,={0 € [0,2n):z€ Q_(0)} and A,
be the corresponding arc: A, = {¢: 0 € E,}. Since E, C E,

1-1r2
2nv (z) = 5 dt.
Ez1—2rcos(6-—t)+r

Note that each of the two lines containing z and an endpoint of the arc A, is
tangent to the circle with radius a and center at the origin. Consider the arc
on the unit circle between these two lines that is opposite to A,. It is a classical
fact [14, Vol. I, page 99] that the integral on the right-hand side of the last
inequality is the length of this opposite arc. A simple argument using similar
triangles shows that this length is not less than 4a. Therefore, 2wv (z) = 4a, so
Bv(z) = 1.

Proof of Lemma 1. To prove (5), we assume that F is continuous in |z| = 1,
for otherwise replace F by F_, 0 <r < 1, where F, (z) = F (rz).

Supposethat0 <a=B<1,0<h<1-8,andQ,_, (0) isthesetofallz € Q_(0)
with |z| > 1 — h. Let N_ , (F)(8) = sup |F (2)| forz € Q, ,, (6). Then
(18) m(Ny, (F) >)\) =c,m(N,,, (F) >\ =c 5, m(N,,(F)>)\).

For if |F (z)| = A for all z satisfying |z| =1 — h/2, then N, (F) = N, (F) on the
set {N, (F) > A}. So, for this case, the left-hand inequality of (18) does hold. If
|F (z)] > \ for some z satisfying |z] =1 — h/2, then, by the maximum principle,
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|F (z)] > A for some z satisfying |z] =1 —h/2. Let E,= {6:z € Q,,,8)}. Then
E, C {N;,(F) > A} and the left-hand inequality of (18) must hold here with
cgn = 2m/m(E,), which depends on B and h but not on z. For a proof of the
right-hand side of (18), see [3, page 531}. In the present one-dimensional setting,
a somewhat more geometrical proof can also be constructed.

So to prove (5), it is enough, in view of (16) and (18), to show that
(19) m (N, (F) > \) = ¢, RUE®I=N (0)

for o and h small.
Assume that |F (0)| < A, the other case being trivial. Let
1-1x?

p.(z) = , Z =re
‘ 1—2rcos(®—t)+r’

Then, by a classical disintegration theorem for the balayage (for example, see
[11, Theorem 12.21 and Lemma 7.11]),

1 2
Rip™= (0) = — S Ryip™ (0) dt
2w ],

and (19) follows from the fact that, for all small o« and h,
(20) RSN (0) = ¢, N, (F)(t)>\.

To show (20), suppose without loss of generality that t = 0 and N, (F)(0) > A.
Then there is a positive number s < 1 such that B = {|z — s| = a (1 — s)} contains
a point z in Q_, (0) satisfying |F (z)| > A. Choose o and h small enough so that
s>1-—2h and O¢B. Let A= {|F(z)]=A}andC = {z:Z € A}. Then v € CI);:':D if
and only if the map z — v (z) belongs to CDE):D. Accordingly,

(21) Ry 5 (0) =R, ,(0).
Let U be the component of D — (A U B U C) containing the origin. Then
(22) 1=Ry5VC(0) = 2R, (0) + Ry 15 (0)

where the right-hand side follows from (21) and the subadditivity property of
the réduite.

To show the left-hand side, first note that 1§£dU. For suppose, on the contrary,
that 1 € dU. Then, by the definition of U and the initial assumption that F is
continuous on |z| = 1, a path in U U {1} from 0 to 1 exists such that |F(z)] =\
along this path. Since U is symmetrical with respect to the real axis, the “conjugate”
path also has this property. The two paths do not touch B so B C V where V
is the open set between the two paths. By the definition of B, |F (z)| > A for some
z € BC V but |F(z)] =\ for all z € aV. This contradicts the maximum principle;
therefore, 1¢oU.
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Now let v € ®£°?DBUC. Then, forz, e DN aUC AU BU C,

f(z,) = liminf [v(z) — p,(@)] =V (z,) — p,(2z,) =0,

and, for z, € aD N dU, f(z,) = —p, (z,) = 0. Therefore, f(z,) = 0 for all z, € U
and, by the minimum principle (for example, see [11, Corollary 4.3}), the superhar-
monic function v — p, is nonnegative in U. In particular, 1 = p_(0) = v (0), which
implies the left-hand side of (22).

We now show that, for all small « and h,
(23) R, (0 =1-c,,,

which, in view of (22), gives (20) for t =0. Let v(z) = vlog |z|/log a where
v=2/(1 — a)(1 — s). Then v is nonnegative and superharmonic in D and satis-
fies v(z) = v in |z| = a. Let ¢(z) = (s — z)/(1 — sz). If z € B, then |¢(2)] = o and
v(p(z)) =y = p, (z). Therefore, v (p) € (I)gn,D, which implies that

1
vlog —
B s 2
R, 0)=v(e(0) =vis)= = .
log — s(1 — a)log—
o a

Since s = 1 — 2h, the last expression converges to 0 as a,h — 0. This implies
(23) and completes the proof of (5), the first part of Lemma 1.

To prove the second part, let ¢(z) = (a — z) /(1 — az). Then, by the univalence
of ¢ and the definition of the réduite,

(24) Ri!]l;(q:(zm>h) — Rﬂg(:)l>&} (‘P) .

By Lemma 4 applied to F, and by (5) and (24),

R{ES(ZH>” (0) — R{!II;(¢(Z))I>A) (a)

1 1+ |a|
= m (N, (F)) >\)
4a 1 —|a|
1+ ]a
< c,* ___.._J_l R{III;(‘P Z)]>A} (O)
1—|a|
1+ |a|
=c, - ______R(!F(z)|>.\) (a) ,
1 _ Ial 1:D

which implies (6) with a constant independent of «. Therefore, the proof of Lemma
1, and hence of Theorem 1, is complete.
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4. EXTENSIONS AND REMARKS

(a) Theorem 1 remains true if, in (3), F and G are replaced by Re F and
Re G or by (Re F)* and (Re G)". In fact, let ¢ be any nonnegative subharmonic
function on C. Then, under the conditions of Theorem 1,

1+ ]a] 1+ |b|
(25) m(N, () >\ =c, m (N, (b (G)) >\)
: 1-]a] 1— |b|

for all a,b € D such that F (a) = G (b).

Apart from notational changes, the proof is almost identical to the proof of
Theorem 1. For example, the only nontrivial change needed in the proof of Lemma
1 occurs in the argument that 1¢oU. If 1 € 9U, then, by the subharmonicity

of ¥ (F),
liIzI—ljup Y(F(2) =Y (F(z,)) <A\
zeV

forallz, € a4V — {1}.But ) ({1}) = 2 ({1}) =0, z € V,and, since the subharmonic
function ¥ (F) is bounded on the compact set D and hence on V,

b (F(2) = X Ndpy =\, z€V,
av
which gives a contradiction.

Let Mf,’,’ denote the class of all functions G analytic in D such that

liminf ® (M) m (N, ($(G)) >\) =0.

A—>©

Then, by (25), Theorem 2 remains true if M is replaced by M.
P

So, for example, Corollary 1 can be somewhat strengthened: If G € MllRel and
Re G () = 0 a.e., then G is constant.

To gain some insight into the growth condition here placed on the real part
of G, note that, for € > 0, it cannot be replaced by the slightly weaker condition

(26) liminfAm(N_(ReG) >\)=¢.

A—>00

To see this, consider G = 8F, where F(z) = (1 + z)/(1 — z), and notice that

RUFe>M (x +iy) = x/\, x>0,

so, by the y-analogues of Lemma 1 and 2, m(N, (Re F) > \) = ¢,/\ . Therefore,
for small 3, (26) holds and Re G (e*) = 0 a.e., but G is not constant.

Corollary 2 remains true if M” is replaced by M%.. where Re” denotes the
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mapping w— (Re w) v 0. Finally, Corollary 3 remains true if, for example, M'*®
log

is replaced by Mg?,.

(b) If F and G are analytic in D and F is subordinate to G (that is, F = G (¢)
for some analytic function ¢: D — D with ¢ (0) = 0), then (3) and (25) hold with
a =b = 0. Observe that R~ < R%®>M (¢) and apply the y-analogues of (5)
and (9).

(¢) The constant in (3) satisfies ¢, > 1 and, in fact, is large if a is small:
let 0 <e<1. By Runge’s theorem, there is an entire function G such that
|G(1/2) — 2| < e but |G(z)] < e for all z in D not in the e-neighborhood of [1/2,1].
Let F(z) =G(1/2),z € D. Then m (N_ (F) > 1) = 27 but m (N_(G) > 1) — 0, imply-
ing that ¢, — oo, as g, — 0. Moreover, by the geometry of the problem,

lim inf ac, > 0;

a—0

the other direction, lim sup ac, <o follows from Lemmas 1-4, since, in (5),

a—0 N
¢, = ¢, for o = 1/2. Note that here G *) &€ F(D) = {G(1/2)} a.e.because other-
wise, by Privalov’s Theorem [14, Vol. II, page 203], G would be constant.

It is perhaps a little more surprising that the absolute constant in (6) satisfies
¢ > 1: Use Runge’s theorem again together with the well known fact [10, page
109] that

4
R (r) =1 — — arctanr'/?, O<r<l1.
m™

Note, for example, that

+r

: R (r)=2/3#1 ifr=1/3.
- T

(d) Let f be a nonnegative function in L' (0,2w), u its Poisson integral, and
v any harmonic conjugate of u in D. Then F =u + iv belongs to M' but does
not belong to H' unless a further restriction is placed on f: f € Llog L. To show
this, we can assume that v (0) = 0. Then

(27) (N, (F) >N =c]|Ifll,, A>0.

This well known inequality is an immediate consequence of Theorem 1: Compare
- 2%

F with G (z) = u(0)(1 + z)/(1 — z) and note that F (0) = G(0) = £fdo/2m. (The

. o
function f conjugate to f satisfies |f (6)| = |v(e'®)] = N_(F)(8) a.e. so (27) implies
Kolmogorov’s weak-type (1,1) inequality for the conjugate function.) Letf, =f A n
and F, be the corresponding analytic function with v_(0) = 0. Then

Am (N, (F) > 2\) = \m (N (F — F,) > 1) + \m (N, (F,) >\)
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and, since F, € H', the last expression approaches zero as A\ — . Therefore, by
(27) applied to F — F,

lim sup Am (N_(F) > 2\) < c ||f - £,{], | O asn oo,

A—®

which implies that F € M. Since f is nonnegative, f € L'if and only if f € L log L
[14, Vol. I, page 254], equivalently, F € H' if and only iff € L log L.

Therefore, for all positive real p, H? is a proper subclass of MP: with0 < f € L',
f € Llog L, and F as above, let G be an analytic function satisfying G®* = F. Then
G € M? but GEH".

On the other hand, the Nevanlinna class N is not a subset of M'®; consider
exp {(1 + z)/(1 — z)}. Allen Shields, in response to the present work, has asked
about the relationship between M'*¢ and the uniform Nevanlinna class N * (denoted
by N’ in [13]). We can show that N is a proper subclass of M™%,

To see that N* C M'"%, let G € N* and define the nonnegative function f in
L' (0,27w) by £ (8) = log™ |G (e'°)|. Let u be the Poisson integral of f. Then
log” |G (2)| < u(2), z € D,

80 tﬁat m(N_ (log™ |G]) > \) =m(N_ (u) > \). By the paragraph containing (27),
the right-hand side of this inequality is of smaller order than A\™' as A\ — . This
implies that G € M,

We now show that M'*®* ¢ N*. In fact, no matter how rapidly the function
® of Section 2 grows, M* ¢ N, a larger class than N*. To prove this, we may
assume that ® (\) is positive for all A > 0. In the following, J, is an arc of aD,
D, is the union of all Stolz domains Q_(6) such that e® ¢ J_, I, is any subarc
of J, having strictly positive distance from D, , and G, is an entire function.
We assume that the family {J_} is disjoint. Using Runge’s theorem successively
for n = 1,2, ..., we may choose these to satisfy

|G, (@) <277 z€D,,

|G, ()| >1+exp|l| % zeIl,
[Jasr] < 9a.1/2,

¢(}\n)IJn—O—1| <2—n—1’

where |J,| denotes the length of J, and A, — 1 is the maximum modulus of
G, + ... + G, in D. Note that N_(G_)(0) = 2 "ife” & J_. Let

G(@=> G,(2, z€D.

Then G is analytic in D and, on the set where e® & U I

k>n
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N.(GQ) =N (G, + ... + G,) + D N (G) =,.

k>n

This implies that N, (G) is finite a.e. so [13, Chapter 14) the nontangential limit
G (e™®) exists a.e. From all of this we see that G € M*:

PN) MmN, (G) > A,) = @O, D ] =20 M)l =277

k>n

but that G & N:

2@
S log* |G ()] d0 = |I,|log* exp |I,| *=|I,| "> asn— o,

o)

(e) If a € D, then RIF®>" (3) is the probability that a complex Brownian
motion starting at a hits {|F(z)] > \} before leaving D. Accordingly, the proofs
of (5) and (9) give a nonprobabilistic approach to Theorems 3 and 3’ of [4].

(f) Some of our methods and results carry over to other domains and to higher
dimensions. For example, consider a function u defined on the half-space R,
the set of all z = (x,y) with x € R” and y > 0. Here let m denote Lebesgue measure
on R" and

N, ()(x) = sup {Ju(s,y)|: |x — s| < ay}, x € R™.

THEOREM 3. If u is harmonic in R>*', or is nonnegative and subharmonic
in R%", with a vanishing nontangential limit at almost every x € R" and

(28) lim inf Am (N, (0) > \) =0,

A—>00

then u vanishes everywhere on R>".

This is equivalent to the following maximum principle: If u is subharmonic
in R7"" with a nonpositive nontangential limit superior at almost every x € R™
and the one-sided nontangential maximal function N_ (u*) is controlled as in (28),
then u(z) = 0 for all z € R%*.

Proof. 1t is enough to prove the theorem for u nonnegative and subharmonic.
Let E = {N_ (u) = \} and

(29) V) = S Y

. (|X _ Sl2 + y2)(n+1)/2
for z = (x,y) € R7"'. Up to a multiplicative constant, v is the Poisson integral
of the characteristic function of E; hence v is harmonic and bounded. As we shall

show, there is a positive number B such that

(30) u(z) A N =BAv(z), z € R
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From this inequality and Fubini’s theorem, we obtain

S lu(x,y)| A Adx = BA S vx,y)dx =c,, Am(N_(u) =\).
Rl’l

Rn

So letting A 1 and using (28), we see that X Ju(x,y)|dx = 0, which implies
Rn
that u vanishes everywhere on R7*.

To prove (30), we note that if u(z) = \ and |x — s| < ay, then s € E. Therefore,
if u(z) = A\ then

y
v(z) = N
Xilx—s|<ay) (IX - s|2 + y2) (n+1)/2

where the right-hand side depends on a and n but not on z. So, with B the reciprocal
of the right-hand side, {u = A} C {Bv = 1}, which implies part of (30).

We shall complete the proof by showing that (30) holds also on the open set
{u < A}. Although we could do this using purely potential-theoretic methods, we
shall instead use Doob’s fundamental results connecting submartingales with
subharmonic functions [6]. Let Z = {Z,,t = 0} be a Brownian motion in R™*’
starting at a point z in {u < A}. Let o be the first time Z leaves {u < A} and
7 the first time Z leaves R **; necessarily o < 7. Similarly, let o,,0,, ... be stopping
times such that 0 = 0, < ... < 0;— o everywhere on the underlying probability
space as j — . Such a sequence of stopping times exists. Since, with probability
one, the sample paths t — u(Z,) are continuous [6, pages 104, 120] on the interval
[0,7),

lim u(Z,) = u(Z,) = \ < BAv (Z,)

j—oo
almost surely on {o < 7}. We now \show thatlim u (Z(,j) = 0 almost surely on {c = 7}.
j—ow

Let E, = {x € R": |x| <r + ah,N_ , (u)(x) > &} and v, be defined analogously
to v in (29) where ¢, h, r are positive numbers and

N,» W (x) = sup {Ju(s,y)|: [x —s| <ay,0 <y <h}.

If u®,y) >¢, |x|] <r, 0 <y <h, then, as above, Bv, (x,y) = 1. Since u vanishes
almost everywhere at the boundary of the half-space, m(E,) | O so the integral
v, (z) | 0 as h | 0. From these facts and Doob’s weak-type inequality for martingales
applied to the nonnegative martingale {v,, (Z,,.), t = 0} starting at v, (z), we obtain

b ] =t=0g;

P,(limsupu(Z,) > ¢, |Z,] <r,o =7)=1limP, (Osup Bv,(Z,)=1)
J—ox i

=Bv,(z2) |0 ash |0,

which implies that lim u (Z,) = 0 almost surely on {c = 7}.

Jjow J
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Accordingly, the bounded submartingale {(u — BAV)(Z, ),J =1} starting at

(u — BAV)(z) has, almost surely, a nonpositive limit, say L. Therefore,

(u—-BA\(z)=E,L=0,

which completes the proof of (30).
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