SOME CONGRUENCES FOR BINOMIAL COEFFICIENTS
Carl S. Weisman

1. INTRODUCTION

Let p be a prime number. For integers m, and n > 0, and s > 0, denote by
Mg (m, n) the sum 22 (-1)n-i (?) of alternating binomial coefficients, restricted to

those i which are congruent to m modulo p®. Many results about continuous
p-adic-valued functions on the p-adic integers come down to statements about the
numbers Mg (m, n). The author has shown that

(*) ord Mg(m, n) > [n/pS-1(p-1)]-1

for all m. Here ord r denotes the exponent to which p divides r, and [-] is the
integer-part function. The present note gives more precise information about the
congruence properties of the M (m, n) modulo powers of p. It is shown that, for
fixed m and s, there is equality in (*) for infinitely many n; more specifically,

(i) if k>1and n>kps-Yp- 1) +ps-! -1, then ord Mg(m, n) >k - 1 for
all m;

(ii) if k > 1, then Mg(m, kpS~Y(p - 1) +ps1 -1)= (-p)¥-1 (mod pk) for every

These results are then applied to obtain a new characterization of uniformly
Lipschitz p-adic-valued functions.

2. PRELIMINARY LEMMAS

In this section, p denotes a fixed prime.

LEMMA 1. Let the integevs a;, be defined by the identity

(7) - Zea(2).

If p «]’ain, then i = pn.

n .
minate. Then Ei:O ajn X* = EJ o (-1 J(

Comparing coefficients yields the lemma.

n
Proof. One has a;, = EJ —o (-1 ( ) (p]) Fix n and let X be an indeter-

: J ( )Xi=((X+1)P—1)n

p-1 s-1;
LEMMA 2. If s >2and 1<i<pS-l(p - 1), then Ej:1 (p . 3) is divisible

by p. If, in addition, i <pS~2(p - 1), # E (ps—lj) s divisible by p2
P 1en i is divisible by p2.
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Proof. Take s = 2. The first statement is automatic if pti. If i = p¢ with
0<€<p-1,th dul h EP_I pj =P ) =(,2,) =
p , then, modulo p, one has =1 j=1 0+1) = 0

p-1
If 0<i<p-1,then 2-: p]) E Ek 1 ckp j¥, where each cx is p-

integral. Now EJ 1 K=+ l)Qk(n)/(k + 1)1, where Qi is a polynomial with
integer coefficients. Therefore, E (pJ) = p2 E -1 G PK1Qp - 1)/(k + 1!,
and the last sum is p-integral; thus the second statement follows for s = 2.

Now assume s > 2. Again, the first statement is automatic if p + i. If i=p!t
with 0 < £ < p=2(p - 1), one has, modulo p, Z);:ll (p:;j) = Z)?:'ll (psfj )
so that the first statement follows by induction on s.

Assume i < pS-2(p - 1). In the notation of Lemma 1, we have

p-1 p-1
L (P71) - D, T ()
. i n n )
J:l n J=l
=0 if n>i. Thus, if a;, # 0, then n < p5-2(p - 1), so that
-1 -2
E?:l (psn ) ) . If a;, is not also divisible by p, then, according to Lemma 1, one

Evidently, a:

in

has n=1i/p < pS-3(p - 1). Thus the final statement of the present lemma also fol-
lows by induction.

! i 1
The familiar Vandermonde convolution formula, (n-ii-n ) = Ejzo ( ;1) ( iri ].) s

s-1
yields easily the similar identity M (m, n+n') = Z;;):o M(j, n) Mg(m - j, n').
LEMMA 3. If p # 2 and k > 2, then ord Mg(m, kp® - 1) >k for any m.
Proof. Assume 0 <m < pS. Then since evidently M(0, pS) = 0, one has

pS-1
M(m, 2p° - 1) = 20 M(j, p® - DM,(m - §, p®)
j=
m-1
= 2 (-1)PS-1-] (ps—l)( 1)P —m-_]( p_s >
j=0 Ml
p°-1
- S_.S_ : S
+Jzil(lw N J(p ) e nﬂj(psfg—j)
m-1
o2 e (771 () oo
pS-1

+ps T (om (PN (Pt ) -t

j=m+l1
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s — .
Now if j < ps, then (p ]. 1) = (-1)) (mod p). Hence one has, modulo p?,

m-1 pS-1
Ms(m’ zps"l) = Z; ps/(m-j)' Z ps/(j-m)z E ps/r =0
j=0 j=m+1 0<r<pS

This begins an induction on k. To complete it, simply notice that

I

p°-1
27 My(j, pS)M (m - j, kpS - 1)
=0

Mc(m, (k +1)ps - 1)

.

S

Jl(p) m - j, kp® - 1).

A polynomial £(X) = Z;it 5 A, X" with p-integral rational coefficients will be
said to be overdetermined if Ag = 1 (mod p) and A; = 0 (mod pitl) for i > 0. If £
is overdetermined, then for any polynomial g with p-integral coeff1c1ents, and for
each k, the coefficient of XX in f(X)g(pX) will be congruent modulo p¥! to that in
g(pX). The set of overdetermined polynomials is carried into itself by any linear
change of variables with p-integral coefficients. When regarded as elements of
(Z/ptZ)[X], the overdetermined polynomials form a group under multiplication.

If the degree of f is less than p, it is easy to see that f is overdetermined if
and only if f(0) = 1 (mod p), and Z;J o (-1)9- J(J ) £(G) = 0 (mod p2*!) for
1< q< degf. If r runs through a complete set of representatives for the units

modulo p, then the polynomial II . (1 + pX/r), when truncated at degree p - 2, is
overdetermined.

LEMMA 4. Let s> 1 and 2 <k <p. Then there is an overdeteymined poly-
nomial g, (X), such that, for 0 <j<k -1,

s = (P27 1) (S0PT) T (amoa 9.

SX -
Proof. 1t is sufficient to show that the polynomial (pp s}i 11) is congruent

modulo pX to an overdetermined polynomial. But

]
p -1 s-1
Sy - s - s-t
(X )= meXE=Dir_ g [ (142 x-1).
p r=1 t=0 1<q<ps-t

ptd

The coefficient of each (X - 1)! is evidently divisible by p!; since k < p, therefore,
the polynomial may be truncated at degree p - 2 without disturbing it modulo pk.
But, as remarked in the preceding paragraph, that yields an overdetermined poly-
nomial.

PROPOSITION 5. Let p # 2, and for 2 <k <p - 1, let {,(X) be the unique
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kps

polynomial of degree at most k - 1, such that f(j) = ips

k .
)/(J.)for 0<j<k-1.
Then . is ovevdetermined.

Proof. For k =2, since f,(0) = 1, it is only necessary to show that

e )/(1) =1 tmoapd). mat (07) (1) = (F071) = (7501),
( ps / 1 1 (mod p%). But ps 1) ps-1) = ps , Which, by

5-1
2p0 ) modulo p2 .

For k > 2, notice first that

Lemma 3, is congruent to (

k-1 k-1
B o (550 () A(4) - B v ()

M, (0, kp® - 1) = 0 (mod p¥),

by Lemma 3.
On the other hand, if 0 <j <k - 2, then one finds

o) () (o) (5,

(;c) (kj—l) ps -1 ps - 1

q .
so that £, (j) = f,._; () gsk(i) (mod pX). Thus in calculating Ejzo (-1)2-) (?) f1.(3)

modulo pd*t! for q <k - 1, we may replace fi. by fi._i g5k . But this latter, by in-
duction and Lemma 4, is an overdetermined polynomial.

LEMMA 6. Assume that for some mg, theve is a greatest integer n*, such
that kps-1(p - 1) <n* <(k +1)ps-L(p - 1), and such that ord M (m,, n*) =k - 1.
Then ord M. (m, n*) =k - 1 for all m.

Proof. Applying the orthogonality relations

JE) ('1)j_m (r;]) (ijﬂ) = 6m,i-ﬂ:

together with the Vandermonde convolution, yields the identity, for m > 0,
m
M (mg - m, n%) = Do “]“) M, (mg, n* +j). Now if n* +j> (k+ 1)ps-L(p - 1), it

follows that ord My(mg, n*+§) > [(n* +§)/ps-1(p- D] - 1>k. I
n*¥ < np¥+j < (k+1)ps-lp-1),

then, by the maximality of n*, it follows that ord M (mg, n* + j) > k - 1. There-
fore, Mo (mg - m, n*) = M(mg, n*) (mod pX).
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3. THE CASE p = 2
PROPOSITION 7. If k> 2 and s> 2, then

Mg(m, 25" Mk +1) - 1) = 2M_(m - 2572, 251k - 1) (mod 2%, forall m.
25-1

27 MG, 25" )M (m - j, 25-1k - 1)
j=0

Proof. Mg(m, 25-1(k+1) - 1)

I

28-1

. 2s—l '
(1 (3. ) Molm - §, 2571k - 1) .
. ]
3j=0
Now each of the numbers Mg(m - j, 25-1k - 1) is divisible by 2X-2., Thus to calcu-
s-1
late modulo 2¥, we may drop all j such that 2 < ord (2 i ) =s-1-ordj. Thus,
modulo 2K,

Mg(m, 257k +1) - 1) = M_(m, 2571k - 1)

s-1
+ (gs_z)Ms(m - 2572 251k - 1) + M (m - 25-1, 25-1k - 1)

25-1

M, _;(m, 25 k- 1)+ (25_2

)Ms(m - 92872 9s-lyp _ 1) |
s-1
But ord Mg _;(m, 25-1k - 1) > 2k - 2 >k, and (35“2) = 2 (mod 4), whence the
result.

COROLLARY 8. If k> 2 and s > 2, then ord M (m, 251k - 1) =k - 2, for
all m.

Proof. One has M4(0, 2° - 1) = -1. This, together with Lemma 6, begins the
induction on k. Proposition 7, together with Lemma 6, completes it.

4. THE CASE p # 2

PROPOSITION 9. Let w be a primitive p-th voot of unity. Then, in Z. [w]
one has (w - 1)P(P-1) = -pP (mod pP*l),

Proof. The element w - 1 satisfies the equation

p-1

_ _ P\ i
= (X+1)P-1)/X = E/O (i+1)X .

P-2 / o .
Thus (w - 1)P-1 - Eizo (i+1) (w- 1) =-p - plw - 1)u, where u is integral.
Thus

(w - DPP-1) = _pp _ P 25 (S)(“’ - 1)2uf = -pP - pP (w - 1)PuP (mod pP*+1),
=1
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since all other ( Ig)) are divisible by p. But (w - 1)P is also divisible by p, so that
pP(w - 1)PuP = 0 (mod pP'!), as required.

PROPOSITION 10. Let s > 2 and let w be a primitive pS-th voot of unity.
Then, in Z,[w], one has (w - 1)P 1) -pP (mod pP*l).

Proof. The element w - 1 is a root of the polynomial

p-1 ps-1(p-1) p-1 L
T+ N D (P )
j=0 i=0 j=0

- s-L(p-1)-1 . -1 -1
so that (w - 1)P°1P-1) = _p - 4, where u = Ef_l P (w - 11 EP_ (psi ]) .
. p_]_ S -1
One has ord u > 1nf0<i<ps_1(p_l) {ord Zj:l ( ]) +i/ps-1(p - i)}

Now by Lemma, 2, it follows that, for 0 <i < pS-2(p - 1), one has

1
ord Z) (ps ) +i/pslp-1)>2>1+1/p.
j=1

1 s- 1
If pS-2(p - 1) <i<pS~!(p - 1), one has ord Ep l(p ) +i/ps-tp-1)>1+i/p.
Thus ordu > 1+ 1/p.
Consequently,

P

ord {(w - 1)P°P-1) = (-p)P} = ord 2 (3) (-p)P-L (-u)L
0=1

> inf {ord(§)+p—ﬂ+ﬂ+ﬂ/p}=p+1,
1<e<p )
as required.

In the propositions that follow, s will be fixed, and we shall abbreviate
N(m, k) = M (m, kps~1(p - 1)).

THEOREM 11. Let s> 1. Then N(0, p) - N((p - 1)p®~!, p) = -pP (mod pP*!).
If 0<r<ps-land 0<j<p-1,but r+j>0,then
N(r +jps-!, p) = N(r + (p - 1)ps-1, p) (mod pPt]) .

Proof. Let w be a pr1m1t1ve pS-th root of unity. Then a basis for Zp[w] over
Z, is provided by {wr+3p :0<r <ps-l, 0<j<p- 1}, and the coefficient of
wr+ip® ! in (w - 1)P3(P-1) ig N(r + jps-1, p) -N(r +(p - 1)ps-1, p).
s-1 1
On the other hand, if we expand (w - 1)ps(p -1) o Ep (p-1)- C; (w - 1)1 we
have, by Propositions 9 and 10, that Cy = -pP (mod pP+1) and C; = 0 (mod pp+1)

ps 1(p-1)-1 -
for i > 0. But the coefficient of w® in E C; (w - 1) is, a priori, equal
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ps-l(p-1)-1 /i
to 20._, (-1)r-n ( :1) C;. This, together with the congruences for Cj,
yields the theorem.
THEOREM 12. Let k > 1 and n > kpS~(p - 1). Then for all m, one has
Mg(m, npS(p - 1)) = -pPM(m, n) (mod pk+Pp).

S
-1
Proof. Mg(m, npS3(p - 1)) EE:O N(¢, p)Ms(m - ¢, n). Now for all £, one has

that Mg (m - ¢, n) is divisible by pk-l. This together with Theorem 11 yields,
modulo pktp,

Mg(m, np%(p - 1)) + pPMy(m, n)

pS7l-1 p-1
= 2 2 N(r +(p-1ps-1, pM_(m - r - jps-1, n)
r=0  j=0
pS—l_l p_l
= 2 N(r + (p - 1)ps-1, p) EMS(m-r-jps'l,n).
r=0 j=0

-1

P n .
If s =1, then Ej:O Ms(m -Tr - jps'l, n) = Ei:O (-1)“‘1(?) =0. If s> 1,

-1
then E}):o M(m - r - jps-1, n) =M, _;(m - r, n), which is divisible by pkp-1,
Since each N(r + (p - 1)ps-1, p) is divisible by pP-1, and since
kp-1+p-12>k+p,
the theorem follows.

THEOREM 13. Let k > 1. Then M (0, kpS-1(p - 1) +ps-1 - 1) = (-p)k-1
(mod pY), and M4(0, n) = 0 (mod pX), for all n>kps-1(p - 1) + ps-1 - 1.

Proof. Using an induction beginning with Lemma 3, one shows easily that if
n > kp® - 1, then M¢(m, n) = 0 (mod p¥) for all m. Thus for the present theorem,
we may consider only those n <kp® - 1. Moreover, it is sufficient to prove the
theorem when 1 <k < p; for Theorem 12 will provide an induction.

For k =1, we have M(0, p® - 1) =1 and, if pS - 1 <n < 2pS - 1, then
M4(0, n) = (-1)7 - (~1)™ (p’;) = 0 (mod p).

Now let k = p and let s > 1. Then by Theorem 11, if 0 < £ <p - 1, we have,
modulo pprtl,

Ms(ﬂps—ly n)

n

-pPM(LpS-1, n - ps(p - 1))

ps—l_l p-1
+ 27 N@r+(p-Dpsl, p) 2 My(ps-! - r - jps-!, n - pS(p - 1))
r=0 j=0

-pPMg(2pS-1, n - pS(p - 1))
ps-l_l

+ 2 N(r + (p - 1)ps'1, pP)Mg_;(-r, n - p%(p - 1)) .
r=0



148 CARL S. WEISMAN
Summing these, we obtain, modulo pP*1,

-pPMg_;(0, n - pS(p - 1))
pS-l_l
+p 2 N@+(p-1)ps-!,p M, (-r,n-pslp-1) = Mg_4(0, n) .
r=0

But if n > pS(p - 1) + pS- -1 - 1, this last number is divisible by pP . Also, by the
case k =1 for s - 1, we have M, _;(0, n - pS(p - 1)) = 0 (mod p) for

n > ps(p - 1) +ps-l - 1;

and Mg_;(0, ps-1 - 1) = 1.
s-1

b
Therefore, Er_o N(r + (p - 1)ps-!, p)M,_;(-r, n - ps(p - 1)) is congruent
to pP-1 (mod pP) if n=pS(p - 1) +pS-1 - 1, and is congruent to 0 if n is greater.
But this sum is congruent to M (0, n) modulo pP.

Now assume s =1 and k =p. If n> p(p - 1), then, modulo pP*!,
p-1
MI(O’ n) = _ple(O’ n- p(p - 1)) + Z) N(p - 1’ p)Ml(j3 n - p(P = 1))
j=0
= -pPM (0, n - p(p - 1)) .

if n=p(p - 1), we have, modulo pP*1, 0 = 2% §=0 N(], p) = -pP+pN(p - 1, p), so
that N(p - 1, p) = pP-! (mod pP), so also N(O p) = pP-1 (mod pP).

If 2 <k <p,and 0<j<Kk, notice that

( kp® ) ((k-j)pS lfps) (k-j)ps-1

n _ \k-j)ps kpS-n / _ (k-1 ]p kpS-n-1

(jps> kps ) ( ] ) ( ) ( kps-1
kpS-n kpS-n-1

kp
-1y (o) o
= ( : ) AL hy(p2i)hy(),
(5)
where h; is a polynomial with p-integral coefficients and

h,(X) = II (1 - (p/kp - B)X) .
Iprs°l <kp®-n
ptb

In the notation of Proposition 5, let G(X) be a polynomial of degree at most
k - 1 that is congruent modulo pk to f}(X)h(p2X)h,(X), and let A, _; Dbe its coeffi-
cient of Xk-1, Then, as is well known,
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k-1
(k- D1A,_, = 2 (-1)k-L-] (kj‘l) G(j) = (-1)k-1-nM_(0, n) (mod p¥) .
j=0
But A, _, is congruent modulo pk to the coefficient of X< in h,(X). That coeffi-
cient is 0 if n > kps-1(p - 1) + ps-1 - 1; while if n =kps-1(p - 1) +ps-! - 1, it is
k-1
p-l IT, 75 (b - kp)~1, which is = p&~1/(k - 1)! (mod p).
COROLLARY 14. Let k > 1. Then for all m,

Mg(m, kpS~1(p - 1) +p5~1 - 1) = (-p)k1 (mod p¥).

If n>kps-1(p-1)+ps-! -1, then M.(m, n) = 0 (mod p¥) for all m.
Proof. By the proof of Lemma 6 and by Theorem 13, one has, for

n* = kps—l(p - 1) +pS"I - 1
and for any m, that M.(m, n*) = Ms(0, n*) {mod pk). Since
M,(m, n+1) = Mg(m, n) - Mg(m - 1, n),

the second assertion follows from the first.

COROLLARY 15. Let k > 1, and abbreviate ny = (k - 1)ps-1(p - 1) +ps-1 - 1.
Let A be the squave matvix of size ps-1(p - 1) whose (i, j)th entry is

p I M (pS-t - 1+14, o +3j) .

Then the entries of A and of its inverse are p-integral.

Proof. The p-integrality of the entries of A is contained in Theorem 13. Let
R; be the i-th row of A, and perform the row operation replacing each R; but the

s-1(p-1)
last by Ep P M S(-ps- g ps-l(p-1) - i)R . Then since the remaining

=i
M (-ps-1 - £, ps-}(p - 1) - i) are zero, the new (i, j)th entry is
p°-1
p-ktl 27 MS(—pS'1 -8, pSl(p-1)- i)Ms(ps"1 -1+2,n,+j)
£=0

= p R IM (-1, n +pSlp - 1)+ -1).

e

This p-integral number is = (-1)k-! (mod p) when i = j, and = 0 (mod p) when
i <j. Thus the determinant of A is = 1 (mod p).

Notice that the proofs of Corollaries 14 and 15 work as well when p = 2, by using
Proposition 7 and Corollary 8.

5. AN APPLICATION

We shall consider here continuous functions from the p-adic integers to a com-
plete valued extension field K of the p-adic numbers; the (exponential) valuation ord
of K will be normalized by ord p = 1.
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There are two popular ways of giving an “orthonormal expansion” of such a

function f(y). One is Mahler’s interpolation series 27 a (i) [2, Chapter 6]. The

other is van der Put’s expansion 22 bm Xm(y) [3, Section 5]. Here, xoly) is the
characteristic function of the set of y with ordy > 0. If m > 0, X,,(y) is the char-
acteristic function of the set of y with ord (y - m) > [logpm]. The two expansions
are related by bg = ag, and, for 0 <n < pS,

s pt -1
an = M(0, )bg+ 27 2 Mm, n)b,,.
t=1 m=pt-1

It is not difficult [1] to show that the function f(y) is uniformly Lipschitz if and
only if inf {ord a, - [logyn]} > -e.

THEOREM 16. f(y) is uniformly Lipschitz if and only if
inf {ord by, - [logpm]} > -e.

Proof. For k> 1 and t > 1, let ny(t) = (k - 1) pt-1(p - 1) + pt-1 - 1. Notice
that for s > t, one has ny(s) = nj(t), with k' = (k - 1)ps-t+ 1+ (ps-t-1)/(p - 1).

It follows from Corollary 15 that for any elements b,, of K, pt-! < m < pt, one
has

pt-1
inf ord 27 Mym, n)b,, =k-1+ inf ordb,,.
n(t) <n<npy (t) m=pt-l pt-1<mpt

Assume that 27 a, (i) =2b

ord a, > B + [logpn] for all n > 1. We may assume, by subtracting a constant, that
ag =bg =0. But then B Sinfn1(1)<n_<_n2(l) ord a, = infl_<_m<p ord b, .

(y) and that there is a constant B such that

mXm

Assume for induction that for all 1 <m < ps-! one has ord b, > B + [logpm].
Then for pt-! < m < pt <pS and n;(s) < n < ny(s), one has

ord Mi(m, n) > B+t-1+(pst-1)(p-1 > B+s-1.

s t_1
Since ord Et:l Efn:pt'l M(m, n)b,,, > B +s - 1 whenever n;(s) <n <ny,(s), it

s_1
follows for each such n that ord Ef;:ps'l M. (m, n)b,, > B +s - 1. Thus

ord b, > B +s - 1 whenever [log,m]=s - 1.
Now assume ord b,, > B + [log, m]. Again we may assume ap = bg = 0, and
then, for n)(s) < n < n,(s), we have

orda_ > inf {ord M(m, n) + ord b, }
15t<s
pt-1 <m<pt

Zinf{(ps't—l) (p-1)+B+t-1} =B+s-1.
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