SOME CONGRUENCES FOR BINOMIAL COEFFICIENTS

Carl S. Weisman

1. INTRODUCTION

Let p be a prime number. For integers m, and n>0, and s>0, denote by $M_s(m,n)$ the sum $\sum{(-1)^{n-i}} \binom{n}{i}$ of alternating binomial coefficients, restricted to those i which are congruent to m modulo p^s . Many results about continuous p-adic-valued functions on the p-adic integers come down to statements about the numbers $M_s(m,n).$ The author has shown that

(*) ord
$$M_s(m, n) \ge [n/p^{s-1}(p-1)] - 1$$

for all m. Here ord r denotes the exponent to which p divides r, and $[\cdot]$ is the integer-part function. The present note gives more precise information about the congruence properties of the $M_s(m,n)$ modulo powers of p. It is shown that, for fixed m and s, there is equality in (*) for infinitely many n; more specifically,

(i) if $k \ge 1$ and $n > kp^{s-1}(p-1) + p^{s-1} - 1,$ then ord $M_s(m,\,n) > k$ - 1 for all m;

(ii) if $k \ge 1$, then $M_s(m, kp^{s-l}(p-1) + p^{s-l} - 1) \equiv (-p)^{k-l} \pmod{p^k}$ for every m.

These results are then applied to obtain a new characterization of uniformly Lipschitz p-adic-valued functions.

2. PRELIMINARY LEMMAS

In this section, p denotes a fixed prime.

LEMMA 1. Let the integers ain be defined by the identity

$$\begin{pmatrix} py \\ i \end{pmatrix} = \sum_{n} a_{in} \begin{pmatrix} y \\ n \end{pmatrix}.$$

If $p \nmid a_{in}$, then i = pn.

Proof. One has $a_{in} = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \binom{pj}{i}$. Fix n and let X be an indeterminate. Then $\sum_{i=0}^{n} a_{in} X^i = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \sum_{i=0}^{pj} \binom{pj}{i} X^i = ((X+1)^p - 1)^n$. Comparing coefficients yields the lemma.

LEMMA 2. If $s \geq 2$ and $1 \leq i < p^{s-1}(p-1)$, then $\sum_{j=1}^{p-1} {p^{s-1} \ j}$ is divisible by p. If, in addition, $i < p^{s-2}(p-1)$, then $\sum_{j=1}^{p-1} {p^{s-1} \ j}$ is divisible by p^2 .

Received November 24, 1976.

Michigan Math. J. 24 (1977).

Proof. Take s=2. The first statement is automatic if $p \nmid i$. If $i=p\ell$ with $0 < \ell < p-1$, then, modulo p, one has $\sum_{j=1}^{p-1} \binom{pj}{p\ell} \sum_{j=1}^{p-1} \binom{j}{\ell} = \binom{p}{\ell+1} \equiv 0$. If 0 < i < p-1, then $\sum_{j=1}^{p-1} \binom{pj}{i} = \sum_{j=1}^{p-1} \sum_{k=1}^{i} c_k p^k j^k$, where each c_k is pintegral. Now $\sum_{j=1}^{n} j^k = (n+1) Q_k(n)/(k+1)!$, where Q_k is a polynomial with integer coefficients. Therefore, $\sum_{j=1}^{p-1} \binom{pj}{i} = p^2 \sum_{k=1}^{i} c_k p^{k-1} Q_k(p-1)/(k+1)!$, and the last sum is p-integral; thus the second statement follows for s=2.

Now assume s>2. Again, the first statement is automatic if $p \nmid i$. If $i=p\ell$ with $0<\ell< p^{s-2}(p-1)$, one has, modulo p, $\sum_{j=1}^{p-1} \binom{p^{s-1}j}{p\ell} \equiv \sum_{j=1}^{p-1} \binom{p^{s-2}j}{\ell}$, so that the first statement follows by induction on s.

Assume $i < p^{s-2}(p-1)$. In the notation of Lemma 1, we have

$$\sum_{j=1}^{p-1} {p^{s-1}j \choose i} = \sum_{n} a_{in} \sum_{j=1}^{p-1} {p^{s-2}j \choose n}.$$

Evidently, $a_{in} = 0$ if n > i. Thus, if $a_{in} \neq 0$, then $n < p^{s-2}(p-1)$, so that $\sum_{j=1}^{p-1} \binom{p^{s-2}j}{n}$. If a_{in} is not also divisible by p, then, according to Lemma 1, one has $n = i/p < p^{s-3}(p-1)$. Thus the final statement of the present lemma also follows by induction.

The familiar Vandermonde convolution formula, $\binom{n+n'}{i} = \sum_{j=0}^{1} \binom{n}{j} \binom{n'}{i-j}$, yields easily the similar identity $M_s(m, n+n') = \sum_{j=0}^{p^s-1} M_s(j, n) M_s(m-j, n')$.

LEMMA 3. If p \neq 2 and k \geq 2, then ord M $_s$ (m, kp s - 1) \geq k for any m.

Proof. Assume $0 \le m < p^s$. Then since evidently $M_s(0, p^s) = 0$, one has

$$\begin{split} M_{s}(m, 2p^{s} - 1) &= \sum_{j=0}^{p^{s}-1} M_{s}(j, p^{s} - 1) M_{s}(m - j, p^{s}) \\ &= \sum_{j=0}^{m-1} (-1)^{p^{s}-1-j} {p^{s}-1 \choose j} (-1)^{p^{s}-m-j} {p^{s} \choose m-j} \\ &+ \sum_{j=m+1}^{p^{s}-1} (-1)^{p^{s}-1-j} {p^{s}-1 \choose j} (-1)^{p^{s}-p^{s}-m+j} {p^{s} \choose p^{s}+m-j} \\ &= p^{s} \sum_{j=0}^{m-1} (-1)^{m+1} {p^{s}-1 \choose j} {p^{s}-1 \choose m-j-1} (m-j)^{-1} \\ &+ p^{s} \sum_{j=m+1}^{p^{s}-1} (-1)^{m} {p^{s}-1 \choose j} {p^{s}-1 \choose j-m-1} (j-m)^{-1}. \end{split}$$

Now if $j < p^s$, then $\binom{p^s-1}{j} \equiv (-1)^j \pmod{p}$. Hence one has, modulo p^2 ,

$$M_s(m, 2p^s - 1) \equiv \sum_{j=0}^{m-1} p^s/(m - j) - \sum_{j=m+1}^{p^s-1} p^s/(j - m) \equiv \sum_{0 < r < p^s} p^s/r \equiv 0.$$

This begins an induction on k. To complete it, simply notice that

$$\begin{split} \mathbf{M}_{s}(\mathbf{m}, (\mathbf{k}+1) \, \mathbf{p}^{s} - 1) &= \sum_{j=0}^{p^{s}-1} \, \mathbf{M}_{s}(\mathbf{j}, \, \mathbf{p}^{s}) \, \mathbf{M}_{s}(\mathbf{m} - \mathbf{j}, \, \mathbf{k} \mathbf{p}^{s} - 1) \\ &= \sum_{j=1}^{p^{s}-1} \, (-1)^{j-1} \, \binom{p^{s}}{\mathbf{j}} \, \mathbf{M}_{s}(\mathbf{m} - \mathbf{j}, \, \mathbf{k} \mathbf{p}^{s} - 1) \, . \end{split}$$

A polynomial $f(X) = \sum_{i=0}^{k-1} A_i X^i$ with p-integral rational coefficients will be said to be *overdetermined* if $A_0 \equiv 1 \pmod{p}$ and $A_i \equiv 0 \pmod{p^{i+1}}$ for i > 0. If f is overdetermined, then for any polynomial g with p-integral coefficients, and for each k, the coefficient of X^k in f(X)g(pX) will be congruent modulo p^{k+1} to that in g(pX). The set of overdetermined polynomials is carried into itself by any linear change of variables with p-integral coefficients. When regarded as elements of $(\mathbf{Z}/p^t\mathbf{Z})[X]$, the overdetermined polynomials form a group under multiplication.

If the degree of f is less than p, it is easy to see that f is overdetermined if and only if $f(0) \equiv 1 \pmod p$, and $\sum_{j=0}^q (-1)^{q-j} \binom qj f(j) \equiv 0 \pmod p^{q+1}$ for $1 \le q \le \deg f$. If r runs through a complete set of representatives for the units modulo p, then the polynomial $\prod_r (1+pX/r)$, when truncated at degree p - 2, is overdetermined.

LEMMA 4. Let $s \ge 1$ and $2 \le k \le p$. Then there is an overdetermined polynomial $g_{sk}(X)$, such that, for $0 \le j \le k-1$,

$$g_{sk}(j) \equiv \begin{pmatrix} kp^s - 1 \\ p^s - 1 \end{pmatrix} \begin{pmatrix} (k - j) p^s - 1 \\ p^s - 1 \end{pmatrix}^{-1} \pmod{p^k}.$$

Proof. It is sufficient to show that the polynomial $\binom{p^sX-1}{p^s-1}$ is congruent modulo p^k to an overdetermined polynomial. But

$$\binom{p^{s}X-1}{p^{s}-1} = \prod_{r=1}^{p^{s}-1} \frac{p^{s}(X-1)+r}{r} = \prod_{t=0}^{s-1} \prod_{1 \leq d \leq p^{s-t}} \left(1 + \frac{p^{s-t}}{d}(X-1)\right).$$

The coefficient of each $(X-1)^i$ is evidently divisible by p^i ; since $k \le p$, therefore, the polynomial may be truncated at degree p-2 without disturbing it modulo p^k . But, as remarked in the preceding paragraph, that yields an overdetermined polynomial.

PROPOSITION 5. Let $p \neq 2$, and for $2 \leq k \leq p - 1$, let $f_k(X)$ be the unique

polynomial of degree at most k-1, such that $f_k(j) = \binom{kp^s}{jp^s} / \binom{k}{j}$ for $0 \le j \le k-1$. Then f_k is overdetermined.

Proof. For k = 2, since $f_2(0) = 1$, it is only necessary to show that $\binom{2p^s}{p^s} / \binom{2}{1} = 1 \pmod{p^2}$. But $\binom{2p^s}{p^s} \binom{2}{1} = \binom{2p^s-1}{p^s-1} = \binom{2p^s-1}{p^s}$, which, by Lemma 3, is congruent to $\binom{2p^s-1}{0}$ modulo p^2 .

For k > 2, notice first that

$$\begin{split} \sum_{j=0}^{k-1} \; (-1)^{k-1-j} \, \binom{k-1}{j} \, \binom{kp^s}{jp^s} / \binom{k}{j} &= \sum_{j=0}^{k-1} \; (-1)^{k-1-j} \, \binom{kp^s-1}{jp^s} \\ &= \; M_s(0, \, kp^s-1) \; \equiv \; 0 \; (\text{mod } p^k) \,, \end{split}$$

by Lemma 3.

On the other hand, if $0 \le j \le k - 2$, then one finds

$$\frac{\binom{kp^s}{jp^s}}{\binom{k}{j}} = \frac{\binom{(k-1)p^s}{jp^s}}{\binom{k-1}{j}} \binom{kp^s-1}{p^s-1} \binom{(k-j)p^s-1}{p^s-1}^{-1},$$

so that $f_k(j) \equiv f_{k-1}(j) g_{sk}(j) \pmod{p^k}$. Thus in calculating $\sum_{j=0}^q (-1)^{q-j} {q \choose j} f_k(j)$ modulo p^{q+1} for q < k-1, we may replace f_k by $f_{k-1} g_{sk}$. But this latter, by induction and Lemma 4, is an overdetermined polynomial.

LEMMA 6. Assume that for some m_0 , there is a greatest integer n^* , such that $kp^{s-1}(p-1) \le n^* < (k+1)\,p^{s-1}(p-1)$, and such that ord $M_s(m_0\,,\,n^*) = k-1$. Then ord $M_s(m,\,\overline{n^*}) = k-1$ for all m.

Proof. Applying the orthogonality relations

$$\sum_{j=0}^{m} (-1)^{j-m} {m \choose j} {j \choose i-\ell} = \delta_{m,i-\ell},$$

together with the Vandermonde convolution, yields the identity, for $m\geq 0$, $M_s(m_0\text{ -}m,\,n^*) = \sum_{j=0}^m \binom{m}{j}\,M_s(m_0\text{ , }n^*+j). \text{ Now if } n^*+j\geq (k+1)\,p^{s-1}(p-1)\text{, it follows that ord }M_s(m_0\text{ , }n^*+j)\geq \left[(n^*+j)/p^{s-1}(p-1)\right]-1\geq k. \text{ If }$

$$n^*\,<\,n^*+j\,<\,(k+1)\,p^{s\,\text{--}1}(p\,\text{--}1)$$
 ,

then, by the maximality of n*, it follows that ord $M_s(m_0, n^* + j) > k - 1$. Therefore, $M_s(m_0 - m, n^*) \equiv M_s(m_0, n^*) \pmod{p^k}$.

3. THE CASE p = 2

PROPOSITION 7. If $k \ge 2$ and $s \ge 2$, then

$$M_s(m, 2^{s-l}(k+1) - 1) \equiv 2 M_s(m - 2^{s-2}, 2^{s-l}k - 1) \pmod{2^k}, \text{ for all } m.$$

Proof.
$$M_s(m, 2^{s-1}(k+1) - 1) = \sum_{j=0}^{2^{s-1}} M_s(j, 2^{s-1}) M_s(m-j, 2^{s-1}k-1)$$

$$= \sum_{j=0}^{2^{s-1}} (-1)^j {2^{s-1} \choose j} M_s(m-j, 2^{s-1}k-1).$$

Now each of the numbers $M_s(m-j, 2^{s-l}k-1)$ is divisible by 2^{k-2} . Thus to calculate modulo 2^k , we may drop all j such that $2 \le \operatorname{ord} {2^{s-l} \choose j} = s-1$ ord j. Thus, modulo 2^k ,

$$\begin{split} M_{s}(m, \, 2^{s-l}(k+1) \, - \, 1) & \equiv \, M_{s}(m, \, 2^{s-l} \, k \, - \, 1) \\ & + \, \left(\frac{2^{s-l}}{2^{s-2}}\right) M_{s}(m \, - \, 2^{s-2} \, , \, 2^{s-l} \, k \, - \, 1) + M_{s}(m \, - \, 2^{s-l} \, , \, 2^{s-l} \, k \, - \, 1) \\ & = M_{s-l}(m, \, 2^{s-l} \, k \, - \, 1) + \left(\frac{2^{s-l}}{2^{s-2}}\right) M_{s}(m \, - \, 2^{s-2} \, , \, 2^{s-l} \, k \, - \, 1) \; . \end{split}$$

But ord $M_{s-1}(m, 2^{s-1}k - 1) \ge 2k - 2 \ge k$, and $\binom{2^{s-1}}{2^{s-2}} \equiv 2 \pmod{4}$, whence the result.

COROLLARY 8. If $k \ge 2$ and $s \ge 2$, then ord $M_s(m, 2^{s-1}k - 1) = k - 2$, for all m.

Proof. One has $M_s(0, 2^s - 1) = -1$. This, together with Lemma 6, begins the induction on k. Proposition 7, together with Lemma 6, completes it.

4. THE CASE $p \neq 2$

PROPOSITION 9. Let ω be a primitive p-th root of unity. Then, in $\mathbb{Z}_p[\omega]$, one has $(\omega - 1)^{p(p-1)} \equiv -p^p \pmod{p^{p+1}}$.

Proof. The element ω - 1 satisfies the equation

$$0 = ((X + 1)^{p} - 1)/X = \sum_{i=0}^{p-1} {p \choose i+1} X^{i}.$$

Thus $(\omega-1)^{p-1}-\sum_{i=0}^{p-2}\binom{p}{i+1}(\omega-1)^i=-p-p(\omega-1)u$, where u is integral. Thus

$$(\omega - 1)^{p(p-1)} = -p^{p} - p^{p} \sum_{\ell=1}^{p} {p \choose \ell} (\omega - 1)^{\ell} u^{\ell} \equiv -p^{p} - p^{p} (\omega - 1)^{p} u^{p} \pmod{p^{p+1}},$$

since all other $\begin{pmatrix} p \\ \ell \end{pmatrix}$ are divisible by p. But $(\omega - 1)^p$ is also divisible by p, so that $p^p(\omega - 1)^p u^p \equiv 0 \pmod{p^{p+1}}$, as required.

PROPOSITION 10. Let $s \ge 2$ and let ω be a primitive p^s -th root of unity. Then, in $\mathbb{Z}_p[\omega]$, one has $(\omega - 1)^{p^s(p-1)} \equiv -p^p \pmod{p^{p+1}}$.

Proof. The element ω - 1 is a root of the polynomial

$$\sum_{j=0}^{p-1} (X+1)^{p^{s-1}j} = \sum_{i=0}^{p^{s-1}(p-1)} \sum_{j=0}^{p-1} {p^{s-1}j \choose i} X^{i}$$

 $\text{ so that } (\omega - 1)^{p^{s-1}(p-1)} = -p - u \text{, where } u = \sum_{i=1}^{p^{s-1}(p-1)-1} (\omega - 1)^i \sum_{j=1}^{p-1} \binom{p^{s-1}j}{i}.$ One has ord $u \geq \inf_{0 < i < p^{s-1}(p-1)} \left\{ \text{ord } \sum_{j=1}^{p-1} \binom{p^{s-1}j}{i} + i/p^{s-1}(p-1) \right\}.$

Now by Lemma 2, it follows that, for $0 < i < p^{s-2}(p-1)$, one has

ord
$$\sum_{j=1}^{p-1} {p^{s-1} j \choose i} + i/p^{s-1}(p-1) > 2 > 1 + 1/p$$
.

If $p^{s-2}(p-1) \le i < p^{s-1}(p-1)$, one has ord $\sum_{j=1}^{p-1} {p^{s-1} j \choose i} + i/p^{s-1}(p-1) \ge 1 + i/p$. Thus ord u > 1 + 1/p.

Consequently,

$$\begin{split} \operatorname{ord} \left\{ (\omega - 1)^{p^{\mathbf{S}}(p-1)} - (-p)^{p} \right\} &= \operatorname{ord} \sum_{\ell=1}^{p} \binom{p}{\ell} (-p)^{p-\ell} (-\mathbf{u})^{\ell} \\ &\geq \inf_{1 \leq \ell \leq p} \left\{ \operatorname{ord} \binom{p}{\ell} + p - \ell + \ell + \ell/p \right\} = p + 1 \,, \end{split}$$

as required.

In the propositions that follow, s will be fixed, and we shall abbreviate $N(m, k) = M_s(m, kp^{s-1}(p-1))$.

THEOREM 11. Let $s \ge 1$. Then $N(0, p) - N((p-1)p^{s-1}, p) \equiv -p^p \pmod{p^{p+1}}$. If $0 \le r < p^{s-1}$ and $0 \le j < p-1$, but r+j > 0, then

$$N(r + jp^{s-1}, p) \equiv N(r + (p - 1)p^{s-1}, p) \pmod{p^{p+1}}$$
.

Proof. Let ω be a primitive p^s -th root of unity. Then a basis for $\mathbb{Z}_p[\omega]$ over \mathbb{Z}_p is provided by $\{\omega^{r+jp^{s-1}}\colon 0\leq r< p^{s-1}\ ,\ 0\leq j< p-1\}$, and the coefficient of $\omega^{r+jp^{s-1}}$ in $(\omega-1)^{p^s(p-1)}$ is $N(r+jp^{s-1},p)-N(r+(p-1)p^{s-1},p)$.

On the other hand, if we expand $(\omega - 1)^{p^s(p-1)} = \sum_{i=0}^{p^{s-1}(p-1)-1} C_i (\omega - 1)^i$, we have, by Propositions 9 and 10, that $C_0 \equiv -p^p \pmod{p^{p+1}}$, and $C_i \equiv 0 \pmod{p^{p+1}}$ for i > 0. But the coefficient of ω^n in $\sum_{i=0}^{p^{s-1}(p-1)-1} C_i (\omega - 1)^i$ is, a priori, equal

to $\sum_{i=n}^{p^{s-1}(p-1)-1}$ (-1)ⁱ⁻ⁿ $\binom{i}{n}$ C_i . This, together with the congruences for C_i , yields the theorem.

THEOREM 12. Let $k \ge 1$ and $n \ge kp^{s-1}(p-1)$. Then for all m, one has $M_s(m, np^s(p-1)) \equiv -p^p M_s(m, n)$ (mod p^{k+p}).

Proof. $M_s(m, np^s(p-1)) \sum_{\ell=0}^{p^s-1} N(\ell, p) M_s(m-\ell, n)$. Now for all ℓ , one has that $M_s(m-\ell, n)$ is divisible by p^{k-1} . This together with Theorem 11 yields, modulo p^{k+p} ,

$$\begin{split} \mathbf{M}_{s}(\mathbf{m}, \, \mathbf{n} \, \mathbf{p}^{s}(\mathbf{p} \, - \, 1)) + \mathbf{p}^{\mathbf{p}} \, \mathbf{M}_{s}(\mathbf{m}, \, \mathbf{n}) \\ & = \sum_{\mathbf{r} = 0}^{\mathbf{p}^{s-1} \, - 1} \sum_{\mathbf{j} = 0}^{\mathbf{p} - 1} \mathbf{N}(\mathbf{r} + (\mathbf{p} \, - \, 1) \, \mathbf{p}^{s-1} \, , \, \mathbf{p}) \, \mathbf{M}_{s}(\mathbf{m} \, - \, \mathbf{r} \, - \, \mathbf{j} \mathbf{p}^{s-1} \, , \, \mathbf{n}) \\ & = \sum_{\mathbf{r} = 0}^{\mathbf{p}^{s-1} \, - 1} \mathbf{N}(\mathbf{r} + (\mathbf{p} \, - \, 1) \, \mathbf{p}^{s-1} \, , \, \mathbf{p}) \, \sum_{\mathbf{j} = 0}^{\mathbf{p} - 1} \mathbf{M}_{s}(\mathbf{m} \, - \, \mathbf{r} \, - \, \mathbf{j} \mathbf{p}^{s-1} \, , \, \mathbf{n}) \, . \end{split}$$

If
$$s = 1$$
, then $\sum_{j=0}^{p-1} M_s(m - r - jp^{s-1}, n) = \sum_{i=0}^{n} (-1)^{n-i} {n \choose i} = 0$. If $s > 1$,

then $\sum_{j=0}^{p-1} M_s(m-r-jp^{s-1}, n) = M_{s-1}(m-r, n)$, which is divisible by p^{kp-1} . Since each $N(r+(p-1)p^{s-1}, p)$ is divisible by p^{p-1} , and since

$$kp - 1 + p - 1 > k + p$$

the theorem follows.

THEOREM 13. Let $k \ge 1$. Then $M_s(0, kp^{s-1}(p-1) + p^{s-1} - 1) \equiv (-p)^{k-1} \pmod{p^k}$, and $M_s(0, n) \equiv 0 \pmod{p^k}$, for all $n > kp^{s-1}(p-1) + p^{s-1} - 1$.

Proof. Using an induction beginning with Lemma 3, one shows easily that if $n \ge kp^s$ - 1, then $M_s(m,n) \equiv 0 \pmod{p^k}$ for all m. Thus for the present theorem, we may consider only those $n < kp^s$ - 1. Moreover, it is sufficient to prove the theorem when $1 \le k \le p$; for Theorem 12 will provide an induction.

For k = 1, we have $M_s(0, p^s - 1) = 1$ and, if $p^s - 1 < n < 2p^s - 1$, then $M_s(0, n) = (-1)^n - (-1)^n \binom{n}{p^s} \equiv 0 \pmod{p}$.

Now let k = p and let s>1. Then by Theorem 11, if $0\leq \ell < p$ - 1, we have, modulo p^{p+1} ,

$$\begin{split} M_s(\ell p^{s-1},\,n) &\equiv -p^p M_s(\ell p^{s-1},\,n-p^s(p-1)) \\ &+ \sum_{r=0}^{p^{s-1}-1} N(r+(p-1)p^{s-1},\,p) \sum_{j=0}^{p-1} M_s(p^{s-1}-r-jp^{s-1},\,n-p^s(p-1)) \\ &= -p^p M_s(\ell p^{s-1},\,n-p^s(p-1)) \\ &+ \sum_{r=0}^{p^{s-1}-1} N(r+(p-1)p^{s-1},\,p) M_{s-1}(-r,\,n-p^s(p-1)) \;. \end{split}$$

Summing these, we obtain, modulo p^{p+1},

$$-p^{p} M_{s-1}(0, n - p^{s}(p - 1))$$

$$+ p \sum_{r=0}^{p^{s-1}-1} N(r + (p - 1) p^{s-1}, p) M_{s-1}(-r, n - p^{s}(p - 1)) \equiv M_{s-1}(0, n).$$

But if $n \ge p^s(p-1) + p^{s-1} - 1$, this last number is divisible by p^{p^2} . Also, by the case k=1 for s-1, we have $M_{s-1}(0, n-p^s(p-1)) \equiv 0 \pmod p$ for

$$n > p^{s}(p-1) + p^{s-1} - 1;$$

and $M_{s-1}(0, p^{s-1} - 1) = 1$.

Therefore, $\sum_{r=0}^{p^{s-1}-1} N(r + (p-1)p^{s-1}, p) M_{s-1}(-r, n-p^s(p-1))$ is congruent to $p^{p-1} \pmod{p^p}$ if $n = p^s(p-1) + p^{s-1} - 1$, and is congruent to 0 if n is greater. But this sum is congruent to $M_s(0, n)$ modulo p^p .

Now assume s = 1 and k = p. If n > p(p - 1), then, modulo p^{p+1} ,

$$M_{1}(0, n) = -p^{p}M_{1}(0, n - p(p - 1)) + \sum_{j=0}^{p-1} N(p - 1, p)M_{1}(j, n - p(p - 1))$$
$$= -p^{p}M_{1}(0, n - p(p - 1)).$$

if n = p(p - 1), we have, modulo p^{p+1} , $0 = \sum_{j=0}^{p-1} N(j, p) \equiv -p^p + p N(p - 1, p)$, so that $N(p - 1, p) \equiv p^{p-1} \pmod{p^p}$, so also $N(0, p) \equiv p^{p-1} \pmod{p^p}$.

If $2 \le k \le p$, and $0 \le j \le k$, notice that

$$\begin{pmatrix} n \\ jp^s \end{pmatrix} = \frac{\begin{pmatrix} kp^s \\ (k-j)p^s \end{pmatrix} \begin{pmatrix} (k-j)p^s \\ kp^s - n \end{pmatrix}}{\begin{pmatrix} kp^s \\ kp^s - n \end{pmatrix}} = \begin{pmatrix} k-1 \\ j \end{pmatrix} \frac{\begin{pmatrix} kp^s \\ jp^s \end{pmatrix}}{\begin{pmatrix} k \\ j \end{pmatrix}} \frac{\begin{pmatrix} (k-j)p^s - 1 \\ kp^s - n - 1 \end{pmatrix}}{\begin{pmatrix} kp^s - 1 \\ kp^s - n - 1 \end{pmatrix}}$$

$$= \begin{pmatrix} k-1 \\ j \end{pmatrix} \frac{\begin{pmatrix} kp^s \\ jp^s \end{pmatrix}}{\begin{pmatrix} k \\ j \end{pmatrix}} h_1(p^2j)h_2(j),$$

where h_1 is a polynomial with p-integral coefficients and

$$h_2(X) = \prod_{\substack{1 \le bp^{s-1} \le kp^{s}-n \\ p \nmid b}} (1 - (p/kp - b) X).$$

In the notation of Proposition 5, let G(X) be a polynomial of degree at most k-1 that is congruent modulo p^k to $f_k(X) h_1(p^2 X) h_2(X)$, and let A_{k-1} be its coefficient of X^{k-1} . Then, as is well known,

$$(k-1)! A_{k-1} = \sum_{j=0}^{k-1} (-1)^{k-1-j} {k-1 \choose j} G(j) \equiv (-1)^{k-1-n} M_s(0, n) \pmod{p^k} .$$

But A_{k-1} is congruent modulo p^k to the coefficient of X^{k-1} in $h_2(X)$. That coefficient is 0 if $n > kp^{s-1}(p-1) + p^{s-1} - 1$; while if $n = kp^{s-1}(p-1) + p^{s-1} - 1$, it is $p^{k-1} \prod_{b=1}^{k-1} (b-kp)^{-1}$, which is $\equiv p^{k-1}/(k-1)! \pmod{p^k}$.

COROLLARY 14. Let $k \ge 1$. Then for all m,

$$M_s(m, kp^{s-1}(p-1) + p^{s-1} - 1) \equiv (-p)^{k-1} \pmod{p^k}$$
.

If $n > kp^{s-1}(p-1) + p^{s-1} - 1$, then $M_s(m, n) \equiv 0 \pmod{p^k}$ for all m.

Proof. By the proof of Lemma 6 and by Theorem 13, one has, for

$$n* = kp^{s-1}(p-1) + p^{s-1} - 1$$

and for any m, that $M_s(m, n^*) \equiv M_s(0, n^*) \pmod{p^k}$. Since

$$M_s(m, n+1) = M_s(m, n) - M_s(m-1, n),$$

the second assertion follows from the first.

COROLLARY 15. Let $k \ge 1$, and abbreviate $n_k = (k-1) p^{s-1} (p-1) + p^{s-1} - 1$. Let A be the square matrix of size $p^{s-1}(p-1)$ whose (i, j)th entry is

$$p^{-k+1} M_s(p^{s-1} - 1 + i, n_k + j)$$
.

Then the entries of A and of its inverse are p-integral.

Proof. The p-integrality of the entries of A is contained in Theorem 13. Let R_i be the i-th row of A, and perform the row operation replacing each R_i but the last by $\sum_{\ell=i}^{p^{s-1}(p-1)} M_s(-p^{s-1}-\ell, p^{s-1}(p-1)-i) R_{\ell}$. Then since the remaining $M_s(-p^{s-1}-\ell, p^{s-1}(p-1)-i)$ are zero, the new (i, j)th entry is

$$\begin{aligned} p^{-k+1} & \sum_{\ell=0}^{p^{s}-1} M_{s}(-p^{s-1} - \ell, p^{s-1}(p-1) - i) M_{s}(p^{s-1} - 1 + \ell, n_{k} + j) \\ &= p^{-k+1} M_{s}(-1, n_{k} + p^{s-1}(p-1) + j - i) . \end{aligned}$$

This p-integral number is $\equiv (-1)^{k-1} \pmod p$ when i = j, and $\equiv 0 \pmod p$ when i < j. Thus the determinant of A is $\equiv 1 \pmod p$.

Notice that the proofs of Corollaries 14 and 15 work as well when p = 2, by using Proposition 7 and Corollary 8.

5. AN APPLICATION

We shall consider here continuous functions from the p-adic integers to a complete valued extension field K of the p-adic numbers; the (exponential) valuation ord of K will be normalized by ord p=1.

There are two popular ways of giving an "orthonormal expansion" of such a function f(y). One is Mahler's interpolation series $\sum a_n \binom{y}{n}$ [2, Chapter 6]. The

other is van der Put's expansion $\sum b_m \chi_m(y)$ [3, Section 5]. Here, $\chi_0(y)$ is the characteristic function of the set of y with ord y > 0. If m > 0, $\chi_m(y)$ is the characteristic function of the set of y with ord $(y - m) > [\log_p m]$. The two expansions are related by $b_0 = a_0$, and, for $0 < n < p^s$,

$$a_n = M_1(0, n) b_0 + \sum_{t=1}^{s} \sum_{m=p^{t-1}}^{p^{t-1}} M_t(m, n) b_m.$$

It is not difficult [1] to show that the function f(y) is uniformly Lipschitz if and only if $\inf \{ \operatorname{ord} a_n - [\log_p n] \} > -\infty$.

THEOREM 16. f(y) is uniformly Lipschitz if and only if

inf
$$\{ \text{ord } b_m - [\log_p m] \} > -\infty.$$

Proof. For $k \ge 1$ and $t \ge 1$, let $n_k(t) = (k-1)p^{t-1}(p-1) + p^{t-1} - 1$. Notice that for s > t, one has $n_k(s) = n_{k'}(t)$, with $k' = (k-1)p^{s-t} + 1 + (p^{s-t} - 1)/(p-1)$.

It follows from Corollary 15 that for any elements $\,b_{\rm m}\,$ of K, $\,p^{t\,\text{-}\,l} \leq m < p^t$, one has

$$\inf_{n_k(t) < n \le n_{k+1}(t)} \operatorname{ord} \sum_{m=p^{t-1}}^{p^{t-1}} M_t(m, n) b_m = k-1 + \inf_{p^{t-1} \le m < p^t} \operatorname{ord} b_m.$$

Assume that $\sum a_n {y \choose n} = \sum b_m \chi_m(y)$ and that there is a constant B such that ord $a_n \geq B + [\log_p n]$ for all $n \geq 1$. We may assume, by subtracting a constant, that $a_0 = b_0 = 0$. But then $B \leq \inf_{n_1(1) < n \leq n_2(1)}$ ord $a_n = \inf_{1 \leq m < p}$ ord b_m .

Assume for induction that for all $1 \le m < p^{s-1}$ one has ord $b_m \ge B + [\log_p m]$. Then for $p^{t-1} \le m < p^t < p^s$ and $n_1(s) < n \le n_2(s)$, one has

ord
$$M_t(m, n) \ge B + t - 1 + (p^{s-t} - 1) (p - 1) > B + s - 1$$
.

Since ord $\sum_{t=1}^{s} \sum_{m=p^{t-1}}^{p^{t-1}} M_t(m, n) b_m \ge B + s - 1$ whenever $n_1(s) < n \le n_2(s)$, it follows for each such n that ord $\sum_{m=p^{s-1}}^{p^{s-1}} M_s(m, n) b_m \ge B + s - 1$. Thus ord $b_m \ge B + s - 1$ whenever $[\log_p m] = s - 1$.

Now assume ord $b_m \ge B + [\log_p m].$ Again we may assume a_0 = b_0 = 0, and then, for $n_1(s) < n \le n_2(s),$ we have

$$\begin{split} \operatorname{ord} \, a_n &\geq \inf_{\substack{1 \leq t < s \\ p^{t-1} \leq m < p^t}} \left\{ \operatorname{ord} \, M_t(m, \, n) + \operatorname{ord} \, b_m \right\} \\ &\geq \inf \, \left\{ (p^{s-t} - 1) \, \left(p - 1 \right) + B + t - 1 \right\} \, = \, B + s - 1 \; . \end{split}$$

REFERENCES

- 1. E. Helsmoortel, Comportement local des fonctions continues sur un compact régulier d'un corps local. C.R. Acad. Sci. Paris Sér. A 271 (1970), 546-548.
- 2. K. Mahler, *Introduction to* p-adic numbers and their functions. Cambridge Tracts in Mathematics, No. 64, Cambridge University Press, London-New York, 1973.
- 3. A. C. M. van Rooij and W. H. Schikhof, *Non-archimedean analysis*. Nieuw Arch. Wisk. (3) 19 (1971), 120-160.
- 4. C. Weisman, On p-adic differentiability. J. Number Theory 9 (1977), 79-86.

Department of Mathematics University of Rochester Rochester, New York 14627