THE ESSENTIAL SPECTRUM OF A HANKEL OPERATOR WITH PIECEWISE CONTINUOUS SYMBOL

Stephen Power

A Hankel operator S on a complex Hilbert space with complete orthonormal basis $\{e_n; n = 0, 1, 2, ...\}$ is one whose representing matrix has the form

$$S_{ij} = c_{i+j}, \quad i, j = 0, 1, 2,$$

A classical theorem of Nehari [6] shows that a sequence $(c_n)_{n=0}^{\infty}$ defines a bounded Hankel operator if and only if it is the sequence of positive Fourier coefficients of an essentially bounded measurable function ϕ on the unit circle. Hartman subsequently showed that S is compact if and only if ϕ can be chosen to be continuous (see [4] or [1]).

In this note we determine the essential spectrum of S when ϕ is a function possessing left and right limits at every point on the circle.

Notation. Let L^2 be the Hilbert space of square integrable functions on the unit circle T with the usual orthonormal basis $\{z^n; n=0,\pm 1,\pm 2,\ldots\}$. The unitary operator J on L^2 is defined by $Jz^n=z^{-n}$ and we shall let P denote the orthogonal projection of L^2 onto the Hardy subspace H^2 spanned by $\{z^n; n=0,1,2,\ldots\}$.

For an essentially bounded measurable function φ in L^{∞} , the Toeplitz operator T_{φ} , on H^2 , is defined by $T_{\varphi}=PM_{\varphi}\,|\,H^2$ where M_{φ} is the usual multiplication operator on $L^2.$ We call φ the symbol of the Toeplitz operator $T_{\varphi}.$ The Hankel operator on H^2 , with symbol φ in L^{∞} , is defined by $S_{\varphi}=PJM_{\varphi}\,|\,H^2.$

Let PC denote the collection of functions on T which possess left and right limits at each point. For ϕ in PC and α in T we shall write

$$\phi_{\alpha} = \frac{1}{2} \lim_{t \to 0+} \{ \phi(\alpha e^{it}) - \phi(\alpha e^{-it}) \}$$

and call ϕ_{α} the jump of ϕ at α .

Let T' denote the non-real points of T and, for γ , $\nu \in \mathbb{C}$, let $[\gamma, \nu]$ denote the line segment joining γ and ν . We shall prove the following:

THEOREM 1. Let ϕ be a function in PC. Then

$$\sigma_{e}\left(S_{\varphi}\right) = \left[0, i \, \varphi_{1}\right] \, \cup \, \left[0, i \, \varphi_{-1}\right] \, \cup \, \left[-\left(-\varphi_{\alpha} \, \varphi_{\tilde{\alpha}}\right)^{1/2}, + \left(-\varphi_{\alpha} \, \varphi_{\tilde{\alpha}}\right)^{1/2}\right].$$

Received December 8, 1976.

Michigan Math. J. 25(1978).

In particular notice that a jump at α only contributes to the essential spectrum if it is accompanied by a jump at $\bar{\alpha}$. The key results we shall use are the following two theorems of Gohberg and Krupnik [3] (see also [2] p.20) concerning Toeplitz operators with PC symbols.

THEOREM 2. Let ϕ and ψ be piecewise continuous functions. Then

$$T_{\Phi\Psi} - T_{\Phi}T_{\Psi}$$

is compact if and only if ϕ and ψ do not have common points of discontinuity.

For ϕ in PC define $\hat{\phi}$ on $T \times [0,1]$ by $\hat{\phi}(e^{it},s) = s\phi(e^{it-}) + (1-s)\phi(e^{it+})$.

THEOREM 3. If $\{\phi_{ij}\}_{i=1}^{n}$ are functions in PC then $\sum_{i}\prod_{j}T_{\phi_{ij}}$

is Fredholm if and only if $\hat{\varphi} = \sum_i \prod_i \hat{\varphi}_{ij} \neq 0$.

These two theorems can be related to Hankel operators by means of the following formula which has proved useful in other situations (e.g., [9] and [7]). For ϕ in L^{∞} let $\tilde{\phi}(z) = \phi(\bar{z})$.

LEMMA 4. For ϕ and ψ in L^{∞} we have $S_{\phi}S_{\psi} = T_{\bar{\phi}\psi} - T_{\bar{\phi}z}T_{\psi\bar{z}}$.

$$\begin{aligned} \textit{Proof.} \qquad & S_{\varphi} \, S_{\psi} \, = \, PJM_{\varphi} \, PJM_{\psi} \, | \, H^{\,2} = PM_{\bar{\varphi}\,z} (M_{\bar{z}} \, JPJM_{z}) \, M_{\bar{z}\psi} \, | \, H^{\,2} \\ & = \, PM_{\bar{\varphi}\,z} \, (I - P) \, M_{\bar{z}\,\psi} \, | \, H^{\,2} = T_{\bar{\varphi}\,\psi} \, - \, T_{\bar{\varphi}\,z} \, T_{\psi\,\bar{z}} \, . \end{aligned}$$

We shall prove Theorem 1 through a series of lemmas which deal with simple symbol functions in PC.

Let $\psi(e^{it}) = i(t - \pi)e^{it}$, $0 \le t < 2\pi$. Then $\psi \in PC$ and has a single jump at 1 where $\psi_1 = -i\pi$. A simple computation shows that

$$(S_{\psi}z^{n}, z^{m}) = (n + m + 1)^{-1}, \quad n, m = 0, 1, 2, ...,$$

and so S_{ψ} is the Hankel operator defined by Hilbert's matrix. Magnus [5] has shown that the essential spectrum of this operator is the interval $[0,\pi]$ (i.e., $[0,i\psi_1]$). Alternatively by Lemma 4, $S_{\psi}^2 = T_{(t-\pi)^2} - T_{(t-\pi)^2}$. Theorem 3 can be applied to show that $\sigma_{\rm e}(S_{\psi}^2) = [0,\pi^2]$ and, since S_{ψ} is positive and $\|S_{\psi}\| \leq \|\psi\| \leq \pi$, we have proved Magnus's result.

LEMMA 5. Let ϕ be continuous apart from a jump at α . Then

(i) If
$$\alpha = 1$$
 then $\sigma_{e}(S_{\phi}) = [0, i\phi_{1}]$

(ii) If
$$\alpha = -1$$
 then $\sigma_{e}(S_{\phi}) = [0, i\phi_{-1}]$.

Proof. (i) We may write $\phi = \lambda \psi + \theta$ where $\lambda \in \mathbb{C}$ and θ is a continuous function. Since, by Hartman's theorem, S_{θ} is compact, we have

$$\sigma_{\mathbf{e}}(\mathbf{S}_{\mathbf{h}}) = \sigma_{\mathbf{e}}(\lambda \mathbf{S}_{\mathbf{h}}) = [0, i\lambda \psi_{1}] = [0, i\phi_{1}].$$

(ii) Let V be the unitary operator on L² defined by $(Vf)(e^{it}) = f(-e^{it})$. Then V commutes with J and P and $V*S_{\phi}V = S_{\phi'}$ where $\phi'(e^{it}) = \phi(-e^{it})$. By (i)

$$\sigma_{e}(S_{\phi}) = \sigma_{e}(S_{\phi'}) = [0, i\phi'_{1}] = [0, i\phi_{-1}].$$

LEMMA 6. Let ϕ be continuous apart from a jump at α and a jump at $\bar{\alpha}$ where α is a non-real point of T. Then $\sigma_e(S_{\phi})$ is the line segment

$$[-(-\phi_{\alpha}\phi_{\bar{\alpha}})^{1/2},+(-\phi_{\alpha}\phi_{\bar{\alpha}})^{1/2}].$$

Proof. Let $\phi_{\alpha} = \lambda_1$ and $\phi_{\bar{\alpha}} = \lambda_2$. Since we may add a continuous function to the symbol without altering the essential spectrum we may suppose that $\phi(\alpha-) = 0$, $\phi(\alpha+) = 2\lambda_1$, $\phi(\bar{\alpha}-) = 0$, and $\phi(\bar{\alpha}+) = 2\lambda_2$. By Lemma 4,

$$S_{\phi}^{2} = T_{\bar{\phi}\phi} - T_{\bar{\phi}z}T_{\phi\bar{z}}$$

so that by Theorem 1 $\sigma_e(S_{\varphi}^2)$ is the range of $\widehat{\varphi} \widehat{\varphi} - \widehat{\varphi} \widehat{z} \widehat{\varphi} \widehat{z}$ on $T \times [0,1]$. Since φ is continuous except possibly at α and $\bar{\alpha}$ it suffices to consider the range of this function on $\alpha \times [0,1]$ and $\bar{\alpha} \times [0,1]$. Now $\bar{\varphi} \widehat{\varphi}$ is continuous near α and $\bar{\alpha}$ and vanishes at α and $\bar{\alpha}$, thus $\sigma_e(S_{\varphi}^2)$ is given by the range of $-\widehat{\varphi} \widehat{\varphi}$ on $\alpha \times [0,1]$ and $\bar{\alpha} \times [0,1]$. Since $\widehat{\varphi} \widehat{\varphi} (\alpha,s) = \widehat{\varphi} \widehat{\varphi} (\bar{\alpha},s) = 4\lambda_1 \lambda_2 s(1-s)$ we see that $\sigma_e(S_{\varphi}^2) = [0,-\lambda_1 \lambda_2]$.

We now show that $\sigma_e(S_{\phi}) = -\sigma_e(S_{\phi})$ which will complete the proof of the lemma.

Let θ be a function on T which is continuous apart from a proper jump at α . It follows that there exist complex numbers ν_1 , ν_2 and a continuous function φ' on T such that $\varphi = \nu_1 \theta + \nu_2 \bar{\theta} + \varphi'$. Thus, since $S_{\theta}^* = S_{\bar{\theta}}^*$ it will be sufficient to show that $\sigma_e(S) = -\sigma_e(S)$ where $S = \nu_1 S_{\theta} + \nu_2 S_{\theta}^*$. Since $S_{\theta}^2 = T_{\bar{\theta}\theta} - T_{\bar{\theta}z} T_{\bar{\theta}\bar{z}}$, it follows from Theorem 2 that S_{θ}^2 is compact. Let π be the homomorphism of $B(H^2)$ into the Calkin algebra A, and let Φ be a faithful representation of A as a C*-algebra of operators on a Hilbert space. Then $(\Phi \circ \pi(S_{\theta}))^2 = 0$. By a result of Radjavi and Rosenthal ([8] Theorem 1) $(\Phi \circ \pi)(S_{\theta})$ has the form $\begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix}$ Thus $(\Phi \circ \pi)(S)$

has the form $\begin{pmatrix} 0 & \nu_1 C \\ \nu_2 C^* & 0 \end{pmatrix}$ and so $\sigma(\Phi \circ \pi(S)) = -\sigma(\Phi \circ \pi(S))$ which implies

$$\sigma(\pi(S)) = -\sigma(\pi(S)),$$

completing the proof.

LEMMA 7. Let $(a_n)_{n=1}^{\infty}$ be elements of a complex unital commutative Banach algebra A such that $a = \sum_{n=1}^{\infty} a_n$ converges in norm and

$$a_n a_m = a_m a_n = 0$$
 for $n \neq m$.

Then
$$\sigma(a) \cup \{0\} = \bigcup_{n=0}^{\infty} \sigma(a_n)$$
.

Proof. Let M be the set of multiplicative linear functionals φ on A, so that $\sigma(b)=\{\varphi(b); \varphi\in M\}$ for b in A. Since $\varphi(a)=\sum_{n=1}^\infty \varphi(a_n)$ and $\varphi(a_n)\neq 0$ implies $\varphi(a_m)=0$ for $m\neq n$, the result follows.

We now put together the pieces.

Proof of Theorem 1. We first show that the theorem is true if φ is a piecewise continuous function. In this case we can write $\varphi = \varphi' + \varphi'' + \sum_{i=1}^n \varphi^{(\alpha_i)}$ where φ' (resp. φ'') is continuous apart from possibly a jump at 1 (resp. -1) and $\varphi^{(\alpha_i)}$ is continuous apart from possible jumps at α_i and $\bar{\alpha}_i$. Since, by Theorem 2 and Lemma 4 any pair of operators A, B from $\{\pi(S_{\varphi'}), \pi(S_{\varphi'}), \pi(S_{\varphi(\alpha_i)}); i=1,...,n\}$ satisfies AB=0 the theorem follows from lemmas 5, 6 and 7.

Suppose now that $\phi \in PC$. We first show that there exists a sequence of piecewise continuous functions $\phi^{(n)}$, n=1,2,..., such that

(i) $\phi^{(n)}$ and $\tilde{\phi}^{(m)}$ have no common discontinuities for $n \neq m$.

(ii)
$$|\psi_{\alpha}^{(n)}| \leq 2^{-n}$$
 for $\alpha \in T$, where $\psi^{(n)} = \phi - \sum_{i=1}^{n} \phi^{(i)}$.

Let $\Lambda_n' = \{\alpha : |\varphi_\alpha| \ge 2^{-n}\}$. Since $\varphi \in PC$ it follows that Λ_n' is finite. Let

$$\Lambda_{n}'' = \{\bar{\alpha}; \alpha \in \Lambda_{n}'\} \cup \Lambda_{n}'$$

and let $\Lambda_1=\Lambda_1'',\Lambda_{n+1}=\Lambda_{n+1}''\setminus\Lambda_n'',$ $n=1,2,\ldots$. Now choose $\varphi^{(n)}$ to be any piecewise continuous function such that $\varphi^{(n)}$ is continuous on $T\setminus\Lambda_n$ and

$$\phi_{\alpha}^{(n)} = \phi_{\alpha}$$
 for $\alpha \in \Lambda_n$.

Then the $\phi^{(n)}$ satisfy (i) and (ii).

By theorem 2 and Lemma 4, (i) shows that $\pi(S_{_{\varphi}(n)})\pi(S_{_{\varphi}(m)})=0$ for $n\neq m$. Also the second condition (ii) shows that $\|\pi(S_{_{\varphi}(n)})\|\leq 2.2^{-n}$. This can be seen by first approximating $\psi^{(n)}$ by a piecewise continuous function θ so that $\|\psi^{(n)}-\theta\|\leq \epsilon$.

Since $|\theta_{\alpha}| \leq 2^{-n} + \frac{1}{2} \epsilon$ for $\alpha \in T$, there exists a continuous function θ' such that $\|\theta - \theta'\| \leq 2.2^{-n} + \epsilon$. Thus

$$\|\pi(S_{_{a^{l}}(n)})\| = \|\pi(S_{_{a^{l}}(n)-\theta'})\| \leq \|\psi^{(n)}-\theta'\| \leq 2(2^{-n}+\epsilon).$$

So $\pi(S_{\phi}) = \sum_{n=1}^{\infty} \pi(S_{\phi(n)})$ and the theorem follows from Lemma 7 and the first part of this proof.

Remarks. Although zero is always a point in the essential spectrum of a Hankel operator it is not always true that the essential spectrum is 'connected to the origin' as in Theorem 1. To see the first half of this statement suppose that A is a left inverse for the Hankel operator S modulo the compacts, so that AS = I + K for some compact operator K. Since $SU^n = U^{*n}S$, where U is the shift on H^2 , we have $(I + K)U^n = AU^{*n}S$, and so, for $x \in H^2$, $U^nx = AU^{*n}Sx - KU^nx$. However, $U^nx \to 0$ weakly and so $KU^nx \to 0$ in norm. Since $U^{*n}Sx \to 0$ in norm also, we have a contradiction when $x \neq 0$. The second half of our initial remark follows by considering the Hankel operator $S_{z\bar{b}}$ where ϕ is the inner function

$$\phi(z) = \exp\left(\frac{1+z}{z-1}\right).$$

It can be shown that $S_{z\bar{\phi}}$ is a self-adjoint partial isometry (a partial symmetry?) and $\sigma(S_{z\bar{\phi}}) = \sigma_e(S_{z\bar{\phi}}) = \{-1\} \cup \{0\} \cup \{1\}.$

Just how arbitrary can the spectrum or essential spectrum of a Hankel operator be? In particular, is any compact subset of the complex plane which contains the origin the spectrum of a Hankel operator?

REFERENCES

- 1. F. F. Bonsall and S. C. Power, A proof of Hartman's theorem on compact Hankel operators. Math. Proc. Cambridge Philos. Soc. 78(1975), no.3, 447-450.
- 2. R. G. Douglas, Branch algebra techniques in the theory of Toeplitz operators. Expository Lectures from the CBMS Regional Conference held at the University of Georgia, Athens, Ga., June 12-16, 1972. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 15. American Mathematical Society, Providence, R.I., 1973.
- 3. I. C. Gohberg and N. Ja. Krupnik, *The algebra generated by the Toeplitz matrices.* (Russian) Funkcional. Anal. i Prilözen 3(1969), no. 2, 46-56.
- 4. P. Hartman, On completely continuous Hankel matrices. Proc. Amer. Math. Soc. 9(1958), 862-866.
- 5. W. Magnus, On the spectrum of Hilbert's matrix. Amer. J. Math. 72(1950), 699-704.
- 6. Z. Nehari, On bounded bilinear forms. Ann. of Math. (2) 65(1957), 153-162.
- 7. S. C. Power, Hankel operators with discontinuous symbol, preprint.
- 8. H. Radjavi and P. Rosenthal, On roots of normal operators. J. Math. Anal. Appl. 34 (1971), 653-664.
- 9. D. Sarason, On products of Toeplitz operators. Acta Sci. Math. (Szeged) 35 (1973), 7-12.

Mathematics Department Dalhousie University Halifax, Nova Scotia CANADA

