THE ESSENTIAL SPECTRUM OF A HANKEL OPERATOR WITH
PIECEWISE CONTINUOUS SYMBOL

Stephen Power

A Hankel operator S on a complex Hilbert space with complete orthonormal
basis {e,;n =0, 1, 2, ...} is one whose representing matrix has the form
Sij=ci+j, i’j=0, 1,2’ ens o
A classical theorem of Nehari [6] shows that a sequence (c,)._, defines a bounded
Hankel operator if and only if it is the sequence of positive Fourier coefficients
of an essentially bounded measurable function ¢ on the unit circle. Hartman

subsequently showed that S is compact if and only if ¢ can be chosen to be continuous
(see [4] or [1]).

In this note we determine the essential spectrum of S when ¢ is a function
possessing left and right limits at every point on the circle.

Notation. Let L? be the Hilbert space of square integrable functions on the
unit circle T with the usual orthonormal basis {z"; n = 0, 1, %2, ...}. The unitary
operator J on L? is defined by Jz" = z ™" and we shall let P denote the orthogonal
projection of L? onto the Hardy subspace H” spanned by {z";n =0, 1, 2, ...}.

For an essentially bounded measurable function ¢ in L”, the Toeplitz operator
T,,on H?, is defined by T,=PM,| H? where M, is the usual multlpllcatlon operator
on L% We call ¢ the symbol of the Toephtz operator T,. The Hankel operator
on H? with symbol ¢ in L%, is defined by S, = PJM, | H®.

Let PC denote the collection of functions on T which possess left and right
limits at each point. For ¢ in PC and « in T we shall write

1

b, =; m {d(ae™) —d(ae™))

and call ¢ the jump of ¢ at a.

Let T’ denote the non-real points of T and, for v, v € C, let [y, v] denote
the line segment joining y and v. We shall prove the following:

THEOREM 1. Let ¢ be a function in PC. Then

0 (89) = [0, U [0,id_1 U | [=(0u00) 7% + (= 0,001,
)
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In particular notice that a jump at o only contributes to the essential spectrum
if it is accompanied by a jump at a. The key results we shall use are the following
two theorems of Gohberg and Krupnik [3] (see also [2] p.20) concerning Toeplitz
operators with PC symbols.

THEOREM 2. Let & and s be piecewise continuous functions. Then
Tw - T¢ T¢

is compact if and only if ¢ and  do not have common points of discontinuity.
For ¢ in PC define ¢ on T X [0,1] by d (e, s) = sdp(e™ ) + (1 — s)d (e™™).

THEOREM 3. If (b,}i.]% are functions in PC then > I'[ T,
i j
is Fredholm if and only if =" H by, # 0.
i j

These two theorems can be related to Hankel operators by means of the following
formula which has proved useful in other situations (e.g., [9] and [7]). For ¢
in L™ let & (z) = & (2).

LEMMA 4. For ¢ and ¥ in L™ we have S, S, =T;, — T;, T,;.
Proof. S,S, = PIM,PJM, |H? = PM, ,(M,JPJM,)M,, |H?
=PM,;,(I-P)M,, |H* =Ty, — T;,T,,.
We shall prove Theorem 1 through a series of lemmas which deal with simple
symbol functions in PC. A
Let ¢(e™) =i(t — w)e™, 0=t < 2w. Then y EPC and has a single jump at
1 where Y, = —im. A simple computation shows that

(S,z"z")=(n+m+ 1)}, nm=0,1,2, ...,

and so S, is the Hankel operator defined by Hilbert’s matrix. Magnus [5] has
shown that the essential spectrum of this operator is the interval [0, w] (i.e., [0,i¥,]).
Alternatively by Lemma 4, S} = T(,_.,» — T,_.,°. Theorem 3 can be applied to show
that o, (S%) = [0, w*] and, since S, is positive and ||S, || < ||¢|| =< =, we have proved
Magnus’s result.

LEMMA 5. Let & be continuous apart from a jump at o. Then
() If o =1 then o .(S,) = [0, id,]
(ii) If a = —1 then o(S,) = [0,id_,].

Proof. (i) We may write ¢ = A+ 0 where A € C and 0 is a continuous function.
Since, by Hartman'’s theorem, S, is compact, we have

6,(8,) = 0, (AS,) = [0,i\y,] = [0,id,].
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(ii) Let V be the unitary operator on L’ defined by (VE)(e™) =f (—e™). Then
V commutes with J and P and V*S,V = S, where ¢’ () = ¢ (—e™).By (i)

0. (Sy) = 0, (S,) = [0,id] = [0, id_,].

LEMMA 6. Let ¢ be continuous apart from a jump at a and a jump at «
where o is a non-real point of T. Then ¢.(S,) is the line segment

[— (—doda) % + (—bods) 2.

Proof. Let ¢, =\, and ¢, = \,. Since we may add a continuous function
to the symbol without altering the essential spectrum we may suppose that
b (a—) =0, d(a+) =2\, d(a—) =0, and d(a+) = 2\,. By Lemma 4,

Si =Tgy — T&sz¢i

N~ .
so that by Theorem 1 oe(Si) is the range of b — bz ¢z on T X [0, 1]. Since ¢
is continuous except possibly at a and a it suffices to consider the range of
this function on o X [0,1] anda X [0,1]. Now ¢¢ is continuous near a‘and a
and vanishes at o and &, thus o,(S}) is given by the range of —$ & on
a X [0,1] and & X [0,1]. Since ¢ (a,s) = d(a,s) =4A,\,8(1 —s) we see
that o,(S2) = [0, —\,\,].

We now show that ¢, (S,) = —0,(S,) which will complete the proof of the lemma.

Let 6 be a function on T which is continuous apart from a proper jump at
a. It follows that there exist complex numbers v,, v, and a continuous function
¢’ on T such that & =v,0 + v, + ¢’. Thus, since S} = S; it will be sufficient
to show that o,(S) = —o,(S) where S = v,S, + v,S*. Since S2=T,, — T}, T,,, it
follows from Theorem 2 that S? is compact. Let 7 be the homomorphism of B (H?)
into the Calkin algebra A, and let ® be a faithful representation of A as a C*-algebra
of operators on a Hilbert space. Then (®ow(S,))®>=0. By a result of Radjavi

\ 0 C
and Rosenthal ([8] Theorem 1) (®omw)(S,) has the form 0 O) Thus (®omw)(S)

0

v, C
has the form ( . 10 ) and so o (Pow (S)) = —o (®ow(S)) which implies

v,C
o (w(S)) = —o(w(S)),
completing the proof.

LEMMA 7. Let(a,);,_, be elements of a complex unital commutative Banach

algebra A such that a = z a, converges in norm and

n=1
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o0

Then o(a) U {0} = U o(a,).

n=1

Proof. Let M be the set of multiplicative linear functionals ¢ on A, so that
o) = {d(b);d € M} forbin A. Since o(a) = z ¢(a,) and d(a,) # 0 implies
n=1

d(a,,) = 0 for m# n, the result follows.
We now put together the pieces.

Proof of Theorem 1. We first show that the theorem is true if ¢ is a piecewise
continuous function. In this case we can write ¢ = ¢’ + ¢” + E ¢’ where ¢’ (resp.

i=1
¢”) is continuous apart from possibly a jump at 1 (resp. —1) and ¢*+’ is continuous
apart from possible jumps at «, and &,. Since, by Theorem 2 and Lemma 4 any
pair of operators A, B from {w (S,.), w(S,), “(S¢(ai))§ i=1, ..., n} satisfies AB=0
the theorem follows from lemmas 5, 6 and 7.

Suppose now that & € PC. We first show that there exists a sequence of piecewise
continuous functions ¢, n=1,2,..., such that

(i) ¢ and "™ have no common discontinuities for n # m.
(i) [v™ | =27"for a € T, where ™ = ¢ — 2 .
i=1

Let A = {a: |b.| = 27")}. Since & € PC it follows that A/, is finite. Let
Al={ax;a €EALYUA,

andlet A, = A, A, = A, ,\A’n=1,2,...Now choose $* to be any piecewise
continuous function such that ¢ is continuous on T\ A, and

¢™=¢, fora€A,.

Then the ¢™ satisfy (i) and (ii).

By theorem 2 and Lemma 4, (i) shows that 1T(S¢(n)) w(S¢(m)) = 0 for n # m. Also
the second condition (ii) shows that |7 (S, )|l =2.27". This can be seen by first
approximating (™ by a piecewise continuous function 8 so that ||[¢™ — 0] <e.

Since |6, | =27" + —é- e for a € T, there exists a continuous function 6’ such that

|6 —08’|| =2.27" + &. Thus

TS, =S, m_ N = ™ — 0" = 227" + ¢).

(==}

So w(S,) = 2 w(S ¢(n,) and the theorem follows from Lemma 7 and the first

n=1
part of this proof.
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Remarks. Although zero is always a point in the essential spectrum of a Hankel
operator it is not always true that the essential spectrum is ‘connected to the
origin’ as in Theorem 1. To see the first half of this statement suppose that A
is a left inverse for the Hankel operator S modulo the compacts, so that AS =1 + K
for some compact operator K. Since SU" = U*"S, where U is the shift on H? we
have (I + K)U" = AU*"S, and so, for x € H? U"x = AU*"Sx — KU"x. However,
U"x — 0 weakly and so KU"x — 0 in norm. Since U*"Sx — 0 in norm also, we
have a contradiction when x # 0. The second half of our initial remark follows
by considering the Hankel operator S_; where ¢ is the inner function

1+z
¢(Z)=exp( )
z—1

It can be shown that S,; is a self-adjoint partial isometry (a partial symmetry?)
and o (S,;) = 0,.(S,;) = {-1} U {0} U {1}.

Just how arbitrary can the spectrum or essential spectrum of a Hankel operator
be? In particular, is any compact subset of the complex plane which contains
the origin the spectrum of a Hankel operator?
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