EXTRINSIC SPHERES IN KAHLER MANIFOLDS
Bang-yen Chen

1. INTRODUCTION

An n-dimensional submanifold M™ of an arbitrary Riemannian manifold M™ is
called an extrinsic spheve if it is umbilical and has parallel mean curvature vector
H # 0 [4]. (Dimensions of manifolds are real dimensions.) We say that a Riemann-
ian manifold M™ is sufficiently curved if for every point x € IVIm, the maximal li-
near subspace V of the tangent space Tx(ﬁm) of M™ at x with R(X, Y) =0 for
X, Y € V has dimension less than m - 2, where R denotes the curvature tensor of
M™,

In this paper, we shall study extrinsic spheres in an arbitrary Kahler manifold.
In particular, we shall prove the following.

THEOREM 2. Theve exists no complete ovientable extvinsic spheve of codimen-
sion two in any sufficiently cuvved Kdhlevr manifold.

Remark 1. A standard (m - 1)-sphere (m > 3) of small radius can be imbedded
as an extrinsic sphere in the complex projective space P2m(C), which is positively
curved by the Fubini-Study metric [3]. For the classification of umbilical submani-
folds in complex space forms, see [3]. For the nonexistence of extrinsic spheres of
codimension two in irreducible Hermitian symmetric spaces of dimension greater
than 2, see [2].

2. PRELIMINARIES

Let M" be an n-dimensional submanifold of a 2m-dimensional Kihler manifold
M2™ with complex structure J and Kihler metric g, and let V and 7 be the co-
variant differentiations on M™ and ﬁzm, respectively. Then the second funda-
mental form ¢ is defined by 0(X, Y) = 6X Y - Vx Y, where X and Y are vector
fields tangent to M™ and 0 is a normal-bundle-valued symmetric 2-form on M".
For a vector field £ normal to M", we write

Vx & = -AgX +Dy £,

where —A,EX (respectively, Dy £) denotes the tangential component (respectively,

the normal component) of Vx £&. A normal vector field ¢ is said to be pagrallel if
D¢ = 0. The submanifold is said to be umbilical if 0(X, Y) = g(X, Y)H, where

H = (trace 0)/n is the mean curvature vector of M® in M2m

Let R, ﬁ, and RN be the curvature tensors associated with V, Y7, and D, re-
spectively. For example, R(X, Y) =Vyx Vy -Vy Vx - VIx,Y]-
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_For the second fundamental form ¢, we define the covariant derivative, denoted
by Vx 0, to be

(1) (Vx 0) (Y, Z) = Dylo(Y, 2)) - 0(VxY, Z) - o(Y, Vx Z).

Then, for all vector fields X, Y, Z, W tangent to M™ and for all vector fields &, 7
normal to M", the equations of Gauss, Codazzi, and Ricci take the forms

(2) RKX,Y;Z, W) =RX,Y; Z, W +¢g(0(X, Z), c(Y, W) - glo(X, W), o(¥, Z)),
(3) (R(X, Y)2)* = (Ux 0) (¥, 2) - Uy 0) X, Z),
(4) R(X, Y; & n) = RNX, %5 & n) - g([A;, Ay]X, Y),
where R(X, Y; Z, W) = g(R(X, Y)Z, W) and RN(X, Y; &, 1) = gRN(X, Y) ¢ 7), and
where + in (3) denotes the normal component.

3. EXTRINSIC SPHERES IN KAHLER MANIFOLDS

THEOREM 1. Let M2M be a 2n-dimensional complete extvinsic spheve in any

Kdhler manifold M2m If theve exist 2m - 2n mutually ovthogonal pavallel unit
novmal vector fields along M2%, then M2 is isometvic to the standavd 2n-sphere

of radius 1/a, and R(X, Y) = 0 for all vectors X, Y tangent to M2n,

Proof. Let M2n be an extrinsic sphere in a Kihler manifold M2m_ Then by the
definition,

(5) 0(X,Y) = g(X,Y)H, DyH =0, and H # 0,

for all vectors X, Y tangent to M?2", Since H is parallel, the length, say a, of H
is a nonzero constant. If we put

(6) H = af,
then E is a parallel unit normal vector field along M2", Now, suppose that

§15> ***5> E2m-2n are 2m - 2n mutually orthogonal parallel unit normal vector fields
defined on the whole M2™, Then, by Proposition 1.3 of [1, p. 101}, we may assume

that &, = £. We define 2m - 2n - 1 functions on M2" by ¢ = g(JE, £),
r=2,--,2m - 2n. From (5) and the parallelism of ¢.., we find

(7) Vg £, = -Ap X +Dxi, = 0.
Thus, we find

(8) Xo, = gWWx g, &) = agX, J&,).
From (5), (6), (7), and (8), we have

XY¢

. = aXg(y, J&,.) = agWUx Y, J&.) = ag(VxY, J&.) + eglo(X, Y), J¢,)

= (VXY)d’r - a? ¢r g(X’ Y)’

from which we get
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(9) Vxdp, = -a@®¢. X, r =2, -, 2m - 2n.

Now, we shall claim that at least one of the functions ¢, r =2, +--, 2m - 2n, isa
nonconstant function. If all of the ¢ are constant, then (5) and (7) imply

0 = X¢, = gWVxE &) = -8UAX, &)

]

-ag(X, &) = ag(X, Jt.), r=2,°",2m - 2n.

Thus, the subspace spanned by &, -+, & o0, 98, =, I& -, 1S @ J-invariant
normal subspace. Thus, it is even-dimensional and of dimension greater than
2m - 2n - 1. Hence, it is the whole normal space of M2" in M2™. This implies

that M2D is a complex submanifold of the K&hler manifold M2™, from which we see
that M2" is minimal. This is a contradiction. Thus, we know that there exists a
nonconstant function ¢ defined on M2™ and satisfying the differential equation

Ux d¢ = -a2 ¢X for all vectors X tangent to M2™, Therefore, by a result of Obata
[5], M?2" is isometric to the standard 2n-sphere of radius 1/a. Thus, in particular,
the curvature tensor R of M2" is given by

(10) R(X, Y; Z, W) = o [g(X, W) g(Y, 2) - g(X, Z) g(Y, W)].
Substituting (5) and (10) into the equation of Gauss, we get

(11) R(X, Y; 2, W) = 0.

From (1) and (5), we find (Vx ¢) (Y, Z) = g(Y, Z)DxH = 0. Thus, the equation of

Codazzi implies
(12) REX, Y)Z)* = 0.

Since M?2" is umbilical, the second fundamental tensors commute. Thus,
(13) [Ag’ A'r’] = 03

for all vectors £, 7 normal to M2™, On the other hand, the existence of 2m - 2n
parallel unit normal vector fields &;, -+, §,,,,_», implies that the normal curvature
tensor RN is trivial. Thus, by (13) and the equation of Ricci,

(14) R(X, Y; &, ) = 0.

By using the identity R(X, Y; Z, £) + R(X, Y; £, Z) = 0, we see that (11), (12), and
(14) imply

(15) R(X,Y) =0

for all vectors X, Y tangent to M2™, This completes the proof of the theorem.

Remavk 2. If M2" is simply connected, the existence of 2m - 2n mutually
orthogonal unit parallel normal vector fields (defined on the whole manifold M2n) is
equivalent to the triviality of RN (see [1, p. 99 and p. 143]).

Remark 3. The standard 2n-sphere in C2™ gatisfies the assumption of Theo-
rem 1.

Now we shall give a proof of Theorem 2.
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If M2nP is a complete orientable extrinsic sphere of codimension two in any
Kidhler manifold, then, by the parallelism of the mean curvature vector H and the
nonvanishing of H, we see that the normal connection is trivial; é.e., RN = 0. Thus,
if we choose &, to be one of the two unit normal vector fields perpendicular to H,
then the assumptions of Theorem 1 are all satisfied. Thus, the ambient space

M20+2 g pot sufficiently curved. This completes the proof of Theorem 2.
As an immediate consequence of Theorem 2, we have the following.

COROLLARY. There exist no complete ovientable extrinsic spheves of co-
dimension two in any positively (or negatively) curved Kihler manifold.
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