LACUNARITY AND LIPSCHITZ PROPERTIES IN TOTALLY
DISCONNECTED ABELIAN GROUPS

George Benke

In this paper we are concerned with investigating two ways in which Lipschitz
properties of a function interact with lacunarity properties of its Fourier series
in the setting of a totally disconnected compact abelian group. The first part of
this paper deals with the lacunarity condition which forces a local Lipschitz condition
to become global. This has been investigated on the circle by Izumi, Izumi and
Kahane [2] where it is found that the Hadamard lacunarity condition is precisely
the right condition. In our setting a complete characterization is obtained only
for a restricted class of totally disconnected groups. However, this class is large
enough to contain the Cantor groups. The second part of this paper deals with
the lacunarity condition which together with a Lipschitz condition forces absolute
convergence of the Fourier series. This has been investigated on the n-dimensional
torus by Benke [1] where the lacunarity condition is almost characterized. In
the present setting analogous results are obtained.

Let G be a compact totally disconnected abelian group whose dual group I’
is countable. Then there is a sequence of open subgroups G =G, 2 G, D ... D {0}
which forms a base of neighborhoods at the identity. Let {0} =T, Cc ', C ... C T
be the sequence of annihilators. Since G is totally disconnected I' is a torsion
group and we may assume without loss of generality that the I'; are finite and
that I',,, /T, is cyclic. The cyclicity condition is only needed in Theorem 4.

Definition. Let m; be the cardinality of I';. Define p on G X G as follows.
If x = y then p(x,y) = 0. If x # y then

p ‘X’ )’) = m;(lx,y)

where k(x,y) satisfies x — y € Gy ;) \Gry) + 1-
Proposition. p is a translation invariant metric on G.

Proof. If x —y € G;\G;,, then (x +z) — (y + z) € G;\G,,, and hence p is
translation invariant.

Next, since {G;};_, is a neighborhood base p(x,y) # 0 for all x # y. Further-
more, since X —y € G;\G;,, if and only if y —x € G;\G,,,; it follows that
p(x,y) = p(y,X). ‘

To show the triangle inequality, by translation invariance, it suffices to show
p(x,0) = p(x,2) + p(z,0). Suppose x € G;\G,,, then p(x,0) =m; ".If z € G, then
x — z € G;\G;,, and hence p(x,z) = m; ' which gives the inequality. If z & G,
then p(z,0) = m; ' which also gives the inequality.
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That p generates the original topology is immediate from the observation that
the e-balls of p are simply the subgroups G;.

Definition.‘ A complex function f satisfies a Lipschitz condition of order «
(0 < a < ) at x € G if there is a constant M (x,a) so that

|f(x) — £(y)] =Mp(x,y)°.

If M(x,a) is a bounded function of x, then f is said to belong to the class Lip,(G).

The definition analogous to this one for functions on the real line becomes
trivial for a > 1. In this setting however, for any « > 1 there exist non-trivial
functions which belong to Lip, (G). An example of such a function is

fx) =D m.% (x,7,)

where v, € I',\TI,_,. This may be seen as follows. Let x € G,,y € G, then

[f(x +y) = £ =D ma% (x + 3,70 — (7).

n=1

However, (x + y,7v,) = (¥,Y.) for v, € T, so that in the above sum, the terms
for which n = k vanish. Hence

fx+y) —f@) =2 D> m;% =m." (2 > (m,,_l/mkr“)
n=k+1 n=k+1

Since m, ., /m, = 2 it follows that f belongs to Lip, (G).

It should also be noted that since the metric depends on the choice of the
neighborhood system {G,} so does the space Lip_(G). If {Gnk} is a subsequence
of {G,}, then the associated space Lip_ (G)’ contains Lip_ (G) and may in fact
be strictly larger. For example, let {G,},_, be such that the sequence {m_,,/m_}
is unbounded, and consider {G,, }._,. Fix any a > 0. Let

f(x) = 2 my, o (X,7vy)
k=0

where v, € I',,.. For h € G, it is shown exactly as in the previous example, that
[f(x+h) —f(x)] =Cmy7

So that f € Lip,(G)’. Now for each n, {(h,v,,;) :h € G,,.,} is a nontrivial
subgroup of the circle. Hence there exists h,,,, € G,,,, so that

[{(honi1sVar1) — 1| >V 3.

Then
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[f(hsns) = £O] = | D mzT, ((honer,vi) = 1)
k=n+1
> |my. ((hopiysVasa) — 1 — 2 My, 2
k=n+2

>m, V3 —mg,,4>m,]

for all n sufficiently large. This shows that f ¢ Lip_ (G).

The choice of a neighborhood base {G,} which is most natural depends upon
the application. For example in the next proposition, the conclusion concerning
the behavior of f is more detailed when the neighborhood base is finer. In theorem
4a taking E = I', the thinner the neighborhood base is, the stronger the theorem.

Proposition. If f belongs to Lip, (G) with Lipschitz constant M, then for
v € I,)\T,_i, | ()| =Mm;",.

Proof. Forx € G,

2f(w)=g f(y)<—y,v)dy—g f(y — x)(—y,v)dy

G G

G

+ ((x,v) + 1) S f(y — x)(—y,v)dy.

If y € I';\T_, then {(z,v) : z € G;_,} is a non-trivial subgroup of the circle, so
there exists an x € G;_, such that |(x,v) — (—1)| = 1. Using this x in the above
inequality, we have

1 1
If (v)| = —sup|f(y) — fly —x)| + — |F(y)|
2y 2

and so |f(y)] = Mp(x,0)* = Mm 5.
Definitions. (1) Let E C I denote E N (I';\I';_,) by E, and let

q(,E)=max {k: (y+T,) N E= {y} forally € E;}

When E; is non-empty, and let q(j,E) =j — 1 when E; is empty. E satisfies the
lacunarity condition L if sup {mj_lmq(j'E,_1 :1J=0,1, ...} <oo,

(2) E C T satisfies the local-global Lipschitz property for a if for every complex
function f on G with supp f C E, f does not satisfy a Lipschitz condition of order
a at any point unless f belongs to the class Lip,_ (G).

THEOREM 1. If E C T satisfies the lacunarity condition L and if card E;

is bounded with respect to j, then E satisfies the local-global Lipschitz property
for all a.

Proof. Suppose E satisfies the lacunarity condition L, and suppose that f satisfies
a Lipschitz condition of order a at x, and the spectrum of f is contained in E.



166 GEORGE BENKE

Put D, (x) = 2 (X,v). Then since I', is a subgroup whose dual is G/G,,
er

D, = (card G; Gk%konk where m, is the natural homomorphism from G onto

G/G, and 3, is the delta function at 0 + G, in G/G,.. Since

card G/G, =card I', = m,,

D, = m,1; where 1; denotes the indicator function of G,.

Now take y € E, then for some j, v € I';,\I;_,. Also putting
gx)=f(x+x,)—f(x,),
we have

g =|f(y)| forall y#0,

g satisfies a Lipschitz condition of order a at O (with the same Lipschitz constant
as f), and the spectrum of f and g are essentially the same. Then

E+Dgm = D 8O =8)

EETGGE)tY

since by the definition of q(j,E) the coset I',; g, + v intersects E only at v. Hence

gly) = S 8 (X)Dq(j,E) x){—x,vy)dx = MgyGm X g(x)(—x,v)dx.

G Gq(j,E)

So

1€ (V)| = my;esup{lg®)|px,0)"":x € Gy;g ) S p(x,0)°dx

Gq(j,E)

=mg;g C 2 X p(x,0)%dx
Gx\Gy41

k=q(j,E)

oo

-
=my;g C 2 (measure G,) m,*.
k=qG/E)

Now measure G, = m;® since G is the disjoint union of m, cosets of G, . Hence
k k k k
oy - l14+o
- N =mGg C 2 (Mg /My ) 7
k=qG,E)

Butm, = 4 ... 4 where £ = card I'; /T,_,, so this last sum is

oo

1 + z (/(;.1.1 oo /‘;+r)"‘1—u f= (1 — 2—1—01)—1.
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Hence by the lacunarity hypothesis L,
(1) |[£(y)| =C'm;

where C’ depends only on E, f and a.

We will now show that f belongs to Lip,(G). Note first that since m; = 24,
and the cardinality of E; is bounded in j, f has an absolutely convergent Fourier
series. Hence we write

£ +y) — )] = [ D TV [(xy) = 1]

yET

IA

> If('v)IHx,v) -1

2
=1 I‘\l"
5_‘, > ) =1

'yEE

I/\

Now x € Gy \Gy,, for some N, so that p(x,0) = my', and (x,vy) = 1forall y € Ty.
Hence in this last sum the index j needs only to run through N+ 1,N + 2, ....
This together with the hypothesis that the cardinality of E; is bounded in j gives
that the last sum is less than or equal to

c” 2 m; 1__Cr/ 2 ( 1/InN)-u:

j=N+1 j=N+1

which is less than or equal to C” p(x,0) °. Hence f belongs to Lip_ (G).

We have a partial converse to this theorem.

THEOREM 2. IfE C T satisfies the local-global Lipschitz property for some
o > 0, then E satisfies the lacunarity condition L.

Proof. Assume E does not satisfy condition L. Given a > 0 we will construct
a function with spectrum in E which fails to have the local-global Lipschitz property
for a.

Since lim inf; .. m_; /m;_, = 0 we can select a sequence of indices {j, },-, so
that m;,, /m; _, = o(k™>/*). From E, select v, and ', so that

Jk—l
Y ~ Vi € Tag+1 \Tag-

Now define

fx) = > k7’ m3g, (%7i) — (%7%)-
k=1

‘

Then
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) [£=) — £0)] =D k?myg, [(xye —vi) = 1I.
k=1
Now suppose p(x,0) = mg,, then x € Gg,,1\Gg,, and therefore

(X,% —vx) =1 for all k such that q(j,) =< K. Hence the sum in (1) only runs
through those k which satisfy q(j,) > K and therefore is less than or equal to

—_ -2 ‘
2mg’, 2 k (mK+l/mq(jk))a,

q(ix)>K
which is less than or equal to

oo

2m5s, D, 27°° = Cp(x,0)".

s=0

So f satisfies a Lipschitz condition of order a at 0. Since k*/ “my;,,/m; _,— 0,

f(y,) # O(m;",) and therefore by the proposition f is not in Lip_ (G).

Ix—

K~

In certain groups we do get a complete characterization.

COROLLARY. Suppose m;/m;_, is bounded in j. Then E satisfies the local-
global Lipschitz property for all a > 0 if and only if E satisfies the lacunarity
condition L. Moreover E satisfies the local-global Lipschitz property for all a > 0
if and only if it satisfies the property for some o > 0.

Proof. By the definition of q(j), for each pair of distinct v,v’ € E;, v and
v’ belong to distinct cosets of I',(;, in I';. Hence

card E; = m; /myg;, = (m;_, /mg)(m; /m;_,).

So in the presence of the condition that m;/m;_, is bounded, the condition that
card E; is bounded follows from L.

The remainder of this paper concerns the relationship between Lipschitz
conditions, lacunarity and absolute convergence. The next result will be needed

later but is interesting in its own right. It is an analogue of a theorem of Kahane
[3, p. 66].

THEOREM 3. Letm,,, /m, be bounded and take 3 > 0. Consider the random
series

fx) = D = q@)(x,v).

~yET

If there exists a constant C(B,f) so that |1 <. _ qll, =Cm_" then there exists
a constant K(B,f) so that the random series almost surely represents a function
whose modulus of continuity o, satisfies

we(h) = K(log p(h,0)™")*"*p(h,0)".
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In particular, f satisfies a Lipschitz condition of order  — € for all 0 <e <.

Proof. If y € T, then (x,v) =1 for all x € G, which has measure m_’. So

by [3, p. 55] we have that for the random polynomial g(x) = Z + q){(x,v),

yET,
(1) P(lg].. = (3 log(2m,K))'?|q|,) = 2K™*  forany K > 2.
Consider |f(x + h) — f(x)] = (2 + > ) + q@)((hy) — V(x,v)|. If h € G,,
Tp r\I,

then the first sum on the right vanishes. Therefore given h € G, we have
p(h,0) =m;', and then o(h) =< 2|ff,|.. where f, =1, f. Let n;=j+k for

i=0,1, ... and put §; = L\ Thg- 1)f . Noting that f, = 2 g; we want to estimate

i=1

llg;ll.. Letting K = 2% and applying (1) to g; we have
P (gl = 3 log m,, + (k +j + 1) log 2"/ gyll) = 277"

Now by hypothesis | g;|l, = Cm ;ja. So except on a set E, of probability not greater
than 27%*' we have ||f,[..= 3 2 (log m,, + (k + j + 1)log 2)'/* Cm, °. This, together
j=1

J
with m, = A" gives

Ifll. = Cimi® D' ((k + j) log A + (k + j + 1) log 2)*/*(m,, /m,) ™
=1

J

=ComPkY? D j227F) = Cyp (k,00°k ',

i=1

Now 2 = m, so k =< log m, /log 2 and
(2) we(h) = C, (log p (h,0)7")*?p (h,0)"

except possibly on E, . Since 2 P(E,) < o, by the Borel-Cantelli lemma (2) holds

for all but a finite number of k’s except possibly on a set of probability 0. Hence
by choosing some appropriate new constant, (2) holds for all k almost surely.

Definition. Let E C T be called a Lip «a set for o > 0 if any f € Lip,(G) whose

spectrum is contained in E satisfies z If (v)] < o0
THEOREM 4. Letm,, ,/m, be bounded.
(a) If for some a > 0, 2 (card E_)?m_* < o, then E is a Lip o set.

(b) If E is a Lip «a set for some o > 0, then
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2 (card E )"?’m_ " <o  foralle > 0.

Proof. (a) Suppose for some n we have y € I',\I,_, and h € G_,_, \G, then
the value (—h,vy) depends only on the cosets of h and +y relative to G, and I'_,
respectively. In fact, I, /I, _, is the dual group of G,_, /G, under this action.
Since both of these groups are isomorphic to Z,, there exists a coset h + G, # G,
so that

(-h+G,,y+T,_,) C {4 k=1,../ —1)
for all cosets y + I',_, # I',_,. Therefore
|1 — (=h,y)| >2sinw/;' >3 for some & > 0 independent of n.

Now f,(v) — f(y) = ((=h,y) — )T (y), and therefore f(y)<d87"|f.(v) — F()|.
Using this bound and the hypothesis that f satisfies a Lipschitz condition of order
a we have

> E@P =87 — £l = C*m .

n—1
YEMN\ILy

Therefore

Stwi=3 3 1ol =D’ (card E,)"/* (

= 2 (cardE_)**Cm¢_, <

1/2
If(v)lz)

LN ]

by hypothesis.

(b) Let b, = (card E,)"'*m [*"° and define q(y) = b, if vy € E_ and q(y) =0

n

if v € E. By Theorem 3 there is a sequence of + signs so that f satisfies a Lipschitz
condition of order a. Hence, since E is a Lip a set,

2 1f ()| = 2 (card E)*m[*"° < .
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